請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94946完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李苑玲 | zh_TW |
| dc.contributor.advisor | Yuan-Ling Lee | en |
| dc.contributor.author | 黃孝介 | zh_TW |
| dc.contributor.author | Hsiao-Chieh Huang | en |
| dc.date.accessioned | 2024-08-21T16:49:19Z | - |
| dc.date.available | 2024-08-22 | - |
| dc.date.copyright | 2024-08-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-01 | - |
| dc.identifier.citation | Aguilar, P. and Linsuwanont, P., 2011. Vital Pulp Therapy in Vital Permanent Teeth with Cariously Exposed Pulp: A Systematic Review. Journal of Endodontics, 37: 581– 587.
Arnold, M. M., Srivastava, S., Fredenburgh, J., Stockard, C. R., Myers, R. B., & Grizzle, W. E., 1996. Effects of fixation and tissue processing on immunohistochemical demonstration of specific antigens. Biotechnic & histochemistry, 71(5), 224-230. Atmeh, A.R., Chong, E.Z., Richard, G., Festy, F. and Watson, T.F., 2012. Dentin-cement interfacial interaction: calcium silicates and polyalkenoates. Journal of Dental Research, 91: 454-459. Boulle, K.D., Glogau, R., Kono, T., Nathan, M., Tezel, A., Palawa, S. and Stroumpoulis, D., 2013. A Review of the Metabolism of 1,4-Butanediol Diglycidyl Ether– Crosslinked Hyaluronic Acid Dermal Fillers. Journal of Dermatologic Surgery, 39: 1758-1766. Brizuela, C.; Meza, G.; Urrejola, D.; Quezada, M.A.; Concha, G.; Ramírez, V.; Angelopoulos, I.; Cadiz, M.I.; Tapia-Limonchi, R.; Khoury, M., 2020. Cell-based regenerative endodontics for treatment of periapical lesions: A randomized, controlled phase I/II clinical trial. J. Dent. Res. 99, 523–529. Brudevold F, Steadman LT, Smith FA., 1960. Inorganic and organic components of tooth structure. Ann N Y Acad Sci, 85:110-32. Bucchi, C.; Marcé-Nogué, J.; Galler, K.M.; Widbiller, M., 2019. Biomechanical performance of an immature maxillary central incisor after revitalization: A finite element analysis. Int. Endod. J. 52, 1508–1518. Bumalee D, Lapthanasupkul P, Songkampol K, Srimaneekarn N, Kitkumthorn N, Arayapisit T., 2023. Qualitative Histological Evaluation of Various Decalcifying Agents on Human Dental Tissue. Eur J Dent. Jul;17(3):818-822. Buurma, B.; Gu, K.; Rutherford, R.B., 1999. Transplantation of human pulpal and gingival fibroblasts attached to synthetic scaffolds: Transplantation of human pulpal and gingival fibroblasts attached to synthetic scaffolds. Eur. J. Oral Sci. 107, 282–289. Chen, Y.L., 2021. 不同交聯程度之雙相型玻尿酸膠體於牙髓—牙本質組織再生之應用.碩士論文. Cho A, Suzuki S, Hatakeyama J, Haruyama N, Kulkarni AB., 2010. A method for rapid demineralization of teeth and bones. Open Dent J 15;4:223-9. Choube A, Astekar M, Choube A, Sapra G, Agarwal A, Rana A., 2018. Comparison of decalcifying agents and techniques for human dental tissues. Biotech Histochem 93:99-108. Chrepa, V., Austah, O. and Diogenes, A., 2017. Evaluation of a Commercially Available Hyaluronic Acid Hydrogel (Restylane) as Injectable Scaffold for Dental Pulp Regeneration: An In Vitro Evaluation. Journal of Endodontics, 43: 257–262. Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, Smith AJ, Nör JE., 2008. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. Journal of Endodontics, 34(8):962-969 Daud S, Nambiar P, Hossain M, et al., 2016. Removal of the apical one-third of the root improves the fixation process of the dental pulp in teeth. J Histotechnol 39:81-7 England MC, Pellis EG, Michanowicz AE. Histopathologic study of the effect of pulpal disease upon nerve fibers of the human dental pulp. Oral Surg Oral Med Oral Pathol 1974:38:783-90. Fakhari, A. and Berkland, C., 2013. Applications and Emerging Trends of Hyaluronic Acid in Tissue Engineering, as a Dermal Filler, and in Osteoarthritis Treatment. Acta Biomaterialia, 9: 7081–7092. Fallacara, A., Baldini, E., Manfredini, S. and Vertuani, S., 2018. Hyaluronic Acid in the Third Millennium. Polymers 10: 1-36. Fang, J., Chen, F., Liu, D., Gu, F., & Wang, Y., 2021. Adipose tissue-derived stem cells in breast reconstruction: a brief review on biology and translation. Stem Cell Research & Therapy, 12, 1-13. Felszeghy S, Módis L, Tammi M, Tammi R., 2001. The distribution pattern of the hyaluronan receptor CD44 during human tooth development. Arch Oral Biol. 46(10):939-45. Fox CH, Johnson FB, Whiting J, Roller PP., 1985. Formaldehyde fixation. J Histochem Cytochem. Aug;33(8):845-53. Friedman, S. and Mor, C., 2004. The success of endodontic therapy - healing and functionality. Journal of the Canadian Dental Association, 32: 493-503. Galler KM, D’Souza RN, Hartgerink JD, Schmalz G., 2011. Scaffolds for Dental Pulp Tissue Engineering. Advances in Dental Research.;23(3):333-339. Gou S., Chunyou Wang, Tao Liu, Heshui Wu, Jiongxin Xiong, Feng Zhou, Gang Zhao, 2010. Spontaneous Differentiation of Murine Bone Marrow-Derived Mesenchymal Stem Cells into Adipocytes without Malignant Transformation after Long-Term Culture. Cells Tissues Organs, 191:185–192 Gronthos, S., Mankani, M., Brahim, J., Gehron Robey, P. and Shi, S., 2000. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. PNAS 97: 13625– 13630. Gronthos, S., Brahim, J., Li, W., Fisher, L. W., Cherman, N., Boyde, A., Shi, S. 2002. Stem cell properties of human dental pulp stem cells. Journal of dental research, 81(8), 531-535. Gupta S, Jawanda MK, Sm M, Bharti, 2014. A. Qualitative histological evaluation of hard and soft tissue components of human permanent teeth using various decalcifying agents - a comparative study. J Clin Diagn Res. 8(9):ZC69-72. Hameed, M. A., Abbas, M. K., & Madlum, K. N., 2020. Role of Hyaluronic Acid in Modulating Wound Healing Progression. Systematic Reviews in Pharmacy, 11(11). Howat WJ, Wilson BA., 2014. Tissue fixation and the effect of molecular fixatives on downstream staining procedures. Methods. 70:12-9. Huang, G.T.-J., Yamaza, T., Shea, L.D., Djouad, F., Kuhn, N.Z., Tuan, R.S. and Shi, S., 2010. Stem/Progenitor Cell–Mediated De Novo Regeneration of Dental Pulp with Newly Deposited Continuous Layer of Dentin in an In Vivo Model. Tissue Engineering: Part A, 16: 605-615. Huang, G.T.J., 2012. Dental pulp and dentin tissue engineering and regeneration – advancement and challenge. Frontiers in Bioscience, 3: 788-800. Huang, G.T.J., Wataru Sonoyama. James Chen, Sang Hyuk Park., 2006. In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell and Tissue Research. 324, 225–236. Iohara, K., Murakami, M., Takeuchi, N., Osako, Y., Ito, M., Ishizaka, R., Utunomiya, s., Nakamura, H., Matsushita, K. and Nakashima, M., 2013. A Novel Combinatorial Therapy With Pulp Stem Cells and Granulocyte Colony-Stimulating Factor for Total Pulp Regeneration. Stem cells translation medicine, 2: 521-533. John, S., Devi, P., Sharma, P., Gupta, S., & Chandra, S., 2023. Comparison of various decalcifying agents to evaluate their efficacy. International Journal of Basic & Clinical Pharmacology, 12(4), 522–527. Johnston, E. K., & Abbott, R. D., 2022. Adipose tissue development relies on coordinated extracellular matrix remodeling, angiogenesis, and adipogenesis. Biomedicines, 10(9), 2227. Kao, C.C., 2018. 研發搭載洛伐他汀之雙相型透明質酸膠體在牙髓組織再生的應用.碩士論文. Karbanová, J., Corbeil, D., Soukup, T. and Mokrý, J., 2011. Characterization of Dental Pulp Stem Cells from Impacted Third Molars Cultured in Low Serum-Containing Medium. Cells Tissues Organs 193: 344-365. Khangura, K.A., Gupta, Shally; Gulati, Anubha; Singh, Simranjit., 2021. Tooth decalcification using different decalcifying agents – A comparative study. Journal of Oral and Maxillofacial Pathology 25(3):p 463-469 Kuo, K.C., 2020. 搭載洛伐他汀之雙相型透明質酸膠體之降解行為及生物相容性分析. 碩士論文. Kuznetsov, S.A., Paul H. Krebsbach, Kazuhito Satomura, Janet Kerr, Mara Riminucci, Dafna Benayahu and Pamela Gehron Robey, 1997. Single-Colony Derived Strains of Human Marrow Stromal Fibroblasts Form Bone After Transplantation In Vivo. Journal of bone and mineral research., Vol. 12, No. 9. Langeland K. Tissue response to dental caries. Dent Traumatol 1987:3:149-71. Lee Y.L., Liu J., Clarkson B.H., Lin C.P., Godovikova V., Ritchie H.H.; Dentin-Pulp Complex Responses to Carious Lesions. Caries Res 1 May 2006; 40 (3): 256–264. Lei, T., Zhang, X. and Du, H., 2021. Characteristics, Classification, and Application of Stem Cells Derived from Human Teeth. Stem Cells International, 2021: 1-11. Lin, J.C., Lu, J.X., Zeng, Q., Zhao, W., Li, W.Q. and Ling, J.Q., 2016. Comparison of mineral trioxide aggregate and calcium hydroxide for apexification of immature permanent teeth: A systematic review and meta-analysis. Journal of the Formosan Medical Association, 115: 523-530. Lin, L. M., Huang, G. T. J., Sigurdsson, A., & Kahler, B., 2021. Clinical cell‐based versus cell‐free regenerative endodontics: clarification of concept and term. International Endodontic Journal, 54(6), 887-901. Litwiniuk, M., Krejner, A., Speyrer, M. S., Gauto, A. R., & Grzela, T., 2016. Hyaluronic acid in inflammation and tissue regeneration. Wounds, 28(3), 78-88. Liu, C.C., 2019. 研發搭載 Tideglusib 之雙相型透明質酸膠體在牙本質牙髓組織再生的應用. 碩士論文. Liu, T.Y., 2023. 使用低血清培養液繼代培養之牙髓幹細胞及牙根尖乳突幹細胞特性分析. 碩士論文. Misra, S., Hascall, V., Markwald, R. and Ghatak, S., 2015. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Frontiers in Immunology, 6: 1-31. Miura, M., Stan Gronthos, Mingrui Zhao, Bai Lu, Larry W. Fisher, Pamela Gehron Robey and Songtao Shi., 2002. SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences.May 13;100(10):5807-12. Morse A., 1945. Formic acid-sodium citrate decalcification and butyl alcohol dehydration of teeth and bones for sectioning in paraffin. J Dent Res 24;143-53 Nakashima, M.; Iohara, K.; Bottino, M.C.; Fouad, A.F.; Nör, J.E.; Huang, G.T.-J., 2019. Animal Models for Stem Cell-Based Pulp Regeneration: Foundation for Human Clinical Applications. Tissue Eng. Part B Rev. 25, 100–113. Niehage, C., Jana Karbanová, Charlotte Steenblock, Denis Corbeil, Bernard Hoflack , 2016. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry. PLOS ONE, 11(8): e0159824. Nygaard-Ostby, B., 1961. The role of the blood clot in endodontic therapy. An experimental histologic study. Acta Odontol Scand.;19:324-53. Nygaard-Ostby, B. and Hjortdal, O., 1971. Tissue formation in the root canal following pulp removal. Scandinavian Journal of Dental Research, 79: 333-349. Ohlsson, E.; Galler, K.M.;Widbiller, M., 2022. A Compilation of Study Models for Dental Pulp Regeneration. Int. J. Mol. Sci. 23, 14361. Pardue, E.L., Ibrahim , S. and Ramamurthi, A., 2008. Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering. Organogenesis 4: 203-214. Park, D., Kim, Y., Kim, H., Kim, k., Lee, Y.-S., Choe, J., Hahn, J.-H., Lee, H., Jeon, J., Choi, C., Kim, Y.-M. and Jeoung, D., 2012. Hyaluronic Acid Promotes Angiogenesis by Inducing RHAMM-TGFβ Receptor Interaction via CD44-PKCδ. Molecules and Cells, 33: 563-574. Ricucci D, Loghin S, & Siqueira JF Jr., 2014. Correlation between clinical and histologic pulp diagnoses. J Endod 40:1932-1939. Ricucci D, Siqueira JF Jr, Loghin S, Lin LM., 2017. Pulp and apical tissue response to deep caries in immature teeth: A histologic and histobacteriologic study. J Dent56:19-32. Rosa, V., Zhang, Z., Grande, R. H. M., & Nör, J. E., 2013. Dental pulp tissue engineering in full-length human root canals. Journal of dental research, 92(11), 970-975. Silujjai, J. and Linsuwanont, P., 2017. Treatment Outcomes of Apexification or Revascularization in Nonvital Immature Permanent Teeth: A Retrospective Study. Journal of Endodontics, 43: 238–245. Shahid, M., Shetty, P., Paul, T., & Bhat, R., 2023. Comparative evaluation of the efficacy of the mechanical agitation‑assisted decalcification of human permanent teeth: A histological analysis. World Academy of Sciences Journal, 5, 26. https://doi.org/10.3892/wasj.2023.203 Takeuchi, N., Hayashi, Y., Murakami, M., Alvarez, F. J., Horibe, H., Iohara, K., & Nakashima, M., 2015. Similar in vitro effects and pulp regeneration in ectopic tooth transplantation by basic fibroblast growth factor and granulocyte‐colony stimulating factor. Oral diseases, 21(1), 113-122. Taqi SA, Sami SA, Sami L, Zaki SA. et al., 2018. A review of artifacts in histopathology. J Oral Maxillofac Pathol, 22:279. Tayebi, L., 2020. Applications of Biomedical Engineering in Dentistry; Springer International Publishing: Cham, Switzerland, ISBN 978-3-030-21582-8. Thavarajah R, Mudimbaimannar VK, Elizabeth J, Rao UK, Ranganathan K., 2012. Chemical and physical basics of routine formaldehyde fixation. J Oral Maxillofac Pathol 16: 400-5. Webster, J. D., Miller, M. A., DuSold, D., & Ramos-Vara, J., 2009. Effects of prolonged formalin fixation on diagnostic immunohistochemistry in domestic animals. Journal of Histochemistry & Cytochemistry, 57(8), 753-761. Widbiller M, Driesen RB, Eidt A, et al., 2018. Cell homing for pulp tissue engineering with endogenous dentin matrix proteins. J Endod, 44:956-62.e2. Widbiller, M.; Knüttel, H.; Meschi, N.; Durán-Sindreu Terol, F., 2022. Effectiveness of endodontic tissue engineering in treatment of apical periodontitis: A systematic review. Int. Endod. J. Widbiller M, Rothmaier C, Saliter D, et al., 2021. Histology of human teeth: Standard and specific staining methods revisited. Arch Oral Biol. 127:105-36. Willman, M., 1937. A technique for the preparation of histologic sections through teeth and jaws for teaching and research. J Dent Res 16:183-90. Xuan, K.; Li, B.; Guo, H.; Sun, W.; Kou, X.; He, X.; Zhang, Y.; Sun, J.; Liu, A.; Liao, L.; et al., 2018. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci. Transl. Med. 10, eaaf3227. Yang, R., Tan, L., Cen, L. and Zhang, Z., 2016. An injectable scaffold based on crosslinked hyaluronic acid gel for tissue regeneration. RSC Advances, 6: 16838- 16850. Zhu X, Liu J, Yu Z, Chen CA, Aksel H, Azim AA, Huang GT., 2018. A Miniature Swine Model for Stem Cell-Based De Novo Regeneration of Dental Pulp and Dentin-Like Tissue. Tissue Eng Part C Methods. 24(2):108-120. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94946 | - |
| dc.description.abstract | 玻尿酸(hyaluronic acid, HA)材料因擁有良好生物相容性而廣泛應用於醫學領域,為了增加臨床實用性,雙相型玻尿酸膠體材料(biphasic hyaluronic acid gel, biHAG)結合了交聯型玻尿酸(crosslinked hyaluronic acid gel, cHAG)可提供穩定立體結構,以及非交聯型玻尿酸(non-crosslinked hyaluronic acid, ncHA)可於生物降解後釋放小分子玻尿酸並促進血管新生的特性, 做為牙髓組織再生之支架材料極具潛力。本研究團隊先前使用1,4-丁二醇縮水甘油醚(1,4-butanediol diglycidal ether, BDDE)做為交聯劑,並針對ncHA混合比例、膠體顆粒大小、交聯程度等因素進行各種不同 biHAG材料研發, 並證實命名為L80的材料系統具有良好黏彈性、可注射性與生物相容性,並在生物降解率有最佳的表現。然而進一步進行動物實驗,則因牙根樣本處理問題,導致無法取得可進行組織學分析的樣本,以探討L80在牙髓再生的應用性。因此本研究首要目標是使用完整牙齒與牙髓再生研究常用的牙根片段實驗模型做為樣本,提出在牙根表面製備人工窩洞以增進固定效率的新做法,比較牙根窩洞製備與脫鈣液種類對於樣本組織形態的影響,以建立最佳化的牙齒樣本組織固定和脫鈣處理程序。並將其應用到無菌小鼠皮下植入牙根片段的de novo動物實驗模型之樣本製備處理,以驗證所研發之L80在牙髓組織再生應用之潛力。研究結果發現,無論是完整牙齒組或是牙根片段組,經過牙根進行窩洞製備處理並搭配莫爾氏溶液進行脫鈣,可達成良好組織固定並大幅縮短樣本脫鈣時間,且不影響樣本的組織形態特徵,是適合用於牙齒樣本組織學分析的研究方法。而將L80與人類牙根尖乳突幹細胞(stem cell from apical papilla, SCAP)置入長3 mm牙根片段,並植入無菌小鼠背部皮下培養四週的動物實驗結果顯示,根管內未放置材料與細胞的控制組之根管有大量脂肪組織伴隨疏鬆結締組織的生成,而根管中放入L80的組別,根管空間則由富含血管的纖維結締組織所構成並伴隨少量殘餘材料所遺留的空腔。將L80與SCAP合併置入根管中的L80+SCAP組,可觀察根管內有較為緻密且富含血管的纖維結締組織生成,並伴隨有大量具有較大體積與較大細胞核的細胞散佈,推測可能是由置入的人類SCAP分化而來;同時可見這些細胞沿根管壁排列形成一層特化細胞層排列,疑似為類牙本質母細胞(odontoblast-like cells),具有類牙髓組織(pulp-like tissue)結構。總結而言,L80具有促進血管新生與纖維結締組織生長的效應,同時可阻擋脂肪細胞長入根管;而L80+SCAP可促進根管內纖維結締組織的生成能力,呈現類牙髓組織結構,證實其在誘導牙髓組織再生應用的潛力。 | zh_TW |
| dc.description.abstract | Hyaluronic acid (HA) is widely used in the medical field due to its excellent biocompatibility. The biphasic hyaluronic acid gel (biHAG), containing cross-linked hyaluronic acid gel (cHAG) as the major component for the strength and stability and non-crosslinked HA (ncHA) as additive for releasing small HA fragments to promote angiogenesis, shows great potential as scaffold material for pulp tissue regeneration. Our research team developed biHAGs with various mixing ratio of ncHA, granule sizes and degree of crosslinking using 1,4-butanediol diglycidyl ether (BDDE) as the crosslinking agent. We demonstrated the good viscoelasticity, injectability, and biocompatibility of biHAGs and found the biHAG with low crosslinking, named as L80, presenting favorable biodegradation behavior. However, due to issues with tissue preparation, no viable root samples were available for histological analysis to demonstrate the potential of L80 in pulp regeneration in vivo. Therefore, the primary aim of this study is to develop optimized histological processing protocols for dental tissues. This involved using whole teeth and root segments, prepared with artificial root cavities and treated with various decalcification solutions. Additionally, the potential of L80 for pulp regeneration in vivo was investigated using the de novo root implantation model in SCID mice, following the newly established optimized histological processing protocols. The results demonstrated that cavity preparation on dental roots combined with the use of Morse solution for decalcification achieved effective tissue fixation, significantly reduced decalcification time, and preserved the characteristic morphological features. This preparation protocol is suitable for histological analysis of dental tissue samples. Subsequently, 3 mm thick root fragment containing L80 and stem cells from the apical papilla (SCAP) in the canal were subcutaneous implanted in SCID mice for 4 weeks and the specimens were prepared for histological analysis. Histological observations reveled that the entire canal space in L80 group was filled with fibrous connective tissue containing abundant blood vessels, with some small empty spaces due to residual materials. In contrast, the control group show half of the canal space containing adipose tissue, while the other half exhibited loosely formed connective tissue formation. In L80+SCAP group, dense and vascular-rich fibrous connective tissue, with abundant larger cells with larger nuclei, was observed within the canal. Additionally, pulp-like tissue with a layer of large cells arranged along the root canal wall, suspected to be odontoblast-like cells, was noted. In summary, L80 promotes angiogenesis and fibrous tissue formation within the canal and can prevent adipose tissue infiltration into the canal space. Co-culturing L80 with human SCAP enhanced the formation of pulp-like tissue formation within the canal, highlighting its potential in pulp tissue regeneration applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:49:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-21T16:49:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 i
英文摘要 iii 目次 v 圖次 viii 表次 x 縮寫表 xi 第一章 前言 1 第二章 文獻回顧 3 2.1 牙髓治療臨床應用之瓶頸 3 2.2 組織工程於牙髓-牙本質再生之應用與策略 3 2.3 幹細胞於牙髓再生組織工程之發展與應用 5 2.3.1 齒源性幹細胞 5 2.3.2 培養條件對於幹細胞的影響 6 2.4 選擇支架材料之考量 7 2.4.1 玻尿酸特性與生醫應用 8 2.4.2 玻尿酸材料於牙髓-牙本質再生之應用 9 2.4.3 雙相型玻尿酸膠體(biHAG) 10 2.5 牙髓組織再生研究 11 2.5.1 再生實驗模型之設計與架構 12 2.5.2 實驗樣本設計與選擇 13 2.6 組織學技術於牙髓再生之應用 13 2.6.1 牙髓組織固定 13 2.6.2 牙齒樣本脫鈣 14 第三章 動機與目的 16 第四章 材料與方法 17 4.1 儀器裝置 17 4.2 藥品材料 18 4.3 牙齒與牙根組織樣本製備之研究 19 4.3.1 牙齒樣本蒐集條件與方式 19 4.3.2 樣本分組方式 19 4.3.3 促進固定效率之策略 19 4.3.4 組織固定液選擇與方式 19 4.3.5 樣本脫鈣程序與評估 19 4.3.6 組織切片分析 20 4.4 biHAG誘導牙髓組織再生效應之活體動物實驗 20 4.4.1 無菌小鼠背部皮下植入牙根片段的de novo動物實驗模型概述 20 4.4.2 實驗分組 21 4.4.3 雙相型玻尿酸膠體顆粒(biHAG)製備 21 4.4.4 細胞選擇與培養 21 4.4.5 人類牙根選擇與製備 22 4.4.6 小鼠背部植入人類牙根片段 23 4.4.7 牙根片段檢體製備與組織切片觀察 23 第五章 結果 24 5.1 牙齒組織固定與脫鈣 24 5.1.1 牙髓組織固定效果分析 24 5.1.2 牙根脫鈣結果分析 24 5.2 牙根皮下植入模型 25 5.2.1 小鼠皮下植入手術結果 25 5.2.2 檢體外觀與樣本處理 25 5.2.3 植入樣本之組織學結果分析 25 第六章 討論 27 6.1 牙齒樣本組織處理模型之探討 27 6.1.1 樣本製備對於增進組織固定效率之探討 27 6.1.2 固定時間對於組織固定效果之探討 28 6.1.3 牙根脫鈣時間之探討 28 6.1.4 脫鈣液選擇之探討 29 6.1.5 完整牙齒與牙根片段組織處理之差異 30 6.2 小鼠背部皮下人類牙根片段植入模型之探討 31 6.2.1 牙髓再生動物實驗模型探討 31 6.2.2 雙相型玻尿酸用於牙髓組織生成潛力之探討 32 6.2.3 幹細胞於牙髓組織再生潛力之探討 33 6.2.4 根管內組織生成形態之探討 34 6.2.5 牙根檢體組織製備之探討 35 第七章 結論 37 參考文獻 38 附錄 45 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 脫鈣 | zh_TW |
| dc.subject | 組織固定 | zh_TW |
| dc.subject | 牙根窩洞製備 | zh_TW |
| dc.subject | 組織學技術 | zh_TW |
| dc.subject | 牙根植入 | zh_TW |
| dc.subject | 莫爾氏溶液 | zh_TW |
| dc.subject | 牙髓組織再生 | zh_TW |
| dc.subject | 玻尿酸 | zh_TW |
| dc.subject | de novo animal study | en |
| dc.subject | Morse solution | en |
| dc.subject | cavity preparation on root | en |
| dc.subject | tissue fixation | en |
| dc.subject | histological techniques | en |
| dc.subject | decalcification | en |
| dc.subject | hyaluronic acid | en |
| dc.subject | pulp tissue regeneration | en |
| dc.title | 雙相型玻尿酸膠體於牙髓組織再生之應用:樣本製備與動物實驗之研究 | zh_TW |
| dc.title | Biphasic Hyaluronic Acid Gel in Pulp Tissue Regeneration: Sample Preparation and Animal Study | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林峯輝;王逸平 | zh_TW |
| dc.contributor.oralexamcommittee | Feng-Huei Lin;Yi-Ping Wang | en |
| dc.subject.keyword | 牙髓組織再生,玻尿酸,脫鈣,組織學技術,組織固定,牙根窩洞製備,莫爾氏溶液,牙根植入, | zh_TW |
| dc.subject.keyword | pulp tissue regeneration,hyaluronic acid,decalcification,histological techniques,tissue fixation,cavity preparation on root,Morse solution,de novo animal study, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU202403025 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-02 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床牙醫學研究所 | - |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
