請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94955
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 馮怡蓁 | zh_TW |
dc.contributor.advisor | Janice Fon | en |
dc.contributor.author | 王庭萱 | zh_TW |
dc.contributor.author | Ting-Syuan Wang | en |
dc.date.accessioned | 2024-08-21T16:53:49Z | - |
dc.date.available | 2024-08-22 | - |
dc.date.copyright | 2024-08-21 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-02 | - |
dc.identifier.citation | Baudonck, N., Van Lierde, K., D’haeseleer, E., & Dhooge, I. (2011). A comparison of the perceptual evaluation of speech production between bilaterally implanted children, unilaterally implanted children, children using hearing aids, and normal-hearing children. International Journal of Audiology, 50(12), 912–919. https://doi.org/10.3109/14992027.2011.605803
Bishop, D. V. M., Hardiman, M. J., & Barry, J. G. (2010). Lower-frequency event-related desynchronization: a signature of late mismatch responses to sounds, which is reduced or absent in children with specific language impairment. The Journal of Neuroscience, 30(46), 15578–15584. https://doi.org/10.1523/JNEUROSCI.2217-10.2010 Bishop, D. V. M., Hardiman, M. J., & Barry, J. G. (2011). Is auditory discrimination mature by middle childhood? A study using time-frequency analysis of mismatch responses from 7 years to adulthood. Developmental Science, 14(2), 402–416. https://doi.org/10.1111/j.1467-7687.2010.00990.x Blamey, P., Artieres, F., Başkent, D., Bergeron, F., Beynon, A., Burke, E., Dillier, N., Dowell, R., Fraysse, B., Gallégo, S., Govaerts, P. J., Green, K., Huber, A. M., Kleine-Punte, A., Maat, B., Marx, M., Mawman, D., Mosnier, I., O’Connor, A. F., … Lazard, D. S. (2013). Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants: an update with 2251 patients. Audiology & Neuro-Otology, 18(1), 36–47. https://doi.org/10.1159/000343189 Boersma, P., & Weenink, D. (2021). Praat: doing phonetics by computer. https://www.praat.org Boons, T., Brokx, J. P. L., Frijns, J. H. M., Peeraer, L., Philips, B., Vermeulen, A., Wouters, J., & van Wieringen, A. (2012). Effect of pediatric bilateral cochlear implantation on language development. Archives of Pediatrics & Adolescent Medicine, 166(1), 28–34. https://doi.org/10.1001/archpediatrics.2011.748 Buss, E., Flaherty, M. M., & Leibold, L. J. (2017). Development of frequency discrimination at 250 Hz is similar for tone and /ba/ stimuli. The Journal of the Acoustical Society of America, 142(1), EL150. https://doi.org/10.1121/1.4994687 Chao, Y.-R. (1948). Mandarin Primer: An Intensive Course in Spoken Chinese. Harvard University Press. https://doi.org/10.4159/harvard.9780674732889 Chao, Y.-R. (1968). A Grammar of Spoken Chinese. University of California. Cheng, Y.-Y., & Lee, C.-Y. (2018). The Development of Mismatch Responses to Mandarin Lexical Tone in 12- to 24-Month-Old Infants. Frontiers in Psychology, 9, 448. https://doi.org/10.3389/fpsyg.2018.00448 Cheng, Y.-Y., Wu, H.-C., Tzeng, Y.-L., Yang, M.-T., Zhao, L.-L., & Lee, C.-Y. (2013). The development of mismatch responses to Mandarin lexical tones in early infancy. Developmental Neuropsychology, 38(5), 281–300. https://doi.org/10.1080/87565641.2013.799672 Chen, Y., Huang, M., Li, B., Wang, Z., Zhang, Z., Jia, H., Hu, L., Cai, Y., Li, Y., Huang, Z., & Wu, H. (2020). Bimodal stimulation in children with bilateral profound sensorineural hearing loss: A suitable intervention model for children at the early developmental stage. Otology & Neurotology, 41(10), 1357–1362. https://doi.org/10.1097/MAO.0000000000002812 Chen, Y., Tsao, F.-M., & Liu, H.-M. (2016). Developmental changes in brain response to speech perception in late-talking children: A longitudinal MMR study. Developmental Cognitive Neuroscience, 19, 190–199. https://doi.org/10.1016/j.dcn.2016.03.007 Cheung, K. K. L., Lau, A. H. Y., Lam, J. H. S., & Lee, K. Y. S. (2014). Cantonese tone production performance of mainstream school children with hearing impairment. International Journal of Speech-Language Pathology, 16(6), 624–636. https://doi.org/10.3109/17549507.2014.896942 Conway, C. M., & Christiansen, M. H. (2005). Modality-constrained statistical learning of tactile, visual, and auditory sequences. Journal of Experimental Psychology. Learning, Memory, and Cognition, 31(1), 24–39. https://doi.org/10.1037/0278-7393.31.1.24 Conway, C. M., Pisoni, D. B., & Kronenberger, W. G. (2009). The importance of sound for cognitive sequencing abilities: the auditory scaffolding hypothesis. Current Directions in Psychological Science, 18(5), 275–279. https://doi.org/10.1111/j.1467-8721.2009.01651.x Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009 Deroche, M. L. D., Lu, H.-P., Lin, Y.-S., Chatterjee, M., & Peng, S.-C. (2019). Processing of acoustic information in lexical tone production and perception by pediatric cochlear implant recipients. Frontiers in Neuroscience, 13, 639. https://doi.org/10.3389/fnins.2019.00639 Dreher, J. J., & Lee, P. C. (1966). Instrumental investigation of single and paired Mandarin tonemes. Advanced Research Laboratory, Douglas Aircraft Company. Fletcher, H. (1940). Auditory Patterns. Reviews of Modern Physics, 12(1), 47–65. https://doi.org/10.1103/RevModPhys.12.47 Fon, J., Chiang, W.-Y., & Cheung, H. (2004). Production and Perception of the Two Dipping Tone (Tone 2 and Tone 3) in Taiwan Mandarin. Journal of Chinese Linguistics, 32(2), 249–281. Fon, J., & Chiang, W.-Y. (1999). What Does Chao Have to Say about Tones? -A Case Study of Taiwan Mandarin. Journal of Chinese Linguistics, 27(1), 13–37. Friederici, A. D., Friedrich, M., & Weber, C. (2002). Neural manifestation of cognitive and precognitive mismatch detection in early infancy. Neuroreport, 13(10), 1251–1254. https://doi.org/10.1097/00001756-200207190-00006 Fu, M., Wang, L., Zhang, M., Yang, Y., & Sun, X. (2016). A mismatch negativity study in Mandarin-speaking children with sensorineural hearing loss. International Journal of Pediatric Otorhinolaryngology, 91, 128–140. https://doi.org/10.1016/j.ijporl.2016.10.020 Gathercole, S. E., & Baddeley, A. D. (1989). Evaluation of the role of phonological STM in the development of vocabulary in children: A longitudinal study. Journal of Memory and Language, 28(2), 200–213. https://doi.org/10.1016/0749-596x(89)90044-2 Gifford, R. H. (2015). Are Two Better than One? The Hearing Journal, 68(10), 28. https://doi.org/10.1097/01.HJ.0000472647.60849.93 Han, D., Zhou, N., Li, Y., Chen, X., Zhao, X., & Xu, L. (2007). Tone production of Mandarin Chinese speaking children with cochlear implants. International Journal of Pediatric Otorhinolaryngology, 71(6), 875–880. https://doi.org/10.1016/j.ijporl.2007.02.008 Health Promotion Administration, Ministry of Health and Welfare. (2019, September 9). 新生兒聽力篩檢 讓愛生「聲」不息- 衛生福利部. https://www.mohw.gov.tw/cp-4253-49244-1.html# Hillenbrand, J., Getty, L. A., Clark, M. J., & Wheeler, K. (1995). Acoustic characteristics of American English vowels. The Journal of the Acoustical Society of America, 97(5 Pt 1), 3099–3111. https://doi.org/10.1121/1.411872 Holt, C. M., Lee, K. Y. S., Dowell, R. C., & Vogel, A. P. (2018). Perception of Cantonese lexical tones by pediatric cochlear implant users. Journal of Speech, Language, and Hearing Research, 61(1), 174–185. https://doi.org/10.1044/2017_JSLHR-H-17-0027 Hombert, J.-M. (1975). The Perception of Contour Tones. Proceedings of the Annual Meeting of the Berkeley Linguistics Society, 1(1), 221–232. Howie, J. M. (1976). Acoustical studies of Mandarin vowels and tones. Cambridge, England: Cambridge University Press. Huang, Y.-H., Wu, E.-C., & Fon, J. (2012). The effect of Min proficiency on production and perception of tones in Taiwan Mandarin. In Q. Ma, H. Ding, & D. Hirst (Eds.), Proceedings of the 6th International Conference on Speech Prosody 2012 (pp. 637–640). ISCA. https://doi.org/10.21437/SpeechProsody.2012-159 Hua, Z. H. U., & Dodd, B. (2000). The phonological acquisition of Putonghua (Modern Standard Chinese). Journal of Child Language, 27(1), 3–42. https://doi.org/10.1017/S030500099900402X Hu, Z., Sun, J.-Q., Guan, R.-R., Chen, L., Sun, J.-W., & Guo, X.-T. (2021). Deficient sensory and cognitive processing in children with cochlear implants: An event-related potential study. Hearing Research, 408, 108295. https://doi.org/10.1016/j.heares.2021.108295 Huotilainen, M., Ilmoniemi, R. J., Lavikainen, J., Tiitinen, H., Alho, K., Sinkkonen, J., Knuutila, J., & Näätänen, R. (1993). Interaction between representations of different features of auditory sensory memory. Neuroreport, 4(11), 1279–1281. https://doi.org/10.1097/00001756-199309000-00018 Intartaglia, B., Zeitnouni, A. G., & Lehmann, A. (2022). Recording EEG in cochlear implant users: Guidelines for experimental design and data analysis for optimizing signal quality and minimizing artifacts. Journal of Neuroscience Methods, 375, 109592. https://doi.org/10.1016/j.jneumeth.2022.109592 Jeng, J.-Y. (2018). Articulatory and Phonological Test for Mandarin-Speaking Children. Psychological Publishing. Kileny, P. R., Boerst, A., & Zwolan, T. (1997). Cognitive evoked potentials to speech and tonal stimuli in children with implants. Otolaryngology--Head and Neck Surgery, 117(3 Pt 1), 161–169. https://doi.org/10.1016/s0194-5998(97)70169-4 Korpilahti, P., Lang, H., & Aaltonen, O. (1995). Is there a late-latency mismatch negativity (MMN) component? Electroencephalography and Clinical Neurophysiology, 95(4), P96. https://doi.org/10.1016/0013-4694(95)90016-G Kubler, C. C. (1985). The Development of Mandarin in Taiwan: A Case Study of Language Contact. Student Book. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174. https://doi.org/10.2307/2529310 Lee, C.-Y., Yen, H.-L., Yeh, P.-W., Lin, W.-H., Cheng, Y.-Y., Tzeng, Y.-L., & Wu, H.-C. (2012). Mismatch responses to lexical tone, initial consonant, and vowel in Mandarin-speaking preschoolers. Neuropsychologia, 50(14), 3228–3239. https://doi.org/10.1016/j.neuropsychologia.2012.08.025 Leppänen, P. H., & Lyytinen, H. (1997). Auditory event-related potentials in the study of developmental language-related disorders. Audiology & Neuro-Otology, 2(5), 308–340. https://doi.org/10.1159/000259254 Liang, Q., & Mason, B. (2013). Enter the dragon--China’s journey to the hearing world. Cochlear Implants International, 14 Suppl 1(Suppl 1), S26-31. https://doi.org/10.1179/1467010013Z.00000000080 Limb, C. J., & Roy, A. T. (2014). Technological, biological, and acoustical constraints to music perception in cochlear implant users. Hearing Research, 308, 13–26. https://doi.org/10.1016/j.heares.2013.04.009 Lin, H. B., & Repp, B. H. (1989). Cues to the perception of Taiwanese tones. Language and Speech, 32(Pt 1), 25–44. https://doi.org/10.1177/002383098903200102 Liu, H.-M., Chen, Y., & Tsao, F.-M. (2014). Developmental changes in mismatch responses to Mandarin consonants and lexical tones from early to middle childhood. Plos One, 9(4), e95587. https://doi.org/10.1371/journal.pone.0095587 Liu, H.-M., Tsao, F.-M., Chang, C.-J., & Hsu, L.-L. (2013). The Development of Speech Discrimination in Preschool and School-Aged Children: Association with Word Comprehension. Bulletin of Educational Psychology, 45(2), 221–240. Liu, H.-M., Tsao, F.-M., & Kuhl, P. K. (2007). Acoustic analysis of lexical tone in Mandarin infant-directed speech. Developmental Psychology, 43(4), 912–917. https://doi.org/10.1037/0012-1649.43.4.912 Li, C. N., & Thompson, S. A. (1977). The acquisition of tone in Mandarin-speaking children. Journal of Child Language, 4(2), 185–199. https://doi.org/10.1017/S0305000900001598 Li, G., Soli, S. D., & Zheng, Y. (2017). Tone perception in Mandarin-speaking children with cochlear implants. International Journal of Audiology, 56(sup2), S49–S59. https://doi.org/10.1080/14992027.2017.1324643 Li, N.-H. (2015). The dynamic interactions among nonword repetition, vocabulary size and phonological capacities in Mandarin-speaking preschoolers: A cross-sequential study [Doctoral dissertation]. Graduate Institute of Linguistics, National Taiwan University. Li, Y.-L., Lin, Y.-H., Yang, H.-M., Chen, Y.-J., & Wu, J.-L. (2018). Tone production and perception and intelligibility of produced speech in Mandarin-speaking cochlear implanted children. International Journal of Audiology, 57(2), 135–142. https://doi.org/10.1080/14992027.2017.1374566 Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: an open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience, 8, 213. https://doi.org/10.3389/fnhum.2014.00213 Lu, L., & Liu, H. S. (1998). The Peabody Picture Vocabulary Test: Revised in Chinese. Psychological Publishing. Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A user’s guide. Cambridge University Press. Maurer, U., Bucher, K., Brem, S., & Brandeis, D. (2003). Altered responses to tone and phoneme mismatch in kindergartners at familial dyslexia risk. Neuroreport, 14(17), 2245–2250. https://doi.org/10.1097/00001756-200312020-00022 Ministry of Health and Welfare. (2018, April 25). 感受聲音的美妙—人工電子耳(人工耳蝸植入器). Ministry of Health and Welfare. https://www.mohw.gov.tw/cp-16-40872-1.html Moeller, M. P., Stille, L. J., Hughes, M. L., & Lusk, R. P. (2018). Perceived improvements and challenges following sequential bilateral cochlear implantation in children and adults. Cochlear Implants International, 19(2), 72–87. https://doi.org/10.1080/14670100.2017.1414021 Most, T., Harel, T., Shpak, T., & Luntz, M. (2011). Perception of suprasegmental speech features via bimodal stimulation: cochlear implant on one ear and hearing aid on the other. Journal of Speech, Language, and Hearing Research, 54(2), 668–678. https://doi.org/10.1044/1092-4388(2010/10-0071) Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clinical Neurophysiology, 118(12), 2544–2590. https://doi.org/10.1016/j.clinph.2007.04.026 National Health Insurance Administration, Ministry of Health and Welfare. (2023, June 6). 優化兒童照護 健保112年7月起放寬人工電子耳第二耳給付及全額給付横膈膜電位導管. https://www.mohw.gov.tw/cp-6563-74816-1.html Neuhoff, N., Bruder, J., Bartling, J., Warnke, A., Remschmidt, H., Müller-Myhsok, B., & Schulte-Körne, G. (2012). Evidence for the late MMN as a neurophysiological endophenotype for dyslexia. Plos One, 7(5), e34909. https://doi.org/10.1371/journal.pone.0034909 Neuman, A. C., & Svirsky, M. A. (2013). Effect of hearing aid bandwidth on speech recognition performance of listeners using a cochlear implant and contralateral hearing aid (bimodal hearing). Ear and Hearing, 34(5), 553–561. https://doi.org/10.1097/AUD.0b013e31828e86e8 Nittrouer, S., & Chapman, C. (2009). The effects of bilateral electric and bimodal electric--acoustic stimulation on language development. Trends in Amplification, 13(3), 190–205. https://doi.org/10.1177/1084713809346160 Ni, G., Zheng, Q., Liu, Y., Zhao, Y., Yue, T., Han, S., Liu, H., & Ming, D. (2021). Objective electroencephalography-based assessment for auditory rehabilitation of pediatric cochlear implant users. Hearing Research, 404, 108211. https://doi.org/10.1016/j.heares.2021.108211 Ohala, J. J., & Ewan, W. G. (1973). Speed of pitch change. The Journal of the Acoustical Society of America, 53(1_Supplement), 345–345. https://doi.org/10.1121/1.1982441 Ortmann, M., Knief, A., Deuster, D., Brinkheetker, S., Zwitserlood, P., am Zehnhoff-Dinnesen, A., & Dobel, C. (2013). Neural correlates of speech processing in prelingually deafened children and adolescents with cochlear implants. Plos One, 8(7), e67696. https://doi.org/10.1371/journal.pone.0067696 Ortmann, M., Zwitserlood, P., Knief, A., Baare, J., Brinkheetker, S., Am Zehnhoff-Dinnesen, A., & Dobel, C. (2017). When Hearing Is Tricky: Speech Processing Strategies in Prelingually Deafened Children and Adolescents with Cochlear Implants Having Good and Poor Speech Performance. Plos One, 12(1), e0168655. https://doi.org/10.1371/journal.pone.0168655 Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195–203. https://doi.org/10.3758/s13428-018-01193-y Peng, S.-C., Lu, H.-P., Lu, N., Lin, Y.-S., Deroche, M. L. D., & Chatterjee, M. (2017). Processing of Acoustic Cues in Lexical-Tone Identification by Pediatric Cochlear-Implant Recipients. Journal of Speech, Language, and Hearing Research, 60(5), 1223–1235. https://doi.org/10.1044/2016_JSLHR-S-16-0048 Peng, S.-C., Tomblin, J. B., Cheung, H., Lin, Y.-S., & Wang, L.-S. (2004). Perception and production of mandarin tones in prelingually deaf children with cochlear implants. Ear and Hearing, 25(3), 251–264. https://doi.org/10.1097/01.aud.0000130797.73809.40 Polonenko, M. J., Papsin, B. C., & Gordon, K. A. (2018). Delayed access to bilateral input alters cortical organization in children with asymmetric hearing. NeuroImage: Clinical, 17, 415–425. https://doi.org/10.1016/j.nicl.2017.10.036 Shafer, V. L., Yu, Y. H., & Datta, H. (2010). Maturation of speech discrimination in 4- to 7-yr-old children as indexed by event-related potential mismatch responses. Ear and Hearing, 31(6), 735–745. https://doi.org/10.1097/AUD.0b013e3181e5d1a7 Sharma, A., Campbell, J., & Cardon, G. (2015). Developmental and cross-modal plasticity in deafness: evidence from the P1 and N1 event related potentials in cochlear implanted children. International Journal of Psychophysiology, 95(2), 135–144. https://doi.org/10.1016/j.ijpsycho.2014.04.007 Shen, X. S., Lin, M., & Yan, J. (1993). F0 turning point as an F0 cue to tonal contrast: A case study of Mandarin tones 2 and 3. The Journal of the Acoustical Society of America, 93(4), 2241–2243. https://doi.org/10.1121/1.406688 Singh, S., Liasis, A., Rajput, K., Towell, A., & Luxon, L. (2004). Event-related potentials in pediatric cochlear implant patients. Ear and Hearing, 25(6), 598–610. https://doi.org/10.1097/00003446-200412000-00008 Tang, P., Yuen, I., Xu Rattanasone, N., Gao, L., & Demuth, K. (2019). The acquisition of mandarin tonal processes by children with cochlear implants. Journal of Speech, Language, and Hearing Research, 62(5), 1309–1325. https://doi.org/10.1044/2018_JSLHR-S-18-0304 Tang, P., Yuen, I., Xu Rattanasone, N., Gao, L., & Demuth, K. (2021). Longer cochlear implant experience leads to better production of mandarin tones for early implanted children. Ear and Hearing, 42(5), 1405–1411. https://doi.org/10.1097/AUD.0000000000001036 The Joint Committee on Infant Hearing. (2019). Year 2019 Position Statement: Principles and Guidelines for Early Hearing Detection and Intervention Programs. Journal of Early Hearing Detection and Intervention, 4(2), 1–44. Tsao, F.-M. (2008). The Effect of Acoustical Similarity on Lexical-Tone Perception of One-Year-Old Mandarin-Learning Infants. Chinese Journal of Psychology, 50(2), 111–124. Tsao, F.-M. (2017). Perceptual improvement of lexical tones in infants: effects of tone language experience. Frontiers in Psychology, 8, 558. https://doi.org/10.3389/fpsyg.2017.00558 Vavatzanidis, N. K., Mürbe, D., Friederici, A. D., & Hahne, A. (2016). The perception of stress pattern in young cochlear implanted children: an EEG study. Frontiers in Neuroscience, 10, 68. https://doi.org/10.3389/fnins.2016.00068 Wang, W., Zhou, N., & Xu, L. (2011). Musical pitch and lexical tone perception with cochlear implants. International Journal of Audiology, 50(4), 270–278. https://doi.org/10.3109/14992027.2010.542490 Wang, Y., Jongman, A., & Sereno, J. A. (2003). Acoustic and perceptual evaluation of Mandarin tone productions before and after perceptual training. The Journal of the Acoustical Society of America, 113(2), 1033–1043. https://doi.org/10.1121/1.1531176 Wechsler, D. (1991). Wechsler Intelligence Scale for Children (3rd ed.). (WISC-III): Manual. The Psychological Corporation. Winkler, I., Cowan, N., Csépe, V., Czigler, I., & Näätänen, R. (1996). Interactions between Transient and Long-Term Auditory Memory as Reflected by the Mismatch Negativity. Journal of Cognitive Neuroscience, 8(5), 403–415. https://doi.org/10.1162/jocn.1996.8.5.403 Wong, P., Schwartz, R. G., & Jenkins, J. J. (2005). Perception and Production of Lexical Tones by 3-Year-Old, Mandarin-Speaking Children. Journal of Speech, Language, and Hearing Research, 48(5), 1065–1079. https://doi.org/10.1044/1092-4388(2005/074) Wong, P., & Strange, W. (2017). Phonetic complexity affects children’s Mandarin tone production accuracy in disyllabic words: A perceptual study. Plos One, 12(8), e0182337. https://doi.org/10.1371/journal.pone.0182337 World Health Organization. (2023, February 27). Deafness and hearing loss. https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss Wu, S., Lin, S., Huang, R., & Tsai, I. (2021). High frequency words produced by typically developing Mandarin-Speaking children between 3 and 6 years of age. SAGE Open, 11(3), 215824402110361. https://doi.org/10.1177/21582440211036109 Xu, L., Li, Y., Hao, J., Chen, X., Xue, S. A., & Han, D. (2004). Tone production in Mandarin-speaking children with cochlear implants: a preliminary study. Acta Oto-Laryngologica, 124(4), 363–367. https://doi.org/10.1080/00016480410016351 Xu, Y. (1997). Contextual tonal variations in Mandarin. Journal of Phonetics, 25(1), 61–83. https://doi.org/10.1006/jpho.1996.0034 Yeung, H. H., Chen, K. H., & Werker, J. F. (2013). When does native language input affect phonetic perception? The precocious case of lexical tone. Journal of Memory and Language, 68(2), 123–139. https://doi.org/10.1016/j.jml.2012.09.004 Zhang, H., Zhang, J., Ding, H., & Zhang, Y. (2020). Bimodal Benefits for Lexical Tone Recognition: An Investigation on Mandarin-speaking Preschoolers with a Cochlear Implant and a Contralateral Hearing Aid. Brain Sciences, 10(4). https://doi.org/10.3390/brainsci10040238 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94955 | - |
dc.description.abstract | 聲調在中文當中具有辨義的作用。然而,因為電子耳對於低頻聲音訊號處理仍有所限制,導致配戴電子耳的兒童學習聲調面臨諸多挑戰。目前已知聽障兒童若能早期植入且配戴時間長,對於聲調習得有所助益;此外,使用雙模式聆聽的兒童(一耳植入電子耳,另一耳配戴助聽器)可能因助聽器提供了電子耳缺乏的低頻訊息,而在聲調聽取上具有優勢。然而,目前仍少有研究直接比較僅配戴單側電子耳和雙模式聆聽兒童的聲調產出表現,故實驗一於中國山東省耳鼻喉醫院招募了16名電子耳兒童,測試聆聽模式和電子耳使用時間對聲調產出表現的影響,並根據配戴模式(雙模式/單側電子耳)和電子耳使用時間(二年/五年)進行分組,另有16位聽力正常的兒童與配戴五年電子耳的兒童進行聽齡和生理年齡配對,作為對照組。研究者評量受試者的聲調產出正確率,以及針對四個聲調輪廓進行了聲學分析。實驗一結果顯示,配戴五年電子耳的兒童在聲調產出的表現顯著優於配戴二年電子耳的兒童。此外,配戴五年雙模式的電子耳兒童能清楚呈現二三聲之聲學特徵,而配戴五年單側電子耳和兩年電子耳的兒童仍易混淆二三聲之轉折點。這表示配戴電子耳時長在聲調習得上有顯著幫助,且雙模式的聽覺模式可能在相似的聲調產出(二聲和三聲)提供額外的優勢。
即使長期配戴電子耳的兒童具有與正常聽力同儕相當的聲調產出表現,但由於早期的聽覺剝奪導致聽覺中樞系統發育異常,我們假設電子耳兒童的神經表徵可能與正常兒童不同。為了驗證這一假設,我們透過事件相關電位檢測電子耳兒童在感知聲調時的神經反應。首先,我們先進行實驗二作為前測,確認了在台灣招募的配戴五年電子耳的兒童亦能表現出和聽常同儕相當的聲調產出。接著,實驗三招募8位配戴電子耳五年的兒童以及29名生理年齡和聽齡匹配的正常聽力兒童,使用特異刺激典範(oddball paradigm)量測不匹配神經反應(Mismatch responses, MMRs),刺激音包含一/四聲及二/三聲對比組合。結果顯示,電子耳兒童在一/四聲對比中顯示p-MMR和LDN,在二/三聲對比中僅出現p-MMR。而聽齡和生理年齡配對的聽力正常兒童在一/四聲和二/三聲對比中都顯示出LDN。此結果表示長期配戴電子耳兒童的中樞聽覺系統處理聲調訊息仍不如正常聽力同儕成熟。總結來說,本研究結果指出長期配戴電子耳兒童可以表現出與正常聽力同儕相當的聲調產出,但他們的聽覺中樞系統在處理聲調輪廓仍存在劣勢。需要進一步研究以探討次要聲學線索如何幫助電子耳兒童習得並處理聲調。 | zh_TW |
dc.description.abstract | Lexical tones play an important role in Mandarin because they differentiate a given syllable into different meanings. However, it can be a challenge for children with cochlear implants (CIs) to learn because lexical tones are distinguished by fundamental frequency contours, and CI devices allow limited transmission in the low-frequency range in which fundamental frequency information resides. It has been suggested that children with CIs implanted at an early age and with a longer CI experience perform better in the acquisition of Mandarin tones. Moreover, children with bimodal stimulation (CI plus a hearing aid [HA]) might have an advantage over those with CIs in tone perception due to their having access to much richer information in the low-frequency range. As few studies directly compare tonal performance in children with unilateral CI (without using HAs for the unimplanted ear) and children with bimodal stimulation, Experiment 1 compared the tone production between these two groups of CI children to determine whether hearing modality and length of CI experience affect children’s performance. Sixteen children with CIs were recruited in the Shandong Provincial ENT Hospital, China and were grouped according to hearing modality (bimodal stimulation vs. unilateral CI) and length of CI experience (2 years vs. 5 years). Children’s production accuracy was calculated, and the pitch contours of the four lexical tones were acoustically analyzed. The results revealed that children with five years of CI experience had better performance in tone production than those with only two years of experience. Furthermore, children with five years of bimodal stimulation experience could produce distinct Tone 2 and Tone 3 contours similar to their normal-hearing counterparts, whereas those with five years of unilateral CI experience and two years of CI experience could not. This suggests that CI experience played an important role in tone acquisition and bimodal stimulation may have an advantage in producing similar tones (rising tone and dipping tone).
We further predict that even though children with longer CI experience might have the potential to produce tones comparable to those of normal-hearing children, the neural representation in CI children might still be different from that in normal children due to abnormal development of the central auditory system caused by auditory deprivation. To verify this hypothesis, we investigated CI children’s neural responses when listening to Mandarin tones through event-related potentials (ERPs). First, we conducted Experiment 2 to confirm that the CI children with five years of CI experience recruited in Taiwan could perform comparable tone production to normal-hearing counterparts like the results of Experiment 1. Then we designed an event-related potential (ERP) experiment to investigate the mismatch responses (MMRs) patterns in CI children in Experiment 3. Eight CI children were recruited five years after implantation, along with 29 chronological-age- and hearing-age-matched children with normal hearing. The passive oddball paradigm was used, including a Tone 1/Tone 4 contrast and a Tone 2/Tone 3 contrast as stimuli. Results showed that CI children had p-MMR and LDN in the Tone 1/Tone 4 contrast, and only p-MMR in the Tone 2/Tone 3 contrast. On the other hand, both groups of matched children with normal-hearing displayed LDN in Tone 1/Tone 4 and Tone 2/Tone 3 contrasts. This suggests that lexical tonal processing in children with longer CI experience might be less mature than that in their normal-hearing counterparts. Our findings illustrate that children with longer CI experience can perform tone production similar to their normal-hearing counterparts, but they still have disadvantages in processing lexical tones differing only in F0 contours. Further studies are needed to investigate whether and how secondary auditory help children with CIs acquire and process lexical tones well. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:53:49Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-21T16:53:49Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝辭 i
摘要 iii ABSTRACT v TABLE OF CONTENTS viii LIST OF FIGURES xi LIST OF TABLES xiii CHAPTER 1 INTRODUCTION 1 1.1 Research Background 1 1.2 Research Aims 5 1.3 Organization 6 CHAPTER 2 LITERATURE REVIEW 7 2.1 Mandarin Lexical Tones 7 2.2 Mandarin Tone Acquisition in Children 8 2.2.1 Tone Acquisition in Typical Children 8 2.2.2 Tone Acquisition in Children with CIs 9 2.3 ERP studies 11 2.3.1 Mismatch Responses (MMRs) 11 2.3.2 Mismatch Responses of Mandarin Lexical Tones in Typical Children 13 2.3.3 Mismatch Responses in Children with CIs 14 2.4 Summary 16 CHAPTER 3 EXPERIMENT 1 18 3.1 Methods 18 3.1.1 Participants 18 3.1.2 Stimuli 19 3.1.3 Analysis 20 3.1.3.1 Tone Production Accuracy. 20 3.1.3.2 Pitch contours of tonal production. 20 3.2 Results 22 3.2.1 Tone production accuracy 22 3.2.2 Tonal contours analysis 23 3.2.2.1 Pitch range. 25 3.2.2.2 Turning point. 26 3.3 Summary of Experiment 1 27 CHAPTER 4 EXPERIMENT 2 29 4.1 Methods 29 4.1.1 Participants 29 4.1.2 Stimuli 30 4.1.3 Analysis 30 4.2 Results 31 4.2.1 Tone accuracy of CI and normal-hearing children 31 4.2.2 Comparison of pitch contours of four lexical tones in CI and normal-hearing children… 32 4.2.2.1 Pitch range.. 33 4.2.2.2 Turning point. 35 4.3 Summary of Experiment 2 36 CHAPTER 5 EXPERIMENT 3 37 5.1 Methods 37 5.1.1 Participants 37 5.1.2 ERP Experiment Stimuli 38 5.1.3 Procedure 39 5.1.3.1 250 Hz Perception Test. 39 5.1.3.2 Working Memory Tests. 40 5.1.3.3 ERP Experiment. 41 5.1.4 Analysis 42 5.2 Results 43 5.2.1 250 Hz perception test 43 5.2.2 Working memory test 45 5.2.3 ERP results 47 5.2.3.1 Tone 1/Tone 4 contrast. 47 5.2.3.2 Tone 2/Tone 3 contrast.. 49 5.3 Summary of Experiment 3 50 CHAPTER 6 DISCUSSION 52 6.1 The effects of hearing modality and duration of CI experience on tone acquisition for children with CIs 52 6.2 The neural processing of lexical tones discrimination in children with CIs, compared with normal-hearing counterparts 54 CHAPTER 7 CONCLUSION 57 REFERENCES 59 | - |
dc.language.iso | en | - |
dc.title | 以聲學及事件相關電位探討人工電子耳兒童之聲調習得 | zh_TW |
dc.title | An Acoustic and ERP study on Tone Acquisition in Children with Cochlear Implants | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 吳恩賜 | zh_TW |
dc.contributor.coadvisor | Joshua Oon Soo Goh | en |
dc.contributor.oralexamcommittee | 劉惠美;李佳霖 | zh_TW |
dc.contributor.oralexamcommittee | Huei-Mei Liu;Chia-Lin Lee | en |
dc.subject.keyword | 人工電子耳,聲調習得,雙模式聆聽,事件相關電位,不匹配神經反應, | zh_TW |
dc.subject.keyword | cochlear implants,tone acquisition,bimodal stimulation,event-related potentials (ERPs),mismatch responses, | en |
dc.relation.page | 74 | - |
dc.identifier.doi | 10.6342/NTU202403017 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-02 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 腦與心智科學研究所 | - |
顯示於系所單位: | 腦與心智科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 5.34 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。