Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 基因體暨蛋白體醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94962
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃祥博zh_TW
dc.contributor.advisorHsiang-Po Huangen
dc.contributor.author陳姿宇zh_TW
dc.contributor.authorTzu-Yu Chenen
dc.date.accessioned2024-08-21T16:56:14Z-
dc.date.available2024-08-22-
dc.date.copyright2024-08-21-
dc.date.issued2024-
dc.date.submitted2024-07-29-
dc.identifier.citation1. D'Avanzo F, Rigon L, Zanetti A, Tomanin R. Mucopolysaccharidosis Type II: One Hundred Years of Research, Diagnosis, and Treatment. Int J Mol Sci. 2020;21(4).
2. Afratis N, Gialeli C, Nikitovic D, Tsegenidis T, Karousou E, Theocharis AD, et al. Glycosaminoglycans: key players in cancer cell biology and treatment. The FEBS journal. 2012;279(7):1177-97.
3. Cantani A, Mastrantoni F. Mucopolysaccharidosis. Rivista Europea per le Scienze Mediche e Farmacologiche= European Review for Medical and Pharmacological Sciences= Revue Europeenne Pour les Sciences Medicales et Pharmacologiques. 1989;11(4):345-50.
4. Gama CI, Hsieh-Wilson LC. Chemical approaches to deciphering the glycosaminoglycan code. Current opinion in chemical biology. 2005;9(6):609-19.
5. Meyer K. Biochemistry and biology of mucopolysaccharides. Am J Med. 1969;47(5):664-72.
6. Bhakthaganesh K, Vanathi M, Ahmed S, Gupta N, Tandon R. Mucopolysaccharidosis. Taiwan Journal of Ophthalmology. 2023;13(4):443-50.
7. Coutinho MF, Lacerda L, Alves S. Glycosaminoglycan storage disorders: a review. Biochem Res Int. 2012;2012:471325.
8. Campos D, Monaga M. Mucopolysaccharidosis type I: current knowledge on its pathophysiological mechanisms. Metab Brain Dis. 2012;27(2):121-9.
9. Hunter C. A Rare Disease in Two Brothers. Proc R Soc Med. 1917;10(Sect Study Dis Child):104-16.
10. Demydchuk M, Hill CH, Zhou A, Bunkóczi G, Stein PE, Marchesan D, et al. Insights into Hunter syndrome from the structure of iduronate-2-sulfatase. Nature Communications. 2017;8(1):15786.
11. Cleary MA, Wraith JE. Management of mucopolysaccharidosis type III. Arch Dis Child. 1993;69(3):403-6.
12. Ireland M, Rowlands D. Mucopolysaccharidosis type IV as a cause of mitral stenosis in an adult. British Heart Journal. 1981;46(1):113.
13. Cade J, Jansen N. Anesthetic challenges in an adult with mucopolysaccharidosis type VI. A&A Practice. 2014;2(12):152-4.
14. Lehman TJ, Miller N, Norquist B, Underhill L, Keutzer J. Diagnosis of the mucopolysaccharidoses. Rheumatology. 2011;50(suppl_5):v41-v8.
15. Martin DC, Atmuri V, Hemming RJ, Farley J, Mort JS, Byers S, et al. A mouse model of human mucopolysaccharidosis IX exhibits osteoarthritis. Hum Mol Genet. 2008;17(13):1904-15.
16. Giugliani R, Martins AM, Okuyama T, Eto Y, Sakai N, Nakamura K, et al. Enzyme Replacement Therapy with Pabinafusp Alfa for Neuronopathic Mucopolysaccharidosis II: An Integrated Analysis of Preclinical and Clinical Data. Int J Mol Sci. 2021;22(20).
17. Morimoto H, Kida S, Yoden E, Kinoshita M, Tanaka N, Yamamoto R, et al. Clearance of heparan sulfate in the brain prevents neurodegeneration and neurocognitive impairment in MPS II mice. Mol Ther. 2021;29(5):1853-61.
18. Kosuga M, Mashima R, Hirakiyama A, Fuji N, Kumagai T, Seo JH, et al. Molecular diagnosis of 65 families with mucopolysaccharidosis type II (Hunter syndrome) characterized by 16 novel mutations in the IDS gene: Genetic, pathological, and structural studies on iduronate-2-sulfatase. Mol Genet Metab. 2016;118(3):190-7.
19. Davison JE, Hendriksz CJ, Sun Y, Davies NP, Gissen P, Peet AC. Quantitative in vivo brain magnetic resonance spectroscopic monitoring of neurological involvement in mucopolysaccharidosis type II (Hunter Syndrome). J Inherit Metab Dis. 2010;33 Suppl 3:S395-9.
20. Lampe C, Bosserhoff AK, Burton BK, Giugliani R, de Souza CF, Bittar C, et al. Long-term experience with enzyme replacement therapy (ERT) in MPS II patients with a severe phenotype: an international case series. J Inherit Metab Dis. 2014;37(5):823-9.
21. Tomatsu S, Almeciga-Diaz CJ, Montano AM, Yabe H, Tanaka A, Dung VC, et al. Therapies for the bone in mucopolysaccharidoses. Mol Genet Metab. 2015;114(2):94-109.
22. Needham M, Packman W, Quinn N, Rappoport M, Aoki C, Bostrom A, et al. Health-Related Quality of Life in Patients with MPS II. J Genet Couns. 2015;24(4):635-44.
23. Negretto G, Deon M, Biancini G, Burin M, Giugliani R, Vargas C. Glycosaminoglycans can be associated with oxidative damage in mucopolysaccharidosis II patients submitted to enzyme replacement therapy. Cell biology and toxicology. 2014;30:189-93.
24. Yokoi K, Akiyama K, Kaneshiro E, Higuchi T, Shimada Y, Kobayashi H, et al. Effect of donor chimerism to reduce the level of glycosaminoglycans following bone marrow transplantation in a murine model of mucopolysaccharidosis type II. Journal of inherited metabolic disease. 2015;38:333-40.
25. Concolino D, Deodato F, Parini R. Enzyme replacement therapy: efficacy and limitations. Ital J Pediatr. 2018;44(Suppl 2):120.
26. Vogler C, Levy B, Grubb JH, Galvin N, Tan Y, Kakkis E, et al. Overcoming the blood-brain barrier with high-dose enzyme replacement therapy in murine mucopolysaccharidosis VII. Proc Natl Acad Sci U S A. 2005;102(41):14777-82.
27. Lundy DJ, Lee KJ, Peng IC, Hsu CH, Lin JH, Chen KH, et al. Inducing a Transient Increase in Blood-Brain Barrier Permeability for Improved Liposomal Drug Therapy of Glioblastoma Multiforme. ACS Nano. 2019;13(1):97-113.
28. Schinkel AH. P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev. 1999;36(2-3):179-94.
29. Mittapalli RK, Manda VK, Adkins CE, Geldenhuys WJ, Lockman PR. Exploiting nutrient transporters at the blood–brain barrier to improve brain distribution of small molecules. Therapeutic delivery. 2010;1(6):775-84.
30. Barranger JA, Rapoport SI, Fredericks WR, Pentchev PG, MacDermot KD, Steusing JK, et al. Modification of the blood-brain barrier: increased concentration and fate of enzymes entering the brain. Proc Natl Acad Sci U S A. 1979;76(1):481-5.
31. Sato Y, Okuyama T. Novel Enzyme Replacement Therapies for Neuropathic Mucopolysaccharidoses. Int J Mol Sci. 2020;21(2).
32. Bockenhoff A, Cramer S, Wolte P, Knieling S, Wohlenberg C, Gieselmann V, et al. Comparison of five peptide vectors for improved brain delivery of the lysosomal enzyme arylsulfatase A. J Neurosci. 2014;34(9):3122-9.
33. Sonoda H, Takahashi K, Minami K, Hirato T, Yamamoto T, So S, et al. Treatment of Neuronopathic Mucopolysaccharidoses with Blood-Brain Barrier-Crossing Enzymes: Clinical Application of Receptor-Mediated Transcytosis. Pharmaceutics. 2022;14(6).
34. Horgan C, Jones SA, Bigger BW, Wynn R. Current and Future Treatment of Mucopolysaccharidosis (MPS) Type II: Is Brain-Targeted Stem Cell Gene Therapy the Solution for This Devastating Disorder? Int J Mol Sci. 2022;23(9).
35. Okuyama T, Eto Y, Sakai N, Nakamura K, Yamamoto T, Yamaoka M, et al. A Phase 2/3 Trial of Pabinafusp Alfa, IDS Fused with Anti-Human Transferrin Receptor Antibody, Targeting Neurodegeneration in MPS-II. Mol Ther. 2021;29(2):671-9.
36. Yamamoto R, Kawashima S. [Pharmacological property, mechanism of action and clinical study results of Pabinafusp Alfa (Genetical Recombination) (IZCARGO((R)) I.V. Infusion 10 mg) as the therapeutic for Mucopolysaccharidosis type-II (Hunter syndrome)]. Nihon Yakurigaku Zasshi. 2022;157(1):62-75.
37. Taylor M, Khan S, Stapleton M, Wang J, Chen J, Wynn R, et al. Hematopoietic Stem Cell Transplantation for Mucopolysaccharidoses: Past, Present, and Future. Biol Blood Marrow Transplant. 2019;25(7):e226-e46.
38. Muenzer J, Hendriksz CJ, Fan Z, Vijayaraghavan S, Perry V, Santra S, et al. A phase I/II study of intrathecal idursulfase-IT in children with severe mucopolysaccharidosis II. Genet Med. 2016;18(1):73-81.
39. Giugliani R, Martins AM, Okuyama T, Eto Y, Sakai N, Nakamura K, et al. Enzyme replacement therapy with pabinafusp alfa for neuronopathic mucopolysaccharidosis II: an integrated analysis of preclinical and clinical data. International Journal of Molecular Sciences. 2021;22(20):10938.
40. Kakkis E, McEntee M, Vogler C, Le S, Levy B, Belichenko P, et al. Intrathecal enzyme replacement therapy reduces lysosomal storage in the brain and meninges of the canine model of MPS I. Mol Genet Metab. 2004;83(1-2):163-74.
41. Matsubara Y, Miyazaki O, Kosuga M, Okuyama T, Nosaka S. Cerebral magnetic resonance findings during enzyme replacement therapy in mucopolysaccharidosis. Pediatr Radiol. 2017;47(12):1659-69.
42. Chung JK, Pan L, Palmieri K, Youssef AS, McCauley TG. Whole Body and CNS Biodistribution of rhHNS in Cynomolgus Monkeys after Intrathecal Lumbar Administration: Treatment Implications for Patients with MPS IIIA. Int J Mol Sci. 2017;18(12).
43. Laoharawee K, DeKelver RC, Podetz-Pedersen KM, Rohde M, Sproul S, Nguyen HO, et al. Dose-Dependent Prevention of Metabolic and Neurologic Disease in Murine MPS II by ZFN-Mediated In Vivo Genome Editing. Mol Ther. 2018;26(4):1127-36.
44. Valayannopoulos V, Wijburg FA. Therapy for the mucopolysaccharidoses. Rheumatology. 2011;50(suppl_5):v49-v59.
45. Wraith JE, Scarpa M, Beck M, Bodamer OA, De Meirleir L, Guffon N, et al. Mucopolysaccharidosis type II (Hunter syndrome): a clinical review and recommendations for treatment in the era of enzyme replacement therapy. European journal of pediatrics. 2008;167:267-77.
46. Wang RY, Cambray-Forker EJ, Ohanian K, Karlin DS, Covault KK, Schwartz PH, et al. Treatment reduces or stabilizes brain imaging abnormalities in patients with MPS I and II. Mol Genet Metab. 2009;98(4):406-11.
47. Nan H, Park C, Maeng S. Mucopolysaccharidoses I and II: brief review of therapeutic options and supportive/palliative therapies. BioMed Research International. 2020;2020(1):2408402.
48. Scarpa M, Almassy Z, Beck M, Bodamer O, Bruce IA, De Meirleir L, et al. Mucopolysaccharidosis type II: European recommendations for the diagnosis and multidisciplinary management of a rare disease. Orphanet J Rare Dis. 2011;6:72.
49. Akiyama K, Shimada Y, Higuchi T, Ohtsu M, Nakauchi H, Kobayashi H, et al. Enzyme augmentation therapy enhances the therapeutic efficacy of bone marrow transplantation in mucopolysaccharidosis type II mice. Molecular genetics and metabolism. 2014;111(2):139-46.
50. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell. 2006;126(4):663-76.
51. Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature. 2012;481(7381):295-305.
52. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. science. 2007;318(5858):1917-20.
53. Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell stem cell. 2009;5(1):111-23.
54. Varga E, Nemes C, Bock I, Varga N, Feher A, Kobolak J, et al. Generation of Mucopolysaccharidosis type II (MPS II) human induced pluripotent stem cell (iPSC) line from a 3-year-old male with pathogenic IDS mutation. Stem Cell Res. 2016;17(3):479-81.
55. Reboun M, Rybova J, Dobrovolný R, Vcelak J, Veselkova T, Storkanova G, et al. X-chromosome inactivation analysis in different cell types and induced pluripotent stem cells elucidates the disease mechanism in a rare case of mucopolysaccharidosis type II in a female. Folia Biologica. 2016;62(2):82.
56. Varga E, Nemes C, Bock I, Varga N, Feher A, Dinnyes A, et al. Generation of Mucopolysaccharidosis type II (MPS II) human induced pluripotent stem cell (iPSC) line from a 1-year-old male with pathogenic IDS mutation. Stem Cell Res. 2016;17(3):482-4.
57. Varga E, Nemes C, Bock I, Varga N, Feher A, Kobolak J, et al. Generation of Mucopolysaccharidosis type II (MPS II) human induced pluripotent stem cell (iPSC) line from a 7-year-old male with pathogenic IDS mutation. Stem Cell Res. 2016;17(3):463-5.
58. Shirotani K, Matsuo K, Ohtsuki S, Masuda T, Asai M, Kutoku Y, et al. A simplified and sensitive method to identify Alzheimer's disease biomarker candidates using patient-derived induced pluripotent stem cells (iPSCs). J Biochem. 2017;162(6):391-4.
59. Ho R, Workman MJ, Mathkar P, Wu K, Kim KJ, O'Rourke JG, et al. Cross-Comparison of Human iPSC Motor Neuron Models of Familial and Sporadic ALS Reveals Early and Convergent Transcriptomic Disease Signatures. Cell Syst. 2021;12(2):159-75 e9.
60. Wang Y, Yu H, Zhang Y, Zhang J, Chen K, Sun H, et al. Establishment of TUSMi003-A, an induced pluripotent stem cell (iPSC) line from a 62-year old Chinese Han patient with Alzheimer's disease with ApoE3/4 genetic background. Stem Cell Res. 2018;27:57-60.
61. Li L, Chao J, Shi Y. Modeling neurological diseases using iPSC-derived neural cells : iPSC modeling of neurological diseases. Cell Tissue Res. 2018;371(1):143-51.
62. Hong J, Cheng YS, Yang S, Swaroop M, Xu M, Beers J, et al. Corrigendum to "iPS-derived neural stem cells for disease modeling and evaluation of therapeutics for mucopolysaccharidosis type II" [Exp. Cell Res. 412, Issue 1, 1 March 2022, 113007]. Exp Cell Res. 2023;433(2):113808.
63. Kobolák J, Molnár K, Varga E, Bock I, Jezsó B, Téglási A, et al. Modelling the neuropathology of lysosomal storage disorders through disease-specific human induced pluripotent stem cells. Experimental Cell Research. 2019;380(2):216-33.
64. Zunke F, Mazzulli JR. Modeling neuronopathic storage diseases with patient-derived culture systems. Neurobiol Dis. 2019;127:147-62.
65. Chulpanova DS, Shaimardanova AA, Solovyeva VV, Mullagulova AI, Kitaeva KV, Allegrucci C, et al. iPSCs for modeling lysosomal storage diseases. Recent Advances in iPSC Disease Modeling, Volume 1: Elsevier; 2020. p. 1-28.
66. Carvalho S, Santos JI, Moreira L, Duarte AJ, Gaspar P, Rocha H, et al. Modeling Lysosomal Storage Disorders in an Innovative Way: Establishment and Characterization of Stem Cell Lines from Human Exfoliated Deciduous Teeth of Mucopolysaccharidosis Type II Patients. International Journal of Molecular Sciences. 2024;25(6):3546.
67. Carvalho S, Santos JI, Moreira L, Gonçalves M, David H, Matos L, et al. Neurological disease modeling using pluripotent and multipotent stem cells: a key step towards understanding and treating mucopolysaccharidoses. Biomedicines. 2023;11(4):1234.
68. Molnar K, Kobolak J, Dinnyes A. Golgi requires a new casting in the screenplay of mucopolysaccharidosis II cytopathology. Biol Futur. 2022;73(1):31-42.
69. Smith MC. Gene Therapy for Mucopolysaccharidosis Type II: University of Minnesota; 2022.
70. Elitt MS, Barbar L, Tesar PJ. Drug screening for human genetic diseases using iPSC models. Hum Mol Genet. 2018;27(R2):R89-R98.
71. Sirenko O, Hesley J, Rusyn I, Cromwell EF. High-content high-throughput assays for characterizing the viability and morphology of human iPSC-derived neuronal cultures. Assay Drug Dev Technol. 2014;12(9-10):536-47.
72. Desbordes SC, Placantonakis DG, Ciro A, Socci ND, Lee G, Djaballah H, et al. High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell. 2008;2(6):602-12.
73. Choi SM, Kim Y, Shim JS, Park JT, Wang RH, Leach SD, et al. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology. 2013;57(6):2458-68.
74. Isachenko N, Hu D, Chenchik A, Diehl P, Tedesco D. Abstract A166: CRISPR-Cas9 genome editing in iPSCs for functional genetic screening. Molecular Cancer Therapeutics. 2023;22(12_Supplement):A166-A.
75. Griffin TA, Anderson HC, Wolfe JH. 33. Ex Vivo Gene Therapy for Lysosomal Storage Disease in the CNS: Patient iPSC-Derived Neural Stem Cells Correct Pathology in the MPS VII Mouse Brain. Molecular Therapy. 2015;23:S14-S5.
76. Padmakumar M, Biesmans S, Valadas JS, Detrez JR, Gillet G, Bresler P, et al. An improved method for large scale generation and high-throughput functional characterization of human iPSC-derived microglia. Frontiers in Drug Discovery. 2023;3:1289314.
77. Doss MX, Sachinidis A. Current Challenges of iPSC-Based Disease Modeling and Therapeutic Implications. Cells. 2019;8(5).
78. Gao A, Peng Y, Deng Y, Qing H. Potential therapeutic applications of differentiated induced pluripotent stem cells (iPSCs) in the treatment of neurodegenerative diseases. Neuroscience. 2013;228:47-59.
79. Qian L, Tcw J. Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. Int J Mol Sci. 2021;22(3).
80. Serafino A, Giovannini D, Rossi S, Cozzolino M. Targeting the Wnt/beta-catenin pathway in neurodegenerative diseases: recent approaches and current challenges. Expert Opin Drug Discov. 2020;15(7):803-22.
81. Vasileiou G, Ekici AB, Uebe S, Zweier C, Hoyer J, Engels H, et al. Chromatin-Remodeling-Factor ARID1B Represses Wnt/beta-Catenin Signaling. Am J Hum Genet. 2015;97(3):445-56.
82. Jia L, Piña-Crespo J, Li Y. Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer’s disease. Molecular brain. 2019;12(1):104.
83. Tapia-Rojas C, Inestrosa NC. Loss of canonical Wnt signaling is involved in the pathogenesis of Alzheimer's disease. Neural regeneration research. 2018;13(10):1705-10.
84. Libro R, Bramanti P, Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci. 2016;158:78-88.
85. Friedli MJ, Inestrosa NC. Huperzine A and Its Neuroprotective Molecular Signaling in Alzheimer's Disease. Molecules. 2021;26(21).
86. Marchetti B. Wnt/beta-Catenin Signaling Pathway Governs a Full Program for Dopaminergic Neuron Survival, Neurorescue and Regeneration in the MPTP Mouse Model of Parkinson's Disease. Int J Mol Sci. 2018;19(12).
87. Marchetti B, Tirolo C, L'Episcopo F, Caniglia S, Testa N, Smith JA, et al. Parkinson's disease, aging and adult neurogenesis: Wnt/β‐catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging cell. 2020;19(3):e13101.
88. Chen Y, Guan Y, Liu H, Wu X, Yu L, Wang S, et al. Activation of the Wnt/β-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. Biochemical and biophysical research communications. 2012;420(2):397-403.
89. Jiang J, Wang Y, Deng M. New developments and opportunities in drugs being trialed for amyotrophic lateral sclerosis from 2020 to 2022. Frontiers in pharmacology. 2022;13:1054006.
90. Lecarpentier Y, Vallée A. Opposite interplay between PPAR gamma and canonical Wnt/beta-catenin pathway in amyotrophic lateral sclerosis. Frontiers in neurology. 2016;7:100.
91. Ramakrishna K, Nalla LV, Naresh D, Venkateswarlu K, Viswanadh MK, Nalluri BN, et al. WNT-β catenin signaling as a potential therapeutic target for neurodegenerative diseases: current status and future perspective. Diseases. 2023;11(3):89.
92. Haack F, Lemcke H, Ewald R, Rharass T, Uhrmacher AM. Spatio-temporal model of endogenous ROS and raft-dependent WNT/beta-catenin signaling driving cell fate commitment in human neural progenitor cells. PLoS Comput Biol. 2015;11(3):e1004106.
93. New L, Han J. The p38 MAP kinase pathway and its biological function. Trends Cardiovasc Med. 1998;8(5):220-8.
94. Kummer JL, Rao PK, Heidenreich KA. Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. Journal of Biological Chemistry. 1997;272(33):20490-4.
95. Bikkavilli RK, Feigin ME, Malbon CC. p38 mitogen-activated protein kinase regulates canonical Wnt-beta-catenin signaling by inactivation of GSK3beta. J Cell Sci. 2008;121(Pt 21):3598-607.
96. Ehyai S, Dionyssiou MG, Gordon JW, Williams D, Siu KM, McDermott JC. A p38 mitogen-activated protein kinase-regulated myocyte enhancer factor 2–β-catenin interaction enhances canonical Wnt signaling. Molecular and cellular biology. 2016.
97. Lee JK, Kim N-J. Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of Alzheimer’s disease. Molecules. 2017;22(8):1287.
98. Iba M, Kim C, Kwon S, Szabo M, Horan-Portelance L, Peer CJ, et al. Inhibition of p38alpha MAPK restores neuronal p38gamma MAPK and ameliorates synaptic degeneration in a mouse model of DLB/PD. Sci Transl Med. 2023;15(695):eabq6089.
99. Sahana TG, Zhang K. Mitogen-Activated Protein Kinase Pathway in Amyotrophic Lateral Sclerosis. Biomedicines. 2021;9(8).
100.Yamasaki R, Zhang J, Koshiishi I, Sastradipura Suniarti DF, Wu Z, Peters C, et al. Involvement of lysosomal storage-induced p38 MAP kinase activation in the overproduction of nitric oxide by microglia in cathepsin D-deficient mice. Mol Cell Neurosci. 2007;35(4):573-84.
101.Tessner TG, Muhale F, Schloemann S, Cohn SM, Morrison A, Stenson WF. Basic fibroblast growth factor upregulates cyclooxygenase-2 in I407 cells through p38 MAP kinase. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2003;284(2):G269-G79.
102.Snow WM, Albensi BC. Neuronal gene targets of NF-κB and their dysregulation in Alzheimer's disease. Frontiers in molecular neuroscience. 2016;9:118.
103.Green KN, Martinez-Coria H, Khashwji H, Hall EB, Yurko-Mauro KA, Ellis L, et al. Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-beta and tau pathology via a mechanism involving presenilin 1 levels. J Neurosci. 2007;27(16):4385-95.
104.Pchitskaya E, Popugaeva E, Bezprozvanny I. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium. 2018;70:87-94.
105.Rani L, Sahu MR, Mondal AC. Age-related mitochondrial dysfunction in Parkinson's disease: New insights into the disease pathology. Neuroscience. 2022;499:152-69.
106.Zhang H, Li Q, Graham RK, Slow E, Hayden MR, Bezprozvanny I. Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease. Neurobiology of disease. 2008;31(1):80-8.
107.Glaser T, Arnaud Sampaio VF, Lameu C, Ulrich H. Calcium signalling: A common target in neurological disorders and neurogenesis. Semin Cell Dev Biol. 2019;95:25-33.
108.Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, et al. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nature medicine. 2008;14(11):1247-55.
109.Feng X, Yang J. Lysosomal Calcium in Neurodegeneration. Messenger (Los Angel). 2016;5(1-2):56-66.
110.Lloyd-Evans E, Waller-Evans H. Lysosomal Ca(2+) Homeostasis and Signaling in Health and Disease. Cold Spring Harb Perspect Biol. 2020;12(6).
111.Medina DL. Lysosomal calcium and autophagy. Int Rev Cell Mol Biol. 2021;362:141-70.
112.Si Z, Wang X, Kang Y, Wang X, Sun C, Li Y, et al. Heme Oxygenase 1 Inhibits Adult Neural Stem Cells Proliferation and Survival via Modulation of Wnt/beta-Catenin Signaling. J Alzheimers Dis. 2020;76(2):623-41.
113.Saavedra JM. Evidence to Consider Angiotensin II Receptor Blockers for the Treatment of Early Alzheimer's Disease. Cell Mol Neurobiol. 2016;36(2):259-79.
114.Hoglinger D, Haberkant P, Aguilera-Romero A, Riezman H, Porter FD, Platt FM, et al. Intracellular sphingosine releases calcium from lysosomes. Elife. 2015;4.
115.Yang C, Zhu Z, Tong BC-K, Iyaswamy A, Xie W-J, Zhu Y, et al. A stress response p38 MAP kinase inhibitor SB202190 promoted TFEB/TFE3-dependent autophagy and lysosomal biogenesis independent of p38. Redox biology. 2020;32:101445.
116.Schnoder L, Quan W, Yu Y, Tomic I, Luo Q, Hao W, et al. Deficiency of IKKbeta in neurons ameliorates Alzheimer's disease pathology in APP- and tau-transgenic mice. FASEB J. 2023;37(2):e22778.
117.Park JS, Kim D, Hong HS. Priming with a Combination of FGF2 and HGF Restores the Impaired Osteogenic Differentiation of Adipose-Derived Stem Cells. Cells. 2022;11(13).
118.Sørensen V, Zhen Y, Zakrzewska M, Haugsten EM, Wälchli S, Nilsen T, et al. Phosphorylation of fibroblast growth factor (FGF) receptor 1 at Ser777 by p38 mitogen-activated protein kinase regulates translocation of exogenous FGF1 to the cytosol and nucleus. Molecular and cellular biology. 2008;28(12):4129-41.
119.Yang C, Zhu Z, Tong BC, Iyaswamy A, Xie WJ, Zhu Y, et al. A stress response p38 MAP kinase inhibitor SB202190 promoted TFEB/TFE3-dependent autophagy and lysosomal biogenesis independent of p38. Redox Biol. 2020;32:101445.
120.Schnöder L, Hao W, Qin Y, Liu S, Tomic I, Liu X, et al. Deficiency of neuronal p38α MAPK attenuates amyloid pathology in Alzheimer disease mouse and cell models through facilitating lysosomal degradation of BACE1. Journal of Biological Chemistry. 2016;291(5):2067-79.
121.Kim SM, Park EJ, Lee HJ. Nuciferine attenuates lipopolysaccharide-stimulated inflammatory responses by inhibiting p38 MAPK/ATF2 signaling pathways. Inflammopharmacology. 2022;30(6):2373-83.
122.Somogyi A, Kirkham ED, Lloyd-Evans E, Winston J, Allen ND, Mackrill JJ, et al. The synthetic TRPML1 agonist ML-SA1 rescues Alzheimer-related alterations of the endosomal-autophagic-lysosomal system. J Cell Sci. 2023;136(6).
123.Liu S-H, Lai Y-L, Chen B-L, Yang F-Y. Ultrasound enhances the expression of brain-derived neurotrophic factor in astrocyte through activation of TrkB-Akt and calcium-CaMK signaling pathways. Cerebral cortex. 2017;27(6):3152-60.
124.Mustaly-Kalimi S, Gallegos W, Marr RA, Gilman-Sachs A, Peterson DA, Sekler I, et al. Protein mishandling and impaired lysosomal proteolysis generated through calcium dysregulation in Alzheimer’s disease. Proceedings of the National Academy of Sciences. 2022;119(49):e2211999119.
125.De Ravin SS, Li L, Wu X, Choi U, Allen C, Koontz S, et al. CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease. Sci Transl Med. 2017;9(372).
126.Park SH, Lee CM, Dever DP, Davis TH, Camarena J, Srifa W, et al. Highly efficient editing of the beta-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res. 2019;47(15):7955-72.
127.Xu L, Yang H, Gao Y, Chen Z, Xie L, Liu Y, et al. CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo. Mol Ther. 2017;25(8):1782-9.
128.Maxwell KG, Augsornworawat P, Velazco-Cruz L, Kim MH, Asada R, Hogrebe NJ, et al. Gene-edited human stem cell-derived beta cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Sci Transl Med. 2020;12(540).
129.Ottaviano G, Georgiadis C, Gkazi SA, Syed F, Zhan H, Etuk A, et al. Phase 1 clinical trial of CRISPR-engineered CAR19 universal T cells for treatment of children with refractory B cell leukemia. Sci Transl Med. 2022;14(668):eabq3010.
130.McConnell SC, Blasimme A. Ethics, values, and responsibility in human genome editing. AMA Journal of Ethics. 2019;21(12):1017-20.
131.McCaughey T, Sanfilippo PG, Gooden GE, Budden DM, Fan L, Fenwick E, et al. A Global Social Media Survey of Attitudes to Human Genome Editing. Cell Stem Cell. 2016;18(5):569-72.
132.Kluesner MG, Nedveck DA, Lahr WS, Garbe JR, Abrahante JE, Webber BR, et al. EditR: A Method to Quantify Base Editing from Sanger Sequencing. CRISPR J. 2018;1:239-50.
133.Shi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc. 2012;7(10):1836-46.
134.Voznyi YV, Keulemans JL, van Diggelen OP. A fluorimetric enzyme assay for the diagnosis of MPS II (Hunter disease). J Inherit Metab Dis. 2001;24(6):675-80.
135.Zheng CH, Levenston ME. Fact versus artifact: avoiding erroneous estimates of sulfated glycosaminoglycan content using the dimethylmethylene blue colorimetric assay for tissue-engineered constructs. Eur Cell Mater. 2015;29:224-36; discussion 36.
136.Caccamo D, Katsetos CD, Herman MM, Frankfurter A, Collins VP, Rubinstein LJ. Immunohistochemistry of a spontaneous murine ovarian teratoma with neuroepithelial differentiation. Neuron-associated beta-tubulin as a marker for primitive neuroepithelium. Lab Invest. 1989;60(3):390-8.
137.Holper S, Watson R, Yassi N. Tau as a biomarker of neurodegeneration. International Journal of Molecular Sciences. 2022;23(13):7307.
138.Carden MJ, Trojanowski JQ, Schlaepfer WW, Lee V. Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns. Journal of Neuroscience. 1987;7(11):3489-504.
139.Schimmelpfeng J, Weibezahn K-F, Dertinger H. Quantification of NGF-dependent neuronal differentiation of PC-12 cells by means of neurofilament-L mRNA expression and neuronal outgrowth. Journal of neuroscience methods. 2004;139(2):299-306.
140.Lorenzo DN. Cargo hold and delivery: Ankyrins, spectrins, and their functional patterning of neurons. Cytoskeleton (Hoboken). 2020;77(3-4):129-48.
141.Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacological reviews. 2005;57(4):397-409.
142.Yu M, Guo L, Li N, Henzel KS, Gu H, Ran X, et al. Overexpression of Kcnmb2 in dorsal CA1 of offspring mice rescues hippocampal dysfunction caused by a methyl donor-rich paternal diet. Frontiers in Cellular Neuroscience. 2018;12:360.
143.Johnston J, Forsythe ID, Kopp‐Scheinpflug C. SYMPOSIUM REVIEW: Going native: voltage‐gated potassium channels controlling neuronal excitability. The Journal of physiology. 2010;588(17):3187-200.
144.Li N, Gao W, Zhang Y-F, Ho M. Glypicans as cancer therapeutic targets. Trends in cancer. 2018;4(11):741-54.
145.Xiong X, Chorzalska A, Dubielecka PM, White JR, Vedvyas Y, Hedvat CV, et al. Disruption of Abi1/Hssh3bp1 expression induces prostatic intraepithelial neoplasia in the conditional Abi1/Hssh3bp1 KO mice. Oncogenesis. 2012;1(9):e26.
146.Sadras T, Perugini M, Kok CH, Iarossi DG, Heatley SL, Brumatti G, et al. Interleukin‐3‐mediated regulation of β‐catenin in myeloid transformation and acute myeloid leukemia. Wiley Online Library; 2014.
147.Kleszcz R, Szymańska A, Krajka-Kuźniak V, Baer-Dubowska W, Paluszczak J. Inhibition of CBP/β-catenin and porcupine attenuates Wnt signaling and induces apoptosis in head and neck carcinoma cells. Cellular Oncology. 2019;42:505-20.
148.Sobolev VV, Khashukoeva AZ, Evina OE, Geppe NA, Chebysheva SN, Korsunskaya IM, et al. Role of the transcription factor FOSL1 in organ development and tumorigenesis. International journal of molecular sciences. 2022;23(3):1521.
149.Pellicano F, Thomson RE, Inman GJ, Iwata T. Regulation of cell proliferation and apoptosis in neuroblastoma cells by ccp1, a FGF2 downstream gene. BMC cancer. 2010;10:1-12.
150.Partanen J. FGF signalling pathways in development of the midbrain and anterior hindbrain. Journal of neurochemistry. 2007;101(5):1185-93.
151.Musa A, Tripathi S, Dehmer M, Emmert-Streib F. L1000 Viewer: A Search Engine and Web Interface for the LINCS Data Repository. Front Genet. 2019;10:557.
152.Liang W, Huang X, Chen W. The effects of baicalin and baicalein on cerebral ischemia: a review. Aging and Disease. 2017;8(6):850.
153.Zhou A, Lin K, Zhang S, Chen Y, Zhang N, Xue J, et al. Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nature cell biology. 2016;18(9):954-66.
154.Entchev E, Jantzen I, Masson P, Bocart S, Bournique B, Luccarini JM, et al. Odiparcil, a potential glycosaminoglycans clearance therapy in mucopolysaccharidosis VI-Evidence from in vitro and in vivo models. PLoS One. 2020;15(5):e0233032.
155.Warford JR, Lamport A-C, Clements DR, Malone A, Kennedy BE, Kim Y, et al. Surfen, a proteoglycan binding agent, reduces inflammation but inhibits remyelination in murine models of Multiple Sclerosis. Acta neuropathologica communications. 2018;6(1):1-21.
156.Vallarola A, Tortarolo M, De Gioia R, Iamele L, de Jonge H, de Nola G, et al. A novel HGF/SF Receptor (MET) agonist transiently delays the disease progression in an amyotrophic lateral sclerosis mouse model by promoting neuronal survival and dampening the immune Dysregulation. International Journal of Molecular Sciences. 2020;21(22):8542.
157.Huang W, Zhu PJ, Zhang S, Zhou H, Stoica L, Galiano M, et al. mTORC2 controls actin polymerization required for consolidation of long-term memory. Nature neuroscience. 2013;16(4):441-8.
158.Sonawane SK, Uversky VN, Chinnathambi S. Baicalein inhibits heparin-induced Tau aggregation by initializing non-toxic Tau oligomer formation. Cell Communication and Signaling. 2021;19:1-16.
159.Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol. 2002;22(4):1172-83.
160.Kobolak J, Molnar K, Varga E, Bock I, Jezso B, Teglasi A, et al. Modelling the neuropathology of lysosomal storage disorders through disease-specific human induced pluripotent stem cells. Exp Cell Res. 2019;380(2):216-33.
161.Rybova J, Ledvinova J, Sikora J, Kuchar L, Dobrovolny R. Neural cells generated from human induced pluripotent stem cells as a model of CNS involvement in mucopolysaccharidosis type II. J Inherit Metab Dis. 2018;41(2):221-9.
162.Hong J, Cheng YS, Yang S, Swaroop M, Xu M, Beers J, et al. iPS-derived neural stem cells for disease modeling and evaluation of therapeutics for mucopolysaccharidosis type II. Exp Cell Res. 2022;412(1):113007.
163.Reboun M, Rybova J, Dobrovolny R, Vcelak J, Veselkova T, Storkanova G, et al. X-Chromosome Inactivation Analysis in Different Cell Types and Induced Pluripotent Stem Cells Elucidates the Disease Mechanism in a Rare Case of Mucopolysaccharidosis Type II in a Female. Folia Biol (Praha). 2016;62(2):82-9.
164.Yong Y, Hunter-Chang S, Stepanova E, Deppmann C. Axonal spheroids in neurodegeneration. Mol Cell Neurosci. 2021;117:103679.
165.Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science. 2005;307(5713):1282-8.
166.Alavi Naini SM, Soussi-Yanicostas N. Heparan Sulfate as a Therapeutic Target in Tauopathies: Insights From Zebrafish. Front Cell Dev Biol. 2018;6:163.
167.Hampe CS, Yund BD, Orchard PJ, Lund TC, Wesley J, McIvor RS. Differences in MPS I and MPS II Disease Manifestations. Int J Mol Sci. 2021;22(15).
168.Holmes BB, DeVos SL, Kfoury N, Li M, Jacks R, Yanamandra K, et al. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci U S A. 2013;110(33):E3138-47.
169.Shapiro EG, Nestrasil I, Delaney KA, Rudser K, Kovac V, Nair N, et al. A Prospective Natural History Study of Mucopolysaccharidosis Type IIIA. J Pediatr. 2016;170:278-87 e1-4.
170.Ohmi K, Kudo LC, Ryazantsev S, Zhao HZ, Karsten SL, Neufeld EF. Sanfilippo syndrome type B, a lysosomal storage disease, is also a tauopathy. Proc Natl Acad Sci U S A. 2009;106(20):8332-7.
171.Hernandez F, Lucas JJ, Avila J. GSK3 and tau: two convergence points in Alzheimer's disease. J Alzheimers Dis. 2013;33 Suppl 1:S141-4.
172.Chauhan N, Paliwal S, Jain S, Verma K, Paliwal S, Sharma S. GSK-3β and its Inhibitors in Alzheimer's Disease: A Recent Update. Mini Reviews in Medicinal Chemistry. 2022;22(22):2881-95.
173.Bikkavilli RK, Feigin ME, Malbon CC. p38 mitogen-activated protein kinase regulates canonical Wnt–β-catenin signaling by inactivation of GSK3β. Journal of cell science. 2008;121(21):3598-607.
174.Thornton TM, Pedraza-Alva G, Deng B, Wood CD, Aronshtam A, Clements JL, et al. Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation. Science. 2008;320(5876):667-70.
175.Ehyai S, Dionyssiou MG, Gordon JW, Williams D, Siu KM, McDermott JC. A p38 Mitogen-Activated Protein Kinase-Regulated Myocyte Enhancer Factor 2–β-Catenin Interaction Enhances Canonical Wnt Signaling. Molecular and Cellular Biology. 2016;36(2):330-46.
176.Toualbi K, Güller M, Mauriz J, Labalette C, Buendia M, Mauviel A, et al. Physical and functional cooperation between AP-1 and β-catenin for the regulation of TCF-dependent genes. Oncogene. 2007;26(24):3492-502.
177.He Y, She H, Zhang T, Xu H, Cheng L, Yepes M, et al. p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1. Journal of Cell Biology. 2018;217(1):315-28.
178.Ryu HY, Kim LE, Jeong H, Yeo BK, Lee JW, Nam H, et al. GSK3B induces autophagy by phosphorylating ULK1. Exp Mol Med. 2021;53(3):369-83.
179.Gao C, Cao W, Bao L, Zuo W, Xie G, Cai T, et al. Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol. 2010;12(8):781-90.
180.Qiang L, Wu C, Ming M, Viollet B, He YY. Autophagy controls p38 activation to promote cell survival under genotoxic stress. J Biol Chem. 2013;288(3):1603-11.
181.Bigger BW, Begley DJ, Virgintino D, Pshezhetsky AV. Anatomical changes and pathophysiology of the brain in mucopolysaccharidosis disorders. Mol Genet Metab. 2018;125(4):322-31.
182.Costa R, Urbani A, Salvalaio M, Bellesso S, Cieri D, Zancan I, et al. Perturbations in cell signaling elicit early cardiac defects in mucopolysaccharidosis type II. Hum Mol Genet. 2017;26(9):1643-55.
183.Salvalaio M, D'Avanzo F, Rigon L, Zanetti A, D'Angelo M, Valle G, et al. Brain RNA-Seq Profiling of the Mucopolysaccharidosis Type II Mouse Model. Int J Mol Sci. 2017;18(5).
184.Petherick KJ, Williams AC, Lane JD, Ordonez-Moran P, Huelsken J, Collard TJ, et al. Autolysosomal beta-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J. 2013;32(13):1903-16.
185.Billings PC, Pacifici M. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries. Connect Tissue Res. 2015;56(4):272-80.
186.De Pasquale V, Sarogni P, Pistorio V, Cerulo G, Paladino S, Pavone LM. Targeting Heparan Sulfate Proteoglycans as a Novel Therapeutic Strategy for Mucopolysaccharidoses. Mol Ther Methods Clin Dev. 2018;10:8-16.
187.Jenkins LM, Singh P, Varadaraj A, Lee NY, Shah S, Flores HV, et al. Altering the Proteoglycan State of Transforming Growth Factor beta Type III Receptor (TbetaRIII)/Betaglycan Modulates Canonical Wnt/beta-Catenin Signaling. J Biol Chem. 2016;291(49):25716-28.
188.Drenth JP, Waxman SG. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. The Journal of clinical investigation. 2007;117(12):3603-9.
189.Matta C, Lewis R, Fellows C, Diszhazi G, Almassy J, Miosge N, et al. Transcriptome‐based screening of ion channels and transporters in a migratory chondroprogenitor cell line isolated from late‐stage osteoarthritic cartilage. Journal of cellular physiology. 2021;236(11):7421-39.
190.Segal M. Calcium stores regulate excitability in cultured rat hippocampal neurons. J Neurophysiol. 2018;120(5):2694-705.
191. Johnson ME, Gores GJ, Uhl CB, Sill JC. Cytosolic free calcium and cell death during metabolic inhibition in a neuronal cell line. J Neurosci. 1994;14(7):4040-9.
192.Korkotian E, Schwarz A, Pelled D, Schwarzmann G, Segal M, Futerman AH. Elevation of intracellular glucosylceramide levels results in an increase in endoplasmic reticulum density and in functional calcium stores in cultured neurons. J Biol Chem. 1999;274(31):21673-8.
193.Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, et al. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med. 2008;14(11):1247-55.
194.Gomez L, Thiebaut PA, Paillard M, Ducreux S, Abrial M, Crola Da Silva C, et al. The SR/ER-mitochondria calcium crosstalk is regulated by GSK3beta during reperfusion injury. Cell Death Differ. 2015;22(11):1890.
195.Michael A, Haq S, Chen X, Hsich E, Cui L, Walters B, et al. Glycogen synthase kinase-3beta regulates growth, calcium homeostasis, and diastolic function in the heart. J Biol Chem. 2004;279(20):21383-93.
196.Sweeney HL, Bowman BF, Stull JT. Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol. 1993;264(5 Pt 1):C1085-95.
197.Berggard T, Arrigoni G, Olsson O, Fex M, Linse S, James P. 140 mouse brain proteins identified by Ca2+-calmodulin affinity chromatography and tandem mass spectrometry. J Proteome Res. 2006;5(3):669-87.
198.Joensuu M, Wallis TP, Saber SH, Meunier FA. Phospholipases in neuronal function: A role in learning and memory? J Neurochem. 2020;153(3):300-33.
199.Dominguez JM, Fuertes A, Orozco L, del Monte-Millan M, Delgado E, Medina M. Evidence for irreversible inhibition of glycogen synthase kinase-3beta by tideglusib. J Biol Chem. 2012;287(2):893-904.
200.Lovestone S, Boada M, Dubois B, Hüll M, Rinne JO, Huppertz H-J, et al. A phase II trial of tideglusib in Alzheimer's disease. Journal of Alzheimer's Disease. 2015;45(1):75-88.
201.Horrigan J, Gomes TB, Snape M, Nikolenko N, McMorn A, Evans S, et al. A phase 2 study of AMO-02 (Tideglusib) in congenital and childhood-onset myotonic dystrophy type 1 (DM1). Pediatric Neurology. 2020;112:84-93.
202.Tolosa E, Litvan I, Höglinger GU, Burn D, Lees A, Andrés MV, et al. A phase 2 trial of the GSK‐3 inhibitor tideglusib in progressive supranuclear palsy. Movement Disorders. 2014;29(4):470-8.
203.Martinez-Gonzalez L, Gonzalo-Consuegra C, Gomez-Almeria M, Porras G, de Lago E, Martin-Requero A, et al. Tideglusib, a Non-ATP Competitive Inhibitor of GSK-3beta as a Drug Candidate for the Treatment of Amyotrophic Lateral Sclerosis. Int J Mol Sci. 2021;22(16).
204.Cheng Z, Han T, Yao J, Wang K, Dong X, Yu F, et al. Targeting glycogen synthase kinase-3beta for Alzheimer's disease: Recent advances and future Prospects. Eur J Med Chem. 2024;265:116065.
205.Green JL, Inoue T, Sternberg PW. Opposing Wnt pathways orient cell polarity during organogenesis. Cell. 2008;134(4):646-56.
206.Jho E-h, Zhang T, Domon C, Joo C-K, Freund J-N, Costantini F. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Molecular and cellular biology. 2002;22(4):1172-83.
207.Düzgün ŞA, Yerlikaya A, Zeren S, Bayhan Z, Okur E, Boyacı İ. Differential effects of p38 MAP kinase inhibitors SB203580 and SB202190 on growth and migration of human MDA-MB-231 cancer cell line. Cytotechnology. 2017;69:711-24.
208.Chen L, Zhou X, Kong X, Su Z, Wang X, Li S, et al. The prognostic significance of anisomycin-activated phospho-c-Jun NH2-terminal kinase (p-JNK) in predicting breast cancer patients’ survival time. Frontiers in Cell and Developmental Biology. 2021;9:656693.
209.Hwang S-Y, Deng X, Byun S, Lee C, Lee S-J, Suh H, et al. Direct targeting of β-catenin by a small molecule stimulates proteasomal degradation and suppresses oncogenic Wnt/β-catenin signaling. Cell reports. 2016;16(1):28-36.
210.Zhu X-y, Du Q-x, Li S-q, Sun J-h. Comparison of the homogeneity of mRNAs encoding SFRP5, FZD4, and Fosl1 in post-injury intervals: subcellular localization of markers may influence wound age estimation. Journal of forensic and legal medicine. 2016;43:90-6.
211.Jiang X, Xie H, Dou Y, Yuan J, Zeng D, Xiao S. Expression and function of FRA1 protein in tumors. Molecular Biology Reports. 2020;47(1):737-52.
212.He T-C, Sparks AB, Rago C, Hermeking H, Zawel L, Da Costa LT, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281(5382):1509-12.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94962-
dc.description.abstract第二型黏多醣症 (MPS II) 由於己醛糖酸鹽硫酸脂酶 (IDS) 缺乏,導致醣胺聚醣 (GAG)的積累。第二型黏多醣症嚴重型會引起漸進性神經性退化以及死亡,而目前的治療方法無效。因此,在本研究中,我們從四名患有第二型黏多醣症嚴重型的患者生成多株誘導性多能幹細胞 (iPSCs) 及其同基因對照組 (isogenic control, ISO)。這些第二型黏多醣症幹細胞 (MPS II-iPSCs) 能成功分化成第二型黏多醣症特異性皮質神經元,顯示出特徵性生化和細胞表型,包括磷酸化 tau 陽性軸突珠串和明顯的電生理異常。然而,這些缺陷在同基因對照組 (ISO) 分化的神經元中大部分都獲得改善,這表明MPS II-iPSC分化的神經元能忠實地呈現第二型黏多醣症皮質神經元的病理生理特徵。在分析RNA-seq數據後,我們發現MPS II成熟神經元與健康受試者相比,Wnt/β-catenin、p38 MAP激酶和鈣信號通路的基因表達存在差異。基於這些失調的通路,我們使用這種成熟的第二型黏多醣症神經元平台測試了幾種相關化合物和藥物。一種高度選擇性的小分子肝醣合成酶激酶3β (GSK3β) 抑製劑顯著改善第二型黏多醣症神經元神經元的存活率、神經突形態和電生理異常。如我們的研究所示,第二型黏多醣症誘導性多能幹細胞平台揭示了第二型黏多醣症中神經元退化和死亡的機制,並可能有助於評估治療候選藥物。此外,這項工作表明第二型黏多醣症相關的神經元功能障礙在早期並非不可逆轉,針對第二型黏多醣症神經元中GAG積累所導致下游的失調信號通路進行治療,可能有助於挽救神經退化過程。zh_TW
dc.description.abstractMucopolysaccharidosis type II (MPS II), due to iduronate-2-sulfatase deficiency, leads to glycosaminoglycans (GAG) accumulation. Severe MPS II causes progressive neurodegeneration and death, while current treatments are ineffective. To this end, in the present study, we generated several clones of induced pluripotent stem cells (iPSCs) and their isogenic control (ISO) from four patients affected with the serve form of MPS II. The MPS II-iPSCs were successfully differentiated into MPS II-specific cortical neurons showing the characteristic biochemical and cellular phenotypes, including phosphorylated tau-positive axonal beading and distinct electrophysical abnormalities. However, these deficits were largely rescued in ISO-iPSC-neurons, indicating that the MPS II-iPSC-derived neurons faithfully displayed the pathophysiological features of MPS II cortical neurons. After analyzing RNA-seq data, we identified differences in the gene expression of the Wnt/β-catenin, p38 MAP kinase, and calcium signaling pathways in MPS II mature neurons compared to controls. Based on these dysregulated pathways, several related chemicals and drugs were tested using this mature MPS II neuron-based platform. A highly selective small molecule glycogen synthase kinase 3β (GSK3β) inhibitor significantly ameliorated neuronal survival, neurite morphology, and electrophysiological defects in MPS II neurons. Thus, the MPS II iPSC platform is valuable for dissecting the mechanism of neuronal degeneration and death in MPS II and may help evaluate therapeutic candidates. In addition, this study suggests that MPS II-associated neuronal dysfunction is not irreversible at the early stage and that targeting the dysregulated signaling pathways downstream of GAG accumulation in MPS II neurons may help to rescue the neurodegenerative process.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:56:14Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-21T16:56:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 I
謝辭 II
中文摘要 III
Abstract IV
I. PREFACE 1
Research Background 1
Motivation and Objectives 1
II. INTRODUCTION 1
Lysosome and Lysosomal Storage Diseases (LSDs) 1
Glycosaminoglycan 2
Mucopolysaccharides (MPS) 2
Clinical Manifestations of Mucopolysaccharidosis Type II (MPS II) 3
Neurological Involvement 3
Cardiopulmonary Complications 4
Skeletal Deformities 4
Orthopedic manifestations such as joint stiffness and skeletal deformities are prevalent among MPS II patients. Restricted joint range of motion and skeletal abnormalities, including dysostosis multiplex, are notable issues affecting the quality of life. 4
Visceral Involvement 5
Current Therapeutic Approaches and Their Limitations: Enzyme Replacement Therapy (ERT) cannot cross the Blood-Brain Barrier (BBB). 6
Current Strategies of MPS II Treatment 7
Ongoing Research and Future Directions 10
Introduction to Induced Pluripotent Stem Cells (iPSCs) 10
Brief History and Origin of iPSCs 10
The Properties and Identification of iPSCs 11
Advantages of Using iPSCs for MPS II 11
Key Research Studies on Using iPSCs for Modeling LSD, including MPS II 14
Potential Therapeutic Approaches Using iPSCs for MPS II 15
Signaling Pathways and Neurodegeneration 18
Wnt/β-Catenin Pathway in Neurodevelopment and Neurodegenerative Diseases 18
p38 MAP Kinase Pathway in Neurodevelopment and Neurodegenerative Diseases 21
Calcium Signaling Pathway in Neurodevelopment and Neurodegenerative Diseases 24
Impact of Wnt/β-Catenin Pathway, p38 MAP Kinase Inhibition, and Calcium Signaling on Lysosomal Storage Diseases 28
Advantages of Gene Editing and its Application in Stem Cells 31
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) 32
Potential Involvement of These Signaling Pathways in MPS II Neurodegeneration 33
THE OBJECTIVE OF THIS STUDY 33
Rationale 33
SPECIFIC AIMS 34
III. RESEARCH DESIGN AND METHODS 34
Research Design 34
Material and Methods 35
Collection of human samples and subject recruitment 35
Generation of MPS II-iPSC 36
Healthy male control iPSCs and the culture of iPSCs 36
In vitro differentiation of MPS II-iPSCs 37
Teratoma formation assay 37
Karyotyping 38
Reverse transcription-polymerase chain reaction (RT-PCR) along with quantitative real-time reverse transcription PCR (qRT-PCR). 38
Alkaline phosphatase staining 39
IF staining 39
Generation of IDS mutation-corrected isogenic control (ISO) iPSCs 40
Neuronal differentiation of iPSCs 40
IDS activity determination 41
XTT assay 41
Cellular glycosaminoglycan content 42
Electrophysiology and neurite length detection 42
RNA sequencing and gene pathway analysis 44
Western blotting 45
Flow cytometry analysis and fluorescence-activated cell sorting (FACS) sorting 46
Luciferase reporter assay 47
Assays for cell viability 47
ChIP analysis 47
Intracellular Calcium measurements 48
Statistical analysis 49
Results 50
Generation of MPS II-iPSCs and their ISO-iPSC clones 50
MPS II-iPSCs manifested characteristic MPS II phenotypes 51
MPS II-iPSC-derived neurons exhibited lysosomal/autophagic abnormalities and axonal beadings 51
Neurite morphology, cytoskeletal protein expressions, and electrophysiology show anomalies in long-term cultured MPS II neurons. 52
Identification of dysregulated genes and pathways in MPS II neurons 54
Dysregulated calcium homeostasis in MPS II neurons and the possible mechanisms 56
Selected drug candidates rescued abnormalities in MPS II neurons. 57
Tideglusib reversed functional and morphological aberrations in MPS II neurons 58
Regulation of ion channel genes in iPSC-derived neurons by p38 MAPK and Wnt/β-catenin signaling 59
Discussion 59
Conclusion 66
Figure Legends 67
Figure 1. Generation of the MPS II-specific iPSCs. 67
Figure 2. Identification of IDS Mutations in MPS II-iPSCs through DNA Sequencing 68
Figure 3. Pluripotency Markers in MPS II-iPSCs 69
Figure 4. The capability of MPS II-iPSCs to differentiate into three germ layers. 70
Figure 5. Experimental Principle of A to G Base Editing and Generation and Characterization of the MPS II-Specific Isogenic Control iPSCs. 71
Figure 6. MPS II-iPSCs recapitulated the pathophysiological features of MPS II. 73
Figure 7. Neuron Differentiation and GFAP Expression Analysis in MPS II-iPSCs 74
Figure 8. MPS II-iPSCs derived cortical neurons recapitulated the pathophysiological features of MPS II. 76
Figure 9. Lysosomal marker expression in controls and MPS II-iPSC derived neurons. 78
Figure 10. Reduced Autophagy Flux in MPS II Neurons after Chloroquine Treatment 80
Figure 11. Assessment of Axonal Beading and Tau Pathology in MPS II Neurons Compared to Controls 82
Figure 12. Aberrant Neurite Morphology in MPS II Neurons. 84
Figure 13. Reduced Expression of NEFL in MPS II Neurons. 86
Figure 14. Reduced Expression of Ankyrin G and Spectrin in MPS II Neurons. 88
Figure 15. Abnormal Action Potentials in MPS II Neurons 90
Figure 16. The second set of Abnormal Action Potentials in MPS II Neurons 92
Figure 17. Comparison of Neuron Subtype Composition in 20-Week MPS II and HC Neurons 94
Figure 18. Neuronal phenotypes of MPS II-iPSC-derived excitatory (CaMKII α) and inhibitory (mDlx) neurons. 95
Figure 19. Impaired Action Potential Characteristics in 22-Week MPS II Excitatory Neurons 97
Figure 20. Transcriptome profiling revealed significant alterations in signaling pathways in MPS II neurons and distinct expression profiles of ion channel markers. 99
Figure 21. KEGG Pathway Analysis of Differentially Expressed Genes in MPS II vs. HC Neurons 101
Figure 22. GSEA and KEGG Pathway Analysis of Wnt Signaling in 15-Week MPS II Neurons 102
Figure 23. Altered Phosphorylation of GSK-3β and β-Catenin in 15-Week MPS II Neurons 104
Figure 24. Altered Subcellular Distribution of Active β-Catenin in 15-Week MPS II Neurons 106
Figure 25. Differential Expression of Wnt-Associated Genes in MPS II vs. Control Neurons 107
Figure 26. Reduced Wnt Signaling Activity in 15-Week MPS II Neurons 109
Figure 27. Reduced FGF Signaling and Altered p38 MAPK Distribution in 15-Week MPS II Neurons 110
Figure 28. Decreased Phosphorylation of p38 MAPK in 15-Week MPS II Neurons 112
Figure 29. Gene Activation Dynamics in 15-Week MPS II and HC Neurons after WNT3A and bFGF2 Treatment 114
Figure 30. Enriched Calcium Ion Regulation and Channel Gene Expression in MPS II Neurons 116
Figure 31. Altered Calcium Signaling Pathway in 15-Week MPS II Neurons Validated by RNA-seq and qRT-PCR 118
Figure 32. Elevated Baseline and Thapsigargin-Induced Calcium Levels in 15-Week MPS II Neurons 120
Figure 33. Effects of HS and GSK3β Inhibitors on Calcium Channel Gene Expression in 15-Week Neurons 122
Figure 34. Gene Expression Changes in Calcium Signaling Pathway after Ionomycin and Verapamil Treatment in 15-Week Neurons 124
Figure 35. Cytotoxicity Assessment of Various Drugs in 4-Week and 15-Week HC and MPS II Neurons 125
Figure 36. Therapeutic effects of selected drugs and chemicals on MPS II neurons 127
Figure 37. Drug Effects on Viability of MPS II Neurons 129
Figure 38. Differential Rescue Effects of Drugs on Gene Expression in 15-Week MPS II Neurons 131
Figure 39. Rescue of Axonal Beading (Tau-1) in 15-Week MPS II Neurons by Tideglusib Treatment 133
Figure 40. Rescue of Axonal Beading (p-tau) in 15-Week MPS II Neurons by Tideglusib Treatment 135
Figure 41. Tideglusib treatment reversed the calcium anomalies in MPS II neurons. 137
Figure 42. Cytotoxicity and Wnt Signaling Activation by Tideglusib in 4-Week and 15-Week HC and MPS II Neurons 139
Figure 43. Tideglusib treatment reversed the action potential anomalies in MPS II neurons. 141
Figure 44. Tideglusib Rescues Neurite Morphology in 15-Week MPS II Neurons 143
Figure 45. Modulation of Wnt/β-catenin, p38 signaling, and ion channel genes by different small molecules in control and MPS II neurons 145
Figure 46. β-Catenin Binding to LEF1/TCF Motif within SCN9A Promoter in 15-Week Neurons 147
Figure 47. Schematic depiction of a hypothetical model illustrating signaling pathway alterations and cellular phenotypes in MPS II neurons 149
Figure 48. Schematic illustration of a hypothetic model for cellular phenotypes in MPS II neurons. 151
Figure 49. Schematic Illustration of Hypothetical Model for Calcium-Related Cellular Phenotypes in MPS II Neurons 153
Table 1. Significant changes in p38 MAPK and PI3K signaling in MPS II Neurons identified by IPA of DEGs 155
Table 2. Concentration of cytotoxicity 50% (CC50) values of selected drugs in 4-week and 15-week HC and MPS II neurons 156
Reference 157
Appendix 183
與本論文相關之已公開發表之第一作者文獻 183
-
dc.language.isozh_TW-
dc.title利用病患特異性的誘導性多能幹細胞探討第二型黏多醣症的神經退化性病變機制及測試藥物zh_TW
dc.titleMechanistic Study and Drug Testing for Neurodegeneration in Mucopolysaccharidosis Type II Using Patient-Specific Induced Pluripotent Stem Cellsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee黃憲松;李明學;林炫沛;張以承;謝松蒼zh_TW
dc.contributor.oralexamcommitteeHsien-Sung Huang;Ming-Shyue Lee;Shuan-Pei Lin;Yi-Cheng Chang;Sung-Tsang Hsiehen
dc.subject.keyword第二型黏多醣症II型,誘導性多能幹細胞,神經性退化性,皮質神經細胞,Wnt/β-catenin路徑,鈣信號傳導路徑,替格魯西布,zh_TW
dc.subject.keywordMucopolysaccharidosis Type II (MPS II),Induced pluripotent stem cells (iPSCs),Neurodegeneration,Wnt/β-catenin signaling,Calcium signaling,Tideglusib,en
dc.relation.page200-
dc.identifier.doi10.6342/NTU202402355-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-29-
dc.contributor.author-college醫學院-
dc.contributor.author-dept基因體暨蛋白體醫學研究所-
顯示於系所單位:基因體暨蛋白體醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf33.97 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved