Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94947
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor簡穎秀zh_TW
dc.contributor.advisorYin-Hsiu Chienen
dc.contributor.author黃双慧zh_TW
dc.contributor.authorShuang-Hui Huangen
dc.date.accessioned2024-08-21T16:49:39Z-
dc.date.available2024-08-22-
dc.date.copyright2024-08-21-
dc.date.issued2024-
dc.date.submitted2024-08-01-
dc.identifier.citationRichards, S., et al., Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med, 2015. 17(5): p. 405-24.
Engel, E., One hundred years of cytogenetic studies in health and disease. Am J Ment Defic, 1977. 82(2): p. 109-16.
Totomoch-Serra, A., M.F. Marquez, and D.E. Cervantes-Barragán, Sanger sequencing as a first-line approach for molecular diagnosis of Andersen-Tawil syndrome. F1000Res, 2017. 6: p. 1016.
Li, C., et al., Genome Sequencing and Assembly by Long Reads in Plants. Genes (Basel), 2017. 9(1).
Bartlett, J.M. and D. Stirling, A short history of the polymerase chain reaction. Methods Mol Biol, 2003. 226: p. 3-6.
Zneimer, S.M., The human genome project: exploring its progress and successes and the ethical, legal, and social implications. Clin Leadersh Manag Rev, 2002. 16(3): p. 151-7.
McCombie, W.R., J.D. McPherson, and E.R. Mardis, Next-Generation Sequencing Technologies. Cold Spring Harb Perspect Med, 2019. 9(11).
Shinawi, M. and S.W. Cheung, The array CGH and its clinical applications. Drug Discov Today, 2008. 13(17-18): p. 760-70.
Dungan, J.S., et al., Noninvasive prenatal screening (NIPS) for fetal chromosome abnormalities in a general-risk population: An evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet Med, 2023. 25(2): p. 100336.
Petersen, B.S., et al., Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet, 2017. 18(1): p. 14.
Kaname, T., K. Yanagi, and K. Naritomi, A commentary on the promise of whole-exome sequencing in medical genetics. J Hum Genet, 2014. 59(3): p. 117-8.
McDermott, H., et al., Rapid exome sequencing in critically ill children impacts acute and long-term management of patients and their families: A retrospective regional evaluation. Eur J Med Genet, 2022. 65(9): p. 104571.
Meng, L., et al., Use of Exome Sequencing for Infants in Intensive Care Units: Ascertainment of Severe Single-Gene Disorders and Effect on Medical Management. JAMA Pediatr, 2017. 171(12): p. e173438.
Lazaridis, K.N., et al., Outcome of Whole Exome Sequencing for Diagnostic Odyssey Cases of an Individualized Medicine Clinic: The Mayo Clinic Experience. Mayo Clin Proc, 2016. 91(3): p. 297-307.
Bamshad, M.J., et al., Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet, 2011. 12(11): p. 745-55.
Green, R.C., et al., ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing.Genet Med, 2013. 15(7): p. 565-74.
Kircher, M., et al., A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet, 2014. 46(3): p. 310-5.
Stark, Z., et al., Integrating Genomics into Healthcare: A Global Responsibility. Am J Hum Genet, 2019. 104(1): p. 13-20.
Organization., W.H. Genes and human diseases. 2021; Available from: https://www.who.int/genomics/public/geneticdiseases/en/index2.html.
Posey, J.E., et al., Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation. N Engl J Med, 2017. 376(1): p. 21-31.
Smith, E.D., et al., A retrospective review of multiple findings in diagnostic exome sequencing: half are distinct and half are overlapping diagnoses. Genet Med, 2019. 21(10): p. 2199-2207.
Racine, C., et al., Multiple molecular diagnoses in the field of intellectual disability and congenital anomalies: 3.5% of all positive cases. J Med Genet, 2023. 61(1): p. 36-46.
Narayanan, D.L., et al., Multilocus disease-causing genomic variations for Mendelian disorders: role of systematic phenotyping and implications on genetic counselling. Eur J Hum Genet, 2021. 29(12): p. 1774-1780.
Schäffer, A.A., Digenic inheritance in medical genetics. J Med Genet, 2013. 50(10): p. 641-52.
Katsanis, N., The continuum of causality in human genetic disorders. Genome Biol, 2016. 17(1): p. 233.
Balci, T.B., et al., Debunking Occam's razor: Diagnosing multiple genetic diseases in families by whole-exome sequencing. Clin Genet, 2017. 92(3): p. 281-289.
Rosina, E., et al., Atypical, Composite, or Blended Phenotypes: How Different Molecular Mechanisms Could Associate in Double-Diagnosed Patients. Genes (Basel), 2022. 13(7).
Yang, Y., et al., Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med, 2013. 369(16): p. 1502-11.
Levenson, D., Whole-exome sequencing effective at diagnosing elusive genetic disorders: tests diagnose about 25% of patients, find a variety of mutation types. Am J Med Genet A, 2015. 167a(2): p. vii-viii.
Thevenon, J., et al., Diagnostic odyssey in severe neurodevelopmental disorders: toward clinical whole-exome sequencing as a first-line diagnostic test. Clin Genet, 2016. 89(6): p. 700-7.
Karaca, E., et al., Phenotypic expansion illuminates multilocus pathogenic variation. Genet Med, 2018. 20(12): p. 1528-1537.
Stark, Z., et al., A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders. Genet Med, 2016. 18(11): p. 1090-1096.
Chen, J. and K.C. Wong, Analyzing High-Order Epistasis from Genotype-Phenotype Maps Using 'Epistasis' Package. Methods Mol Biol, 2021. 2212: p. 265-275.
Salvatore, F., O. Scudiero, and G. Castaldo, Genotype-phenotype correlation in cystic fibrosis: the role of modifier genes. Am J Med Genet, 2002. 111(1): p. 88-95.
Holland, J., Should parents be permitted to authorize genetic testing for their children? Fam Law Q, 1997. 31(2): p. 321-53.
Borry, P., et al., Presymptomatic and predictive genetic testing in minors: a systematic review of guidelines and position papers. Clin Genet, 2006. 70(5): p. 374-81.
Pinxten, W. and H.C. Howard, Ethical issues raised by whole genome sequencing. Best Pract Res Clin Gastroenterol, 2014. 28(2): p. 269-79.
Stark, Z., et al., Does genomic sequencing early in the diagnostic trajectory make a difference? A follow-up study of clinical outcomes and cost-effectiveness. Genet Med, 2019. 21(1): p. 173-180.
Fung, J.L.F., et al., A three-year follow-up study evaluating clinical utility of exome sequencing and diagnostic potential of reanalysis. NPJ Genom Med, 2020. 5(1): p. 37.
Wynn, J., Genomic Testing: a Genetic Counselor's Personal Reflection on Three Years of Consenting and Testing. J Genet Couns, 2016. 25(4): p. 691-7.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94947-
dc.description.abstract背景:
在現今醫學遺傳學領域,在臨床上我們依賴全外顯子定序(whole exome sequencing, WES)作為懷疑有遺傳疾病患者基因變異的檢測方式。WES是將NGS次世代技術(Next Generation Sequencing)應用於確定已知基因的所有編碼區域或外顯子的變異。WES的檢測涵蓋了超過95%的外顯子(exome),其中包含了孟德爾遺傳疾病中85%的致病突變。依照過去的研究指出,目前透過WES已能識別出超過150種基因的功能,且仍持續增加中,因此WES成為了極具檢測效益的分子診斷工具之一。
目的:
本研究旨在評估全外顯子定序檢測技術在臨床應用上對多重孟德爾遺傳疾病(Multiple Mendelian disorders)患者的診斷率、具多重孟德爾遺傳疾病個案的疾病類型分布。
方法:
搜集台大醫院基因醫學部於2020年2月至2021年7月進行過WES且已有檢測結果報告的個案,從608位個案中將檢測結果報告中已具一項診斷的個案篩選出。將327位個案執行WES的檢測結果使用MViewer程式進行重新回顧,記錄ClinVar報告為pathogenic、likely pathogenic的基因變異(variant)。將基因變異位點利用ClinVar、ACMG以及HGMD等資料庫做致病性的參考,找出符合孟德爾單基因遺傳的疾病診斷。最終計算所有經過分析的患者其中具有兩種以及三種遺傳疾病個案的比例,同時分析疾病的類型。
結果:
327位個案中具一項WES陽性診斷結果的個案為141位,重新分析的141位個案中,122位僅具有一項孟德爾遺傳疾病(37.31%)有17位(5.2%)具有兩項孟德爾遺傳疾病,有2位(0.61%)具有三項孟德爾遺傳疾病。具有第二及第三個孟德爾遺傳疾病的19位個案中的基因變異共計與15個基因相關,15個基因中導致臨床症狀,其中以神經學和血液方面最多,其次是風濕免疫以及眼科相關。
結論:
透過重新分析進行過WES的基因檢測結果,能檢驗出約6%的個案具有潛在的第二以及第三種遺傳疾病,近一步發現這些多重遺傳疾病的臨床表徵以神經和血液相關為最多,顯示WES能發現多重遺傳疾病在兒科個案中具有一定的發生率。
zh_TW
dc.description.abstractBackground :
In the field of medical genetics today, clinical diagnosis of individuals suspected of having genetic disorders relies on Whole Exome Sequencing (WES) as a means of detecting genetic variations. WES applies Next Generation Sequencing (NGS) technology to determine variations in all coding regions or exons of known genes. The testing covers more than 95% of the exome, which includes 85% of the pathogenic mutations found in Mendelian genetic diseases. According to previous studies, WES has identified the functions of over 150 genes and this number continues to increase, making WES one of the highly beneficial molecular diagnostic tools.
Aim :
This study aims to evaluate the diagnostic rate of whole exome sequencing (WES) technology in clinical applications for patients with multiple Mendelian disorders, the types of diseases in cases with multiple Mendelian conditions, and the rate for diagnosis.
Methods :
We collected cases from the Department of Medical Genetics at National Taiwan University Hospital who underwent Whole Exome Sequencing (WES) and had test result reports from February, 2020, to July, 2021. From a total of 608 cases, those with category 1 findings in the test result reports were selected. Among the 327 cases that underwent WES, the test results were reviewed using the MViewer program. We applied conditional filtering to identify genetic variants recognized by ClinVar as pathogenic or likely pathogenic, which simultaneously required confirmation of the variant site. Genetic variant sites were referenced for pathogenicity using databases such as ClinVar, ACMG and HGMD to identify diagnoses of Mendelian single-gene inherited diseases. Finally, we calculated the proportion of patients who were reviewed and diagnosed with two or three genetic diseases among all reviewed patients, while also analyzing the types of diseases.
Results :
Out of the 327 cases, 141 had category 1 diagnostic results. Among the reanalyzed 141 cases, 122 cases (37.31%) had only one Mendelian genetic disease, 17 cases (5.2%) had two Mendelian genetic diseases, and 2 cases (0.61%) had three Mendelian genetic diseases. The genetic variants in the 19 cases with a second or third Mendelian genetic disease were related to a total of 15 genes, Among these 15 genes, the variants potentially led to different clinical symptoms, with the most common being neurological disorders (five types), followed by skin-related and blood-related conditions.
Conclusion :
By reanalyzing the genetic testing results of cases that underwent WES and referencing updates from genetic databases, we were able to identify approximately 6% of cases with potential genetic diseases. Further research indicates that the primary onset age of multiple genetic diseases ranges from birth to childhood. This demonstrates that WES can identify multiple genetic diseases with a certain incidence in pediatric cases.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:49:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-21T16:49:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 1
中文摘要 2
ABSTRACT 4
第一章、 研究介紹(Introduction) 10
一、基因與基因體 10
二、遺傳與疾病 11
三、診斷方式的演進 12
四、WES與WGS的差異與應用 13
五、WES的優勢與挑戰 13
六、目前單基因遺傳疾病發生率 14
七、WES與多重孟德爾遺傳疾病(Multiple mendelian disorder) 15
八、他國多重孟德爾遺傳(Multiple mendelian disorder)發生率研究現況 15
九、研究目的 16
第二章、 研究方法及材料(Material and Method) 17
一、資料來源 17
二、WES資料庫分析 17
三、WES變異位點與疾病的判定 18
四、個案資料整理 18
五、遺傳模式確認 19
第三章、 研究結果(Result) 20
一、個案資料分析 20
二、基因分布 20
三、疾病類型 20
四、WES陽性診斷具兩項遺傳疾病個案列表 21
五、WES陽性診斷具三項遺傳疾病個案列表 25
第四章、 討論(Discussion) 27
一、WES在多重遺傳疾病研究發現 27
二、對多重遺傳疾病個案的基因變異診斷意義 28
三、本研究與國外研究的差異 28
四、診斷率探討 29
五、研究限制 30
六、基因診斷倫理探討 31
七、未來展望 32
第五章、 結論(Conclusion) 32
第六章、 參考資料(Reference) 32
-
dc.language.isozh_TW-
dc.title利用全外顯子定序探討台灣多重孟德爾遺傳疾病的發生率zh_TW
dc.titleInvestigating the Incidence of Multiple Mendelian Diseases in Taiwan Using Whole Exome Sequencingen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李妮鍾;胡務亮zh_TW
dc.contributor.oralexamcommitteeNi-Chung Lee;Wuh-Liang Hwuen
dc.subject.keyword全外顯子定序,次世代定序,多重分子診斷,zh_TW
dc.subject.keywordWhole exome sequencing,Next Generation Sequencing,Multiple molecular diagnosis,en
dc.relation.page52-
dc.identifier.doi10.6342/NTU202402862-
dc.rights.note未授權-
dc.date.accepted2024-08-01-
dc.contributor.author-college醫學院-
dc.contributor.author-dept分子醫學研究所-
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
1.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved