Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94932
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹迺立zh_TW
dc.contributor.advisorNei-Li Chanen
dc.contributor.author林芷吟zh_TW
dc.contributor.authorChih-Yin Linen
dc.date.accessioned2024-08-21T16:44:50Z-
dc.date.available2024-08-22-
dc.date.copyright2024-08-21-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citation1. Herr, C. Q., & Hausinger, R. P. (2018). Amazing Diversity in Biochemical Roles of Fe(II)/2-Oxoglutarate Oxygenases. Trends Biochem Sci, 43(7), 517-532. https://doi.org/10.1016/j.tibs.2018.04.002
2. Martinez, S., & Hausinger, R. P. (2015). Catalytic Mechanisms of Fe(II)- and 2-Oxoglutarate-dependent Oxygenases. J Biol Chem, 290(34), 20702-20711. https://doi.org/10.1074/jbc.R115.648691
3. Ushimaru, R., & Abe, I. (2022). Unusual Dioxygen-Dependent Reactions Catalyzed by Nonheme Iron Enzymes in Natural Product Biosynthesis. ACS Catalysis, 13(2), 1045-1076. https://doi.org/10.1021/acscatal.2c05247
4. Gao, S. S., Naowarojna, N., Cheng, R., Liu, X., & Liu, P. (2018). Recent examples of alpha-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Nat Prod Rep, 35(8), 792-837. https://doi.org/10.1039/c7np00067g
5. Reddy, Y. V., Al Temimi, A. H., White, P. B., & Mecinovic, J. (2017). Evidence That Trimethyllysine Hydroxylase Catalyzes the Formation of (2S,3S)-3-Hydroxy-N(epsilon)-trimethyllysine. Org Lett, 19(2), 400-403. https://doi.org/10.1021/acs.orglett.6b03608
6. McDonough, M. A., Loenarz, C., Chowdhury, R., Clifton, I. J., & Schofield, C. J. (2010). Structural studies on human 2-oxoglutarate dependent oxygenases. Curr Opin Struct Biol, 20(6), 659-672. https://doi.org/10.1016/j.sbi.2010.08.006
7. Hausinger, R. P. (2004). FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol Biol, 39(1), 21-68. https://doi.org/10.1080/10409230490440541
8. Nakayasu, M., Umemoto, N., Ohyama, K., Fujimoto, Y., Lee, H. J., Watanabe, B., Muranaka, T., Saito, K., Sugimoto, Y., & Mizutani, M. (2017). A Dioxygenase Catalyzes Steroid 16alpha-Hydroxylation in Steroidal Glycoalkaloid Biosynthesis. Plant Physiol, 175(1), 120-133. https://doi.org/10.1104/pp.17.00501
9. Huang, X., & Groves, J. T. (2017). Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C-H activation. J Biol Inorg Chem, 22(2-3), 185-207. https://doi.org/10.1007/s00775-016-1414-3
10. Mosammaparast, N., & Shi, Y. (2010). Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem, 79, 155-179. https://doi.org/10.1146/annurev.biochem.78.070907.103946
11. Yi, J., Shen, H. F., Qiu, J. S., Huang, M. F., Zhang, W. J., Ding, J. C., Zhu, X. Y., Zhou, Y., Fu, X. D., & Liu, W. (2017). JMJD6 and U2AF65 co-regulate alternative splicing in both JMJD6 enzymatic activity dependent and independent manner. Nucleic Acids Res, 45(6), 3503-3518. https://doi.org/10.1093/nar/gkw1144
12. Loenarz, C., & Schofield, C. J. (2011). Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Trends Biochem Sci, 36(1), 7-18. https://doi.org/10.1016/j.tibs.2010.07.002
13. Wu, L. F., Meng, S., & Tang, G. L. (2016). Ferrous iron and alpha-ketoglutarate-dependent dioxygenases in the biosynthesis of microbial natural products. Biochim Biophys Acta, 1864(5), 453-470. https://doi.org/10.1016/j.bbapap.2016.01.012
14. Kal, S., & Que, L. (2017). Dioxygen activation by nonheme iron enzymes with the 2-His-1-carboxylate facial triad that generate high-valent oxoiron oxidants. J Biol Inorg Chem, 22(2-3), 339-365. https://doi.org/10.1007/s00775-016-1431-2
15. Islam, M. S., Leissing, T. M., Chowdhury, R., Hopkinson, R. J., & Schofield, C. J. (2018). 2-Oxoglutarate-Dependent Oxygenases. Annu Rev Biochem, 87, 585-620. https://doi.org/10.1146/annurev-biochem-061516-044724
16. Hangasky, J. A., Taabazuing, C. Y., Valliere, M. A., & Knapp, M. J. (2013). Imposing function down a (cupin)-barrel: secondary structure and metal stereochemistry in the alphaKG-dependent oxygenases. Metallomics, 5(4), 287-301. https://doi.org/10.1039/c3mt20153h
17. Lundberg, M., & Borowski, T. (2013). Oxoferryl species in mononuclear non-heme iron enzymes: Biosynthesis, properties and reactivity from a theoretical perspective. Coordination Chemistry Reviews, 257(1), 277-289. https://doi.org/10.1016/j.ccr.2012.03.047
18. Chaturvedi, S. S., Thomas, M. G., Rifayee, S., White, W., Wildey, J., Warner, C., Schofield, C. J., Hu, J., Hausinger, R. P., Karabencheva-Christova, T. G., & Christov, C. Z. (2023). Dioxygen Binding Is Controlled by the Protein Environment in Non-heme Fe(II) and 2-Oxoglutarate Oxygenases: A Study on Histone Demethylase PHF8 and an Ethylene-Forming Enzyme. Chemistry, 29(24), e202300138. https://doi.org/10.1002/chem.202300138
19. Davis, K. M., Altmyer, M., Martinie, R. J., Schaperdoth, I., Krebs, C., Bollinger, J. M., Jr., & Boal, A. K. (2019). Structure of a Ferryl Mimic in the Archetypal Iron(II)- and 2-(Oxo)-glutarate-Dependent Dioxygenase, TauD. Biochemistry, 58(41), 4218-4223. https://doi.org/10.1021/acs.biochem.9b00598
20. Mitchell, A. J., Dunham, N. P., Martinie, R. J., Bergman, J. A., Pollock, C. J., Hu, K., Allen, B. D., Chang, W. C., Silakov, A., Bollinger, J. M., Jr., Krebs, C., & Boal, A. K. (2017). Visualizing the Reaction Cycle in an Iron(II)- and 2-(Oxo)-glutarate-Dependent Hydroxylase. J Am Chem Soc, 139(39), 13830-13836. https://doi.org/10.1021/jacs.7b07374
21. Waheed, S. O., Ramanan, R., Chaturvedi, S. S., Lehnert, N., Schofield, C. J., Christov, C. Z., & Karabencheva-Christova, T. G. (2020). Role of Structural Dynamics in Selectivity and Mechanism of Non-heme Fe(II) and 2-Oxoglutarate-Dependent Oxygenases Involved in DNA Repair. ACS Cent Sci, 6(5), 795-814. https://doi.org/10.1021/acscentsci.0c00312
22. Mitchell, A. J., Zhu, Q., Maggiolo, A. O., Ananth, N. R., Hillwig, M. L., Liu, X., & Boal, A. K. (2016). Structural basis for halogenation by iron- and 2-oxo-glutarate-dependent enzyme WelO5. Nat Chem Biol, 12(8), 636-640. https://doi.org/10.1038/nchembio.2112
23. Salo, A. M., & Myllyharju, J. (2021). Prolyl and lysyl hydroxylases in collagen synthesis. Exp Dermatol, 30(1), 38-49. https://doi.org/10.1111/exd.14197
24. Rappu, P., Salo, A. M., Myllyharju, J., & Heino, J. (2019). Role of prolyl hydroxylation in the molecular interactions of collagens. Essays Biochem, 63(3), 325-335. https://doi.org/10.1042/EBC20180053
25. Kivirikko, K. I., & Pihlajaniemi, T. (1998). Collagen hydroxylases and the protein disulfide isomerase subunit of prolyl 4-hydroxylases. Adv Enzymol Relat Areas Mol Biol, 72, 325-398. https://doi.org/10.1002/9780470123188.ch9
26. Mira Pekkala, R. H., Petri Kursula, Kari I. Kivirikko, Rik K. Wiereng and Johanna Myllyharju. (2003). Crystallization of the proline-rich-peptide binding domain of human type I collagen prolyl 4-hydroxylase.
27. Grzyska, P. K., Appelman, E. H., Hausinger, R. P., & Proshlyakov, D. A. (2010). Insight into the mechanism of an iron dioxygenase by resolution of steps following the FeIV=HO species. Proc Natl Acad Sci U S A, 107(9), 3982-3987. https://doi.org/10.1073/pnas.0911565107
28. Ushimaru, R. (2024). Three-membered ring formation catalyzed by alpha-ketoglutarate-dependent nonheme iron enzymes. J Nat Med, 78(1), 21-32. https://doi.org/10.1007/s11418-023-01760-4
29. Cai, X., Teta, R., Kohlhaas, C., Crusemann, M., Ueoka, R., Mangoni, A., Freeman, M. F., & Piel, J. (2013). Manipulation of regulatory genes reveals complexity and fidelity in hormaomycin biosynthesis. Chem Biol, 20(6), 839-846. https://doi.org/10.1016/j.chembiol.2013.04.018
30. Hofer, I., Crusemann, M., Radzom, M., Geers, B., Flachshaar, D., Cai, X., Zeeck, A., & Piel, J. (2011). Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite. Chem Biol, 18(3), 381-391. https://doi.org/10.1016/j.chembiol.2010.12.018
31. Rössner, E., Zeeck, A., & König, W. A. (2003). Elucidation of the Structure of Hormaomycin. Angewandte Chemie International Edition in English, 29(1), 64-65. https://doi.org/10.1002/anie.199000641
32. Zlatopolskiy, B. D., & de Meijere, A. (2004). First total synthesis of hormaomycin, a naturally occurring depsipeptide with interesting biological activities. Chemistry, 10(19), 4718-4727. https://doi.org/10.1002/chem.200400249
33. Zlatopolskiy, B. D., Loscha, K., Alvermann, P., Kozhushkov, S. I., Nikolaev, S. V., Zeeck, A., & de Meijere, A. (2004). Final elucidation of the absolute configuration of the signal metabolite hormaomycin. Chemistry, 10(19), 4708-4717. https://doi.org/10.1002/chem.200400406
34. Brandl, M., Kozhushkov, Sergei I., Zlatopolskiy, Boris D., Alvermann, P., Geers, B., Zeeck, A., & de Meijere, A. (2004). The Biosynthesis of 3‐(trans‐2‐Nitrocyclopropyl)alanine, a Constituent of the Signal Metabolite Hormaomycin. European Journal of Organic Chemistry, 2005(1), 123-135. https://doi.org/10.1002/ejoc.200400493
35. Kozhushkov, S. I., Zlatopolskiy, B. D., Brandl, M., Alvermann, P., Radzom, M., Geers, B., de Meijere, A., & Zeeck, A. (2005). Hormaomycin Analogues by Precursor‐Directed Biosynthesis – Synthesis of and Feeding Experiments with Amino Acids Related to the Unique 3‐(trans‐2‐Nitrocyclopropyl)alanine Constituent. European Journal of Organic Chemistry, 2005(5), 854-863. https://doi.org/10.1002/ejoc.200400608
36. Li, X., Shimaya, R., Dairi, T., Chang, W. C., & Ogasawara, Y. (2022). Identification of Cyclopropane Formation in the Biosyntheses of Hormaomycins and Belactosins: Sequential Nitration and Cyclopropanation by Metalloenzymes. Angew Chem Int Ed Engl, 61(7), e202113189. https://doi.org/10.1002/anie.202113189
37. Shimo, S., Ushimaru, R., Engelbrecht, A., Harada, M., Miyamoto, K., Kulik, A., Uchiyama, M., Kaysser, L., & Abe, I. (2021). Stereodivergent Nitrocyclopropane Formation during Biosynthesis of Belactosins and Hormaomycins. J Am Chem Soc, 143(44), 18413-18418. https://doi.org/10.1021/jacs.1c10201
38. Ushimaru, R., Cha, L., Shimo, S., Li, X., Paris, J. C., Mori, T., Miyamoto, K., Coffer, L., Uchiyama, M., Guo, Y., Chang, W. C., & Abe, I. (2023). Mechanistic Analysis of Stereodivergent Nitroalkane Cyclopropanation Catalyzed by Nonheme Iron Enzymes. J Am Chem Soc, 145(44), 24210-24217. https://doi.org/10.1021/jacs.3c08413
39. Martinez Molina, D., Jafari, R., Ignatushchenko, M., Seki, T., Larsson, E. A., Dan, C., Sreekumar, L., Cao, Y., & Nordlund, P. (2013). Monitoring Drug Target Engagement in Cells and Tissues Using the Cellular Thermal Shift Assay. Science (New York, N.Y.), 341(6141), 84–87. https://doi.org/https://doi.org/10.1126/science.1233606
40. Delport, A., & Hewer, R. (2022). A superior loading control for the cellular thermal shift assay. Sci Rep, 12(1), 6672. https://doi.org/10.1038/s41598-022-10653-7
41. Xu, Q., Grant, J., Chiu, H. J., Farr, C. L., Jaroszewski, L., Knuth, M. W., Miller, M. D., Lesley, S. A., Godzik, A., Elsliger, M. A., Deacon, A. M., & Wilson, I. A. (2014). Crystal structure of a member of a novel family of dioxygenases (PF10014) reveals a conserved cupin fold and active site. Proteins, 82(1), 164-170. https://doi.org/10.1002/prot.24362
42. Hibi, M., Kawashima, T., Kodera, T., Smirnov, S. V., Sokolov, P. M., Sugiyama, M., Shimizu, S., Yokozeki, K., & Ogawa, J. (2011). Characterization of Bacillus thuringiensis L-isoleucine dioxygenase for production of useful amino acids. Appl Environ Microbiol, 77(19), 6926-6930. https://doi.org/10.1128/AEM.05035-11
43. Wu, L., An, J., Jing, X., Chen, C.-C., Dai, L., Xu, Y., Liu, W., Guo, R.-T., & Nie, Y. (2022). Molecular Insights into the Regioselectivity of the Fe(II)/2-Ketoglutarate-Dependent Dioxygenase-Catalyzed C–H Hydroxylation of Amino Acids. ACS Catalysis, 12(19), 11586-11596. https://doi.org/10.1021/acscatal.2c03106
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94932-
dc.description.abstract亞鐵離子/α-酮戊二酸依賴型酵素(Fe(II)/α-ketoglutarate-dependent enzymes; Fe/αKG enzymes)利用二價鐵作為輔因子,α-酮戊二酸作為輔受質,氧分子作為氧化劑來催化多種氧化反應。本型酵素家族的成員在結構上有一個共同的特徵:由雙層β-螺旋結構域(double-stranded β-helix fold)支撐其活性中心,並以2-His-1-carboxylate triad結合二價鐵作為其反應中心,利用α-酮戊二酸之氧化脱羧作用後產生的高反應性四價鐵超氧中間物(Fe(IV)-oxo intermediate)來推動各種化學反應。在本型酵素家族成員所能催化的反應中,對於環丙烷化反應(Cyclopropanation)在機制上的理解仍有待釐清之處。環丙烷是由高張力的三碳環構成,因其結構較不穩定而具有高反應性,也因此不易由化學方法合成。同屬亞鐵離子/α-酮戊二酸依賴型酵素的HrmJ與BelL分別在天然抗生素hormaomycins與belactosins的生合成中催化環丙烷化,以形成(1′R, 2′R)與(1′S, 2′S)構型的3-(2-nitrocyclopropyl)alanine (Ncpa)。雖然近年來的研究提出了BelL與HrmJ催化環丙烷化的反應機制,然而目前HrmJ與BelL都還欠缺受質與輔受質結合的結構資訊,因此尚無法了解詳細的催化機制。先前的研究透過對HrmJ、BelL及其同源蛋白的活性中心胺基酸位點進行點突變,發現了一些會影響反應之立體選擇性的位點,但這些酵素如何控制立體選擇性仍有許多未解之謎。因此,本研究的目標是希望能夠解出ScBelL與HrmJAw兩種酵素在反應不同階段的晶體結構。ScBelL為BelL的同源蛋白,具有催化6-nitronorleucine環丙烷化的功能,並選擇性的生成(1’R, 2’S)- Ncpa;HrmJAw則是HrmJ的同源蛋白,負責催化羥基化反應。我們成功的以液相層析法純化這兩種酵素,並嘗試獲得ScBelL和HrmJAw蛋白在apo形式以及包含不同組合的輔因子、輔受質和受質的晶體。然而,將ScBelL或HrmJAw加入Fe(II)和α-酮戊二酸、羥基草酸乙二胺或琥珀酸均導致嚴重沉澱。根據蛋白質熱位移分析,ScBelL與HrmJAw在同時結合Fe(II)和αKG 時,蛋白質的穩定度會降低。藉由調整緩衝液的成分,我們解決了ScBelL與HrmJAw在加入二價鐵與α-酮戊二酸等配體時嚴重沉澱的問題。目前,我們已經對apo ScBelL、apo HrmJAw以及與Fe(II)結合的HrmJAw進行多種蛋白質結晶條件篩選,並且持續地找尋合適的養晶條件。在HrmJAw的純化過程中,我們發現此蛋白會發生14個胺基酸斷裂,而此現象可能影響蛋白樣品的均質性,因此我們重新設計表達質體來表現HrmJAwΔ14,希望能藉由較穩定的蛋白來得到晶體,在對其進行蛋白質結晶條件篩選時,我們觀察到HrmJAwΔ14穩定性甚佳、不易發生沉澱現象,表示HrmJAwΔ14可能更適用於晶體培養。未來將嘗試找出適合HrmJAwΔ14的最佳緩衝液條件以提升蛋白質結晶條件篩選的成功率。zh_TW
dc.description.abstractFe(II)/α-ketoglutarate (αKG)-dependent enzymes use ferrous ion as a cofactor, αKG as a co-substrate, and dioxygen as an oxidant to catalyze various oxidative reactions. All members of this enzyme superfamily share a conserved structural feature: an iron-coordinating 2-His-1-carboxylate triad within a double-stranded β-helix (DSBH) fold, which harbors the active site. These enzymes utilize the high reactivity of the Fe(IV)-oxo intermediate, produced by oxidative decarboxylation of αKG, to drive different chemical transformations. Cyclopropanation is a notable reaction catalyzed by these enzymes, as the highly strained three-membered carbon ring is inherently unstable, highly reactive, and difficult to synthesize chemically. Two Fe(II)/αKG-dependent enzymes, HrmJ and BelL, are known to catalyze cyclopropanation in the biosynthesis of natural antibiotics hormaomycins and belactosins, which contain 3-(2-nitrocyclopropyl)alanine (Ncpa) with (1′R, 2′R) and (1′S, 2′S) configurations. Recent studies propose possible mechanism of BelL- and HrmJ-catalyzed cyclopropanation. However, no structural information is available for HrmJ and BelL in complexes with cofactor(s) and/or substrate to elucidate the detailed catalytic mechanism. Although point mutations of active site residues in HrmJ, BelL, and BelL homologues have led to the identification of certain residues affecting stereoconfiguration of their products, how these residues control the stereoselectivity remains largely unknown. Therefore, the aim of my thesis research is to reveal the structures of ScBelL and HrmJAw in different states of their catalytic cycles. ScBelL is a homologous protein of BelL, which catalyzes 6-nitronorleucine cyclopropanation and selectively produces (1’R, 2’S)-Ncpa, while HrmJAw is a homologous protein to HrmJ, which catalyzes the hydroxylation of 6-nitronorleucine. We successfully purified these two enzymes using liquid chromatography and then attempted to obtain ScBelL and HrmJAw protein crystals in their apo forms and in different combinations of cofactor, cosubstrate, substrate, product, or their analogs. However, incubating ScBelL or HrmJAw with Fe(II) plus αKG, noxalylglycine (NOG), or succinate resulted in severe precipitation. According to the thermal shift assay (TSA), ScBelL and HrmJAw are less stable when complexed with Fe(II) and αKG. Therefore, we adjusted the buffer composition to address this issue. Currently, we have performed protein crystallization on apo ScBelL, apo HrmJAw, and HrmJAw in complex with Fe(II), and we are continuing to search for suitable crystallization conditions. During the purification of HrmJAw, it was found that the recombinant protein tends to be cleaved at the fourteenth amino acid residue. To ensure sample homogeneity, we removed this protease-sensitive N-terminal fragment by designing a construct expressing HrmJAwΔ14, hoping to obtain crystals from this potentially more stable protein. During the initial screening of protein crystallization conditions, we observed that HrmJAwΔ14 tends to remain soluble even in the presence of precipitants, indicating that it may have higher solubility and stability, suitable for growing crystal crystals. In the future, we will identify suitable buffer conditions for HrmJAwΔ14 to facilitate protein crystallization.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:44:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-21T16:44:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
Abstract V
Contents VIII
List of Figures XI
List of Tables XIV
Abbreviations XV
1. Introduction 1
1.1 Fe(II) and α-ketoglutarate-dependent enzymes 2
1.2 Hydroxylation reactions catalyzed by Fe(II) and αKG enzymes 4
1.3 Cyclopropanation reactions catalyzed by HrmJ and BelL 5
1.4 Specific aim of this thesis 8
2. Materials and methods 10
2.1 Plasmid construction for protein expression 11
2.2 Protein Expression 12
2.2.1 Induction test for protein expression 12
2.2.2 Small-scale expression 12
2.2.3 Large-scale expression 13
2.2.4 Small-scale and large-scale expression test 13
2.3 Protein Purification 15
2.3.1 Immobilized metal affinity chromatography, IMAC 15
2.3.2 Dialysis 15
2.3.3 Anion-exchange chromatography 16
2.3.4 Size-exclusion chromatography 17
2.4 Time Course of Thrombin Cleavage of His-tagged Proteins 17
2.5 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 18
2.6 Crystallization Screening 19
2.6.1 Pre-Crystallization Test 19
2.6.2 Sample preparation 20
2.6.3 Protein crystallization screening 21
2.7 Thermal shift assay 22
2.7.1 SDS-PAGE-based analysis of the thermal shift assay 22
2.7.2 Fluorescence -based thermal shift assay 23
2.8 Succinate-Glo™ JmjC Demethylase/Hydroxylase Assay 24
3. Result 26
3.1 Protein expression of ScBelL and HrmJAw 27
3.2 Protein purification of ScBelL and HrmJAw 27
3.2.1 Protein purification of ScBelL 27
3.2.2 Protein purification of HrmJAw 29
3.2.3 Protein purification of HrmJAwΔ14 30
3.3 Protein crystallization 31
3.4 Thermal shift assay 33
4. Discussion 35
5. Figures 38
6. Tables 99
7. References 118
-
dc.language.isoen-
dc.title以結構生物觀點分析亞鐵離子與α-酮戊二酸依賴性酵素催化環丙烷化和羥基化的機制zh_TW
dc.titleStructural analysis of Fe(II) and α-ketoglutarate-dependent enzymes catalyzing cyclopropanation and hydroxylation of L-6-nitronorleucineen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee徐駿森;曾秀如zh_TW
dc.contributor.oralexamcommitteeChun-Hua Hsu;Shiou-Ru Tzengen
dc.subject.keyword亞鐵離子/α-酮戊二酸依賴型酵素,環丙烷化反應,立體選擇性,zh_TW
dc.subject.keywordFe(II)/α-ketoglutarate (αKG)-dependent enzyme,cyclopropanation,stereoselectivity,en
dc.relation.page123-
dc.identifier.doi10.6342/NTU202403050-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-06-
dc.contributor.author-college醫學院-
dc.contributor.author-dept生物化學暨分子生物學研究所-
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.88 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved