請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94965完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊宏志 | zh_TW |
| dc.contributor.advisor | Hung-Chih Yang | en |
| dc.contributor.author | 李得銨 | zh_TW |
| dc.contributor.author | Te-An Lee | en |
| dc.date.accessioned | 2024-08-21T16:57:22Z | - |
| dc.date.available | 2024-08-22 | - |
| dc.date.copyright | 2024-08-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-03 | - |
| dc.identifier.citation | 1. Rumgay, H., et al., Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol, 2022. 77(6): p. 1598-1606.
2. Llovet, J.M., et al., Hepatocellular carcinoma. Nat Rev Dis Primers, 2021. 7(1): p. 6. 3. Kim, D.Y., Changing etiology and epidemiology of hepatocellular carcinoma: Asia and worldwide. J Liver Cancer, 2024. 24(1): p. 62-70. 4. Reddy, K.R., et al., Incidence and Risk Factors for Hepatocellular Carcinoma in Cirrhosis: The Multicenter Hepatocellular Carcinoma Early Detection Strategy (HEDS) Study. Gastroenterology, 2023. 165(4): p. 1053-1063 e6. 5. Lee, S.E., et al., Frequent somatic TERT promoter mutations and CTNNB1 mutations in hepatocellular carcinoma. Oncotarget, 2016. 7(43): p. 69267-69275. 6. Reig, M., et al., BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. Journal of hepatology, 2022. 76(3): p. 681-693. 7. Kinsey, E. and H.M. Lee, Management of Hepatocellular Carcinoma in 2024: The Multidisciplinary Paradigm in an Evolving Treatment Landscape. Cancers (Basel), 2024. 16(3). 8. Singal, A.G., et al., AASLD Practice Guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology, 2023. 78(6): p. 1922-1965. 9. Hanzel, J., et al., Sorafenib for the treatment of hepatocellular carcinoma: a single-centre real-world study. Radiol Oncol, 2020. 54(2): p. 233-236. 10. Wang, S., et al., Lenvatinib as First-Line Treatment for Unresectable Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Cancers (Basel), 2022. 14(22). 11. Gordan, J.D., et al., Systemic Therapy for Advanced Hepatocellular Carcinoma: ASCO Guideline Update. J Clin Oncol, 2024. 42(15): p. 1830-1850. 12. Mandlik, D.S., S.K. Mandlik, and H.B. Choudhary, Immunotherapy for hepatocellular carcinoma: Current status and future perspectives. World J Gastroenterol, 2023. 29(6): p. 1054-1075. 13. Finn, R.S., et al., Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med, 2020. 382(20): p. 1894-1905. 14. Abou-Alfa, G.K., et al., Phase 3 randomized, open-label, multicenter study of tremelimumab (T) and durvalumab (D) as first-line therapy in patients (pts) with unresectable hepatocellular carcinoma (uHCC): HIMALAYA. 2022, American Society of Clinical Oncology. 15. Saung, M.T., et al., FDA Approval Summary: Nivolumab Plus Ipilimumab for the Treatment of Patients with Hepatocellular Carcinoma Previously Treated with Sorafenib. Oncologist, 2021. 26(9): p. 797-806. 16. Sas, Z., et al., Tumor Microenvironment of Hepatocellular Carcinoma: Challenges and Opportunities for New Treatment Options. Int J Mol Sci, 2022. 23(7). 17. Kubo, N., et al., Cancer-associated fibroblasts in hepatocellular carcinoma. World J Gastroenterol, 2016. 22(30): p. 6841-50. 18. Wilkinson, A.L., M. Qurashi, and S. Shetty, The Role of Sinusoidal Endothelial Cells in the Axis of Inflammation and Cancer Within the Liver. Front Physiol, 2020. 11: p. 990. 19. Zheng, X., et al., Progression on the Roles and Mechanisms of Tumor-Infiltrating T Lymphocytes in Patients With Hepatocellular Carcinoma. Front Immunol, 2021. 12: p. 729705. 20. Montironi, C., et al., Inflamed and non-inflamed classes of HCC: a revised immunogenomic classification. Gut, 2023. 72(1): p. 129-140. 21. Llovet, J.M., et al., Adjuvant and neoadjuvant immunotherapies in hepatocellular carcinoma. Nat Rev Clin Oncol, 2024. 21(4): p. 294-311. 22. Xue, R., et al., Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature, 2022. 612(7938): p. 141-147. 23. Yang, X., et al., Precision treatment in advanced hepatocellular carcinoma. Cancer Cell, 2024. 42(2): p. 180-197. 24. Han, Z., et al., Therapeutic vaccine to cure large mouse hepatocellular carcinomas. Oncotarget, 2017. 8(32): p. 52061-52071. 25. Bresnahan, E., et al., Mouse Models of Oncoimmunology in Hepatocellular Carcinoma. Clin Cancer Res, 2020. 26(20): p. 5276-5286. 26. Uehara, T., I.P. Pogribny, and I. Rusyn, The DEN and CCl(4) -Induced Mouse Model of Fibrosis and Inflammation-Associated Hepatocellular Carcinoma. Curr Protoc, 2021. 1(8): p. e211. 27. Yu, S. and S. Vernia, A Transposon-Based Mouse Model of Hepatocellular Carcinoma via Hydrodynamic Tail Vein Injection. Methods Mol Biol, 2020. 2164: p. 129-143. 28. Liu, Y.T., et al., A novel spontaneous hepatocellular carcinoma mouse model for studying T-cell exhaustion in the tumor microenvironment. J Immunother Cancer, 2018. 6(1): p. 144. 29. Yuen, V.W., et al., Using mouse liver cancer models based on somatic genome editing to predict immune checkpoint inhibitor responses. J Hepatol, 2023. 78(2): p. 376-389. 30. Ramirez, C.F.A., et al., Cancer cell genetics shaping of the tumor microenvironment reveals myeloid cell-centric exploitable vulnerabilities in hepatocellular carcinoma. Nat Commun, 2024. 15(1): p. 2581. 31. Morotti, M., et al., Promises and challenges of adoptive T-cell therapies for solid tumours. Br J Cancer, 2021. 124(11): p. 1759-1776. 32. Sterner, R.C. and R.M. Sterner, CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J, 2021. 11(4): p. 69. 33. Jackson, H.J., S. Rafiq, and R.J. Brentjens, Driving CAR T-cells forward. Nat Rev Clin Oncol, 2016. 13(6): p. 370-83. 34. Chmielewski, M. and H. Abken, TRUCKS, the fourth‐generation CAR T cells: current developments and clinical translation. Advances In Cell And Gene Therapy, 2020. 3(3): p. e84. 35. Baulu, E., et al., TCR-engineered T cell therapy in solid tumors: State of the art and perspectives. Sci Adv, 2023. 9(7): p. eadf3700. 36. June, C.H., et al., CAR T cell immunotherapy for human cancer. Science, 2018. 359(6382): p. 1361-1365. 37. Cappell, K.M. and J.N. Kochenderfer, Long-term outcomes following CAR T cell therapy: what we know so far. Nat Rev Clin Oncol, 2023. 20(6): p. 359-371. 38. Maude, S.L., et al., Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med, 2018. 378(5): p. 439-448. 39. Schuster, S.J., et al., Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N Engl J Med, 2019. 380(1): p. 45-56. 40. Locke, F.L., et al., Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. N Engl J Med, 2022. 386(7): p. 640-654. 41. Wang, M., et al., KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N Engl J Med, 2020. 382(14): p. 1331-1342. 42. Morschhauser, F., et al., Lisocabtagene maraleucel in follicular lymphoma: the phase 2 TRANSCEND FL study. Nat Med, 2024. 43. San-Miguel, J., et al., Cilta-cel or Standard Care in Lenalidomide-Refractory Multiple Myeloma. N Engl J Med, 2023. 389(4): p. 335-347. 44. Munshi, N.C., et al., Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N Engl J Med, 2021. 384(8): p. 705-716. 45. Chen, T., et al., Current challenges and therapeutic advances of CAR-T cell therapy for solid tumors. Cancer Cell Int, 2024. 24(1): p. 133. 46. Yee, C., et al., Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci U S A, 2002. 99(25): p. 16168-73. 47. D’Angelo, S., et al., 298 Final analysis of the phase 1 trial of NY-ESO-1–specific T-cell receptor (TCR) T-cell therapy (letetresgene autoleucel; GSK3377794) in patients with advanced synovial sarcoma (SS). 2020, BMJ Specialist Journals. 48. D'Angelo, S.P., et al., Lete-cel in patients with synovial sarcoma or myxoid/round cell liposarcoma: Planned interim analysis of the pivotal IGNYTE-ESO trial. 2024, American Society of Clinical Oncology. 49. Blum Murphy, M.A., et al., Safety and efficacy from the phase 1 SURPASS trial of ADP-A2M4CD8, a next-generation T-cell receptor T-cell therapy, in patients with advanced esophageal, esophagogastric junction, or gastric cancer. 2023, American Society of Clinical Oncology. 50. Gao, H., et al., Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res, 2014. 20(24): p. 6418-28. 51. Xie, C., et al., A phase I study of GPC3 targeted CAR-T cell therapy in advanced GPC3-expressing hepatocellular carcinoma (HCC). 2023, American Society of Clinical Oncology. 52. Li, W., et al., Redirecting T Cells to Glypican-3 with 4-1BB Zeta Chimeric Antigen Receptors Results in Th1 Polarization and Potent Antitumor Activity. Hum Gene Ther, 2017. 28(5): p. 437-448. 53. Jiang, Z., et al., Anti-GPC3-CAR T Cells Suppress the Growth of Tumor Cells in Patient-Derived Xenografts of Hepatocellular Carcinoma. Front Immunol, 2016. 7: p. 690. 54. Ozer, M., et al., Adoptive Cell Therapy in Hepatocellular Carcinoma: A Review of Clinical Trials. Cancers (Basel), 2023. 15(6). 55. Gerry, A., et al., Targeting alpha fetoprotein with TCR engineered T cells in HCC. 2016, American Society of Clinical Oncology. 56. Tan, A.T., et al., Immunological alterations after immunotherapy with short lived HBV-TCR T cells associates with long-term treatment response in HBV-HCC. Hepatol Commun, 2022. 6(4): p. 841-854. 57. Zhong, L., et al., Combination of CAR‑T cell therapy and radiotherapy: Opportunities and challenges in solid tumors (Review). Oncol Lett, 2023. 26(1): p. 281. 58. Qin, V.M., et al., CAR-T Plus Radiotherapy: A Promising Combination for Immunosuppressive Tumors. Front Immunol, 2021. 12: p. 813832. 59. Szlasa, W., et al., Efficient combination of radiotherapy and CAR-T - A systematic review. Biomed Pharmacother, 2024. 174: p. 116532. 60. Gianfaldoni, S., et al., An Overview on Radiotherapy: From Its History to Its Current Applications in Dermatology. Open Access Maced J Med Sci, 2017. 5(4): p. 521-525. 61. Polgar, C., et al., Radiotherapy of Breast Cancer-Professional Guideline 1st Central-Eastern European Professional Consensus Statement on Breast Cancer. Pathol Oncol Res, 2022. 28: p. 1610378. 62. Baskar, R., et al., Cancer and radiation therapy: current advances and future directions. Int J Med Sci, 2012. 9(3): p. 193-9. 63. Chen, L.C., et al., Role of modern radiotherapy in managing patients with hepatocellular carcinoma. World J Gastroenterol, 2021. 27(20): p. 2434-2457. 64. Matsuo, Y., Stereotactic Body Radiotherapy for Hepatocellular Carcinoma: A Brief Overview. Curr Oncol, 2023. 30(2): p. 2493-2500. 65. Yoon, S.M., et al., Stereotactic body radiation therapy for small (</=5 cm) hepatocellular carcinoma not amenable to curative treatment: Results of a single-arm, phase II clinical trial. Clin Mol Hepatol, 2020. 26(4): p. 506-515. 66. Jang, G.Y., et al., Interactions between tumor-derived proteins and Toll-like receptors. Exp Mol Med, 2020. 52(12): p. 1926-1935. 67. Galluzzi, L., et al., Emerging evidence for adapting radiotherapy to immunotherapy. Nat Rev Clin Oncol, 2023. 20(8): p. 543-557. 68. Cheng, J.N., et al., Radiation-induced eosinophils improve cytotoxic T lymphocyte recruitment and response to immunotherapy. Sci Adv, 2021. 7(5). 69. Herrera, F.G., et al., Low-Dose Radiotherapy Reverses Tumor Immune Desertification and Resistance to Immunotherapy. Cancer Discov, 2022. 12(1): p. 108-133. 70. Zhang, Z., et al., Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther, 2022. 7(1): p. 258. 71. Chen, Y.P., et al., Chemotherapy in Combination With Radiotherapy for Definitive-Intent Treatment of Stage II-IVA Nasopharyngeal Carcinoma: CSCO and ASCO Guideline. J Clin Oncol, 2021. 39(7): p. 840-859. 72. Cushman, T.R., et al., Combining radiation plus immunotherapy to improve systemic immune response. J Thorac Dis, 2018. 10(Suppl 3): p. S468-S479. 73. Li, H., et al., External radiotherapy combined with sorafenib has better efficacy in unresectable hepatocellular carcinoma: a systematic review and meta-analysis. Clin Exp Med, 2023. 23(5): p. 1537-1549. 74. Wang, Q., et al., Stereotactic Body Radiotherapy Combined With Lenvatinib With or Without PD-1 Inhibitors as Initial Treatment for Unresectable Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys, 2024. 75. Ning, C., et al., Radiation Therapy With Combination Therapy of Immune Checkpoint Inhibitors and Antiangiogenic Therapy for Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys, 2024. 118(5): p. 1461-1471. 76. Qu, C., et al., Radiation Priming Chimeric Antigen Receptor T-Cell Therapy in Relapsed/Refractory Diffuse Large B-Cell Lymphoma With High Tumor Burden. J Immunother, 2020. 43(1): p. 32-37. 77. Lai, J.Z., et al., Local Irradiation Sensitized Tumors to Adoptive T Cell Therapy via Enhancing the Cross-Priming, Homing, and Cytotoxicity of Antigen-Specific CD8 T Cells. Front Immunol, 2019. 10: p. 2857. 78. Murty, S., et al., Intravital imaging reveals synergistic effect of CAR T-cells and radiation therapy in a preclinical immunocompetent glioblastoma model. Oncoimmunology, 2020. 9(1): p. 1757360. 79. Juric, V., et al., Monocytes promote liver carcinogenesis in an oncogene-specific manner. J Hepatol, 2016. 64(4): p. 881-90. 80. Ruiz de Galarreta, M., et al., beta-Catenin Activation Promotes Immune Escape and Resistance to Anti-PD-1 Therapy in Hepatocellular Carcinoma. Cancer Discov, 2019. 9(8): p. 1124-1141. 81. Yu, J., et al., Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med, 2021. 27(1): p. 152-164. 82. Li, S., et al., Low-dose radiotherapy combined with dual PD-L1 and VEGFA blockade elicits antitumor response in hepatocellular carcinoma mediated by activated intratumoral CD8(+) exhausted-like T cells. Nat Commun, 2023. 14(1): p. 7709. 83. Youngblood, B., et al., Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature, 2017. 552(7685): p. 404-409. 84. Herndler-Brandstetter, D., et al., KLRG1(+) Effector CD8(+) T Cells Lose KLRG1, Differentiate into All Memory T Cell Lineages, and Convey Enhanced Protective Immunity. Immunity, 2018. 48(4): p. 716-729 e8. 85. Heidarian, M., et al., Sublethal whole-body irradiation induces permanent loss and dysfunction in pathogen-specific circulating memory CD8 T cell populations. Proc Natl Acad Sci U S A, 2023. 120(27): p. e2302785120. 86. Qian, H., et al., Expression of KLRG1 on subpopulations of lymphocytes in the peripheral blood of patients with locally advanced nasopharyngeal carcinoma and prognostic analysis. Precision Radiation Oncology, 2022. 6(3): p. 199-208. 87. Schlub, T.E., et al., Predicting CD62L expression during the CD8+ T-cell response in vivo. Immunol Cell Biol, 2010. 88(2): p. 157-64. 88. Datar, I., et al., Expression Analysis and Significance of PD-1, LAG-3, and TIM-3 in Human Non-Small Cell Lung Cancer Using Spatially Resolved and Multiparametric Single-Cell Analysis. Clin Cancer Res, 2019. 25(15): p. 4663-4673. 89. Oweida, A., et al., Resistance to Radiotherapy and PD-L1 Blockade Is Mediated by TIM-3 Upregulation and Regulatory T-Cell Infiltration. Clin Cancer Res, 2018. 24(21): p. 5368-5380. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94965 | - |
| dc.description.abstract | 肝細胞癌(hepatocellular carcinoma, HCC)是一種複雜的惡性腫瘤,在全球範圍內死亡率之高。目前針對晚期不可切除HCC的標準療法包括酪胺酸激酶抑制劑和免疫療法。近年來,過繼細胞療(adoptive cell therapy, ACT)已成為HCC治療中的具有潛力的治療方針。其中,嵌合抗原受體T細胞(CAR-T)或T細胞受體T細胞(TCR-T)最為廣泛使用。現行的臨床試驗正在評估此治療方法,然而有研究表明,單獨使用ACT治療對實體腫瘤的療效可能較低。因此,使用具非侵入性特徵的放射療法(radiotherapy, RT)來增強對腫瘤的免疫反應已成為一種潛在組合療法。然而,這種組合在HCC中的有效性和免疫機制仍不清楚。在此,我們通過流體動力尾靜脈注射(hydrodynamic tail vein injection, HDTVi)致癌質體發展出自發性且可追踪的HCC小鼠模型。我們對HCC小鼠分別施加了8Gy的低劑量全肝照射和20Gy的高劑量局部照射,在HDTVi後五週給予CD8+OT-I T細胞。治療後連續三週測量腫瘤標記HiBiT發現在各組之間沒有顯著差異。然而在8Gy RT組中有一個樣本的HiBiT持平未升高,因此促使我們研究此條件下的免疫細胞分佈。我們觀察到8Gy RT組在早期HCC小鼠之中免疫細胞浸潤略有增加。為了達到更好的腫瘤控制,我們在RT結合ACT再加上anti-VEGF-A。經過一個月的追踪,與RT加anti-VEGF-A組或僅anti-VEGF-A組相比,三重治療可以有效抑制肝腫瘤。儘管這些發現仍須進一步研究,但結果表明8Gy低劑量RT加T細胞療法和抗VEGF-A可能活化抗腫瘤免疫並緩解自發性HCC的腫瘤進展。對於皮下注射肝腫瘤模型,我們使用了從自發性HCC小鼠中分離的原發性肝癌細胞株。治療結果顯示在RT、ACT、或RT加上ACT的組別中有抑制效果的腫瘤幾乎都是體積較小的腫瘤,大腫瘤在治療後幾乎都沒有抑制效果,因此無法看出治療差異。然而,分析治療後的免疫細胞群和T細胞特性可以發現,RT能夠增加CD45+免疫細胞比例與抗原特異性CD8+ T細胞,並且減少腫瘤中的巨噬細胞。TIM-3耗竭標記和KLRG1效應標記在OT-I T細胞上的表達水平增加,表明RT可以有效刺激腫瘤特異性T細胞的抗腫瘤活性。總結來說,通過研究RT後腫瘤抗原特異性OT-I細胞的表型,可以理解RT和過繼T細胞組合療法在HCC中的潛在效應。 | zh_TW |
| dc.description.abstract | Hepatocellular carcinoma (HCC) is a complex malignancy with high mortality globally. Current standard systemic treatments for advanced unresectable HCC include tyrosine kinase inhibitors and immunotherapy. Recently, adoptive cell therapy (ACT) has emerged as a promising treatment for HCC, with chimeric-antigen receptor T cells (CAR-T) or T cell receptor T cells (TCR-T) being typical candidates. Ongoing clinical trials are evaluating this novel treatment, but reports suggest ACT treatments alone may have low efficacy for solid tumors. Therefore, radiotherapy, which is characterized by a non-invasive nature for treating unresectable HCC, has been used to boost the immune response against tumors. However, the effectiveness and underlying immune mechanisms of this combination in HCC remain unclear. Here, we utilized a unique spontaneous and trackable HCC mouse model by hydrodynamics tail vein injection (HDTVi) of oncogenic plasmids. Low-dose whole-liver and a high-dose regional of radiation, 8Gy and 20Gy, respectively, were applied to the tumor-bearing mice, followed by the transfer of CD8+OT-I T cells five weeks after HDTVi. The HiBiT level, an artificial circulating marker for tracking tumor growth, showed no significant difference between the sham, 8Gy, and 20Gy radiation groups three weeks post-treatment. Intriguingly, one sample in the 8Gy radiation group remained at a constant HiBiT level. This prompted an investigation into the immune cell distribution under these conditions. We observed a modest increase in immune cell infiltration in 8Gy radiotherapy groups. To achieve better tumor control, RT plus ACT and anti-VEGF-A were implanted in five-week HCC-bearing mice. The liver tumor was repressed in a triple combination group compared to groups with RT plus anti-VEGF-A or anti-VEGF-A only after one month of tracking. Although preliminary, these findings suggest that 8Gy low-dose radiation plus T cell therapy and anti-VEGF-A likely activate anti-tumor immunity and alleviate tumor progression in spontaneous HCC. For the subcutaneous model, we utilized a primary tumor cell line isolated from spontaneous HCC murine. The treatment, including RT plus ACT, RT alone, and ACT alone, were able to reduce the volume of small tumors (≤ 500mm2). In contrast, they could barely inhibit large tumor progression. After analyzing the tumor immune microenvironment, CD45+ total immune cells and tumor-specific OT-I T cells were significantly increased after RT. TIM-3 exhaustion and KLRG1 effector markers show increased levels of expression on OT-I T cells, suggesting that RT can effectively stimulate the anti-tumor activity of tumor-specific T cells. Collectively, the combinational therapeutic effect of RT and adoptive T cell therapy in HCC can potentially be understood by studying the phenotypes of tumor antigen-specific OT-I cells after RT. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:57:22Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-21T16:57:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 1
摘要 2 Abstract 3 Table of Contents 5 List of Figures 7 1 Introduction 8 1.1 Hepatocellular carcinoma (HCC) 8 1.1.1 Global burden and characteristics of HCC 8 1.1.2 Clinical management for HCC 9 1.1.3 Tumor microenvironment (TME) in HCC 10 1.1.4 HCC pre-clinical model 12 1.2 Adoptive T cell therapy 14 1.2.1 Introduction of CAR-T/TCR-T 14 1.2.2 CAR-T in the clinical realms 15 1.2.3 TCR-T in the clinical realms 16 1.2.4 ACT for HCC 17 1.3 Radiotherapy (RT) 18 1.3.1 Clinical efficacy of RT 18 1.3.2 Immune-regulatory mechanisms of RT 19 1.3.3 RT combined with TKI, immunotherapy, and ACT 20 2 Specific aims 23 3 Materials and Methods 24 3.1 Mice 24 3.2 Hydrodynamic tail vein injection (HDTVi) mouse model 24 3.3 Subcutaneous cancer cell line implantation 25 3.4 Computed tomography (CT) scan and radiotherapy (RT) 26 3.5 Adoptive T cell transfer 26 3.6 Liver immune cell isolation 27 3.7 Subcutaneous tumor immune cell isolation 27 3.8 Flow cytometry analysis 28 3.9 Histology analysis 28 3.10 Tissue clearance and immunofluorescent assay (IFA) 29 3.11 Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay 30 3.12 Statistical analysis 31 4 Results 32 4.1 Characterization of RT dose in NrasG12V/PtenKO/Trp53KO spontaneous HCC 32 4.2 20Gy RT induces tumor antigen release but barely suppresses advanced HCC 33 4.3 Therapeutic effects of low-dose 8Gy or high-dose 20Gy RT combined with ACT 34 4.4 Low-dose 8Gy RT may alter immune cell spatial distribution in NrasG12V/Trp53KO/PtenKO spontaneous HCC 34 4.5 Therapeutic effects of T cell therapy combined with RT plus anti-VEGF-A 36 4.6 Immune populations and tumor-specific T cell phenotyping following subcutaneous inoculation of NrasG12V/Trp53KO/PtenKO HCC-derived cell line 37 5 Discussion 40 5.1 Summary 40 5.2 The strengths and limitations of the HDTVi spontaneous mouse model 41 5.3 The effects of low-dose 8Gy RT and its combination with ACT/anti-VEGF on liver tumor 42 5.4 Tumor-specific T cell activation and exhaustion in RT plus ACT treatment 43 Figures 45 References 69 | - |
| dc.language.iso | en | - |
| dc.subject | 自發性肝癌小鼠模型 | zh_TW |
| dc.subject | 過繼T細胞療法 | zh_TW |
| dc.subject | 放射療法 | zh_TW |
| dc.subject | 組合療法 | zh_TW |
| dc.subject | Radiotherapy | en |
| dc.subject | Adoptive T cell therapy | en |
| dc.subject | Combination therapy | en |
| dc.subject | Spontaneous HCC mouse model | en |
| dc.title | 研究放射線治療對肝細胞癌T細胞療法之影響 | zh_TW |
| dc.title | To investigate the effect of radiotherapy on adoptive T cell therapy for hepatocellular carcinoma | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曾岱宗;成佳憲 | zh_TW |
| dc.contributor.oralexamcommittee | Tai-Chung Tseng ;Chia-Hsien Chen | en |
| dc.subject.keyword | 放射療法,過繼T細胞療法,組合療法,自發性肝癌小鼠模型, | zh_TW |
| dc.subject.keyword | Radiotherapy,Adoptive T cell therapy,Combination therapy,Spontaneous HCC mouse model, | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU202403227 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-05 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 微生物學研究所 | - |
| dc.date.embargo-lift | 2029-08-03 | - |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 15.91 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
