請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94924完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林靖愉 | zh_TW |
| dc.contributor.advisor | Ching-Yu Lin | en |
| dc.contributor.author | 趙彥柔 | zh_TW |
| dc.contributor.author | Yen-Jou Chao | en |
| dc.date.accessioned | 2024-08-21T16:37:16Z | - |
| dc.date.available | 2024-08-22 | - |
| dc.date.copyright | 2024-08-21 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2024-08-05 | - |
| dc.identifier.citation | Abdullah Soheimi, S. S., Abdul Rahman, A., Abd Latip, N., Ibrahim, E., & Sheikh Abdul Kadir, S. H. (2021). Understanding the impact of perfluorinated compounds on cardiovascular diseases and their risk factors: a meta-analysis study. International journal of environmental research and public health, 18(16), 8345. https://doi.org/10.3390/ijerph18168345
Adinehzadeh, M., & Reo, N. V. (1998). Effects of peroxisome proliferators on rat liver phospholipids: sphingomyelin degradation may be involved in hepatotoxic mechanism of perfluorodecanoic acid. Chemical research in toxicology, 11(5), 428-440. https://doi.org/10.1021/tx970155t Adinehzadeh, M., Reo, N. V., Jarnot, B. M., Taylor, C. A., & Mattie, D. R. (1999). Dose–response hepatotoxicity of the peroxisome proliferator, perfluorodecanoic acid and the relationship to phospholipid metabolism in rats. Toxicology, 134(2-3), 179-195. https://doi.org/10.1016/s0300-483x(99)00038-4 Afonso, M. S., Machado, R. M., Lavrador, M. S., Quintao, E. C. R., Moore, K. J., & Lottenberg, A. M. (2018). Molecular pathways underlying cholesterol homeostasis. Nutrients, 10(6). https://doi.org/10.3390/nu10060760 Alexandri, E., Ahmed, R., Siddiqui, H., Choudhary, M. I., Tsiafoulis, C. G., & Gerothanassis, I. P. (2017). High resolution NMR spectroscopy as a structural and analytical tool for unsaturated lipids in solution. Molecules, 22(10), 1663. https://doi.org/10.3390/molecules22101663 Amstutz, V., Cengo, A., Gehres, F., Sijm, D., & Vrolijk, M. (2022). Investigating the cytotoxicity of per-and polyfluoroalkyl substances in HepG2 cells: A structure-activity relationship approach. Toxicology, 480, 153312. https://doi.org/10.1016/j.tox.2022.153312 Ansaldo, A. M., Montecucco, F., Sahebkar, A., Dallegri, F., & Carbone, F. (2019). Epicardial adipose tissue and cardiovascular diseases. International Journal of Cardiology, 278, 254-260. https://doi.org/10.1016/j.ijcard.2018.09.089 Averina, M., Brox, J., Huber, S., & Furberg, A. S. (2021). Exposure to perfluoroalkyl substances (PFAS) and dyslipidemia, hypertension and obesity in adolescents. The Fit Futures study. Environmental Research, 195, 110740. https://doi.org/10.1016/j.envres.2021.110740 Bao, J., Lee, Y. L., Chen, P.-C., Jin, Y.-H., & Dong, G.-H. (2014). Perfluoroalkyl acids in blood serum samples from children in Taiwan. Environmental science and pollution research, 21, 7650-7655. https://doi.org/10.1007/s11356-014-2594-4 Barchuk, M., Dutour, A., Ancel, P., Svilar, L., Miksztowicz, V., Lopez, G., Rubio, M., Schreier, L., Nogueira, J. P., Valéro, R., Béliard, S., Martin, J. C., Berg, G., & Gaborit, B. (2020). Untargeted lipidomics reveals a specific enrichment in plasmalogens in epicardial adipose tissue and a specific signature in coronary artery disease. Arteriosclerosis, thrombosis, and vascular biology, 40(4), 986-1000. https://doi.org/10.1161/atvbaha.120.313955 Bartolomé, M., Gallego-Picó, A., Cutanda, F., Huetos, O., Esteban, M., Pérez-Gómez, B., & Castaño, A. (2017). Perfluorinated alkyl substances in Spanish adults: geographical distribution and determinants of exposure. Science of the Total Environment, 603, 352-360. https://doi.org/10.1016/j.scitotenv.2017.06.031 Beckonert, O., Keun, H. C., Ebbels, T. M., Bundy, J., Holmes, E., Lindon, J. C., & Nicholson, J. K. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature protocols, 2(11), 2692. https://doi.org/10.1038/nprot.2007.376 Bjorke-Monsen, A.-L., Varsi, K., Averina, M., Brox, J., & Huber, S. (2020). Perfluoroalkyl substances (PFASs) and mercury in never-pregnant women of fertile age: association with fish consumption and unfavorable lipid profile. BMJ Nutrition, Prevention & Health, bmjnph-2020-000131. https://doi.org/10.1136/bmjnph-2020-000131 Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099 Boguszewicz, Ł., Bieleń, A., Mrochem-Kwarciak, J., Skorupa, A., Ciszek, M., Heyda, A., Wygoda, A., Kotylak, A., Składowski, K., & Sokół, M. (2019). NMR-based metabolomics in real-time monitoring of treatment induced toxicity and cachexia in head and neck cancer: A method for early detection of high risk patients. Metabolomics, 15, 1-16. https://doi.org/10.1007/s11306-019-1576-4 Boujrad, N., Vidic, B., Gazouli, M., Culty, M., & Papadopoulos, V. (2000). The peroxisome proliferator perfluorodecanoic acid inhibits the peripheral-type benzodiazepine receptor (PBR) expression and hormone-stimulated mitochondrial cholesterol transport and steroid formation in Leydig cells. Endocrinology, 141(9), 3137-3148. https://doi.org/10.1210/endo.141.9.7678 Brennan, L. (2014). NMR-based metabolomics: From sample preparation to applications in nutrition research. Progress in Nuclear Magnetic Resonance Spectroscopy, 83, 42-49. https://doi.org/10.1016/j.pnmrs.2014.09.001 Calafat, A. M., Kato, K., Hubbard, K., Jia, T., Botelho, J. C., & Wong, L.-Y. (2019). Legacy and alternative per-and polyfluoroalkyl substances in the US general population: Paired serum-urine data from the 2013–2014 National Health and Nutrition Examination Survey. Environment international, 131, 105048. https://doi.org/10.1016/j.envint.2019.105048 Cerqueira, N., Diogo, S.-M., Cátia, M., & Fernandes, P. (2016). Cholesterol biosynthesis: A mechanistic overview. Biochemistry, 55(39), 5483–5506. https://doi.org/10.1021/acs.biochem.6b00342 Chen, H., Wang, Z., Qin, M., Zhang, B., Lin, L., Ma, Q., Liu, C., Chen, X., Li, H., Lai, W., & Zhong, S. (2021). Comprehensive metabolomics identified the prominent role of glycerophospholipid metabolism in coronary artery disease progression. Frontiers in molecular biosciences, 8, 632950. https://doi.org/10.3389/fmolb.2021.632950 Chen, L., Liu, Y., Mu, H., Li, H., Liu, S., Zhu, M., Bu, Y., & Wu, B. (2022). Effects of perfluorobutane sulfonate and perfluorooctane sulfonate on lipid homeostasis in mouse liver. Environmental Pollution, 315, 120403. https://doi.org/10.1016/j.envpol.2022.120403 Chen, Y., Ma, Z., Shen, X., Li, L., Zhong, J., Min, L. S., Xu, L., Li, H., Zhang, J., & Dai, L. (2018). Serum lipidomics profiling to identify biomarkers for non-small cell lung cancer. BioMed research international, 2018. https://doi.org/10.1155/2018/5276240 Cheng, J., Lv, S., Nie, S., Liu, J., Tong, S., Kang, N., Xiao, Y., Dong, Q., Huang, C., & Yang, D. (2016). Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish. Aquatic toxicology, 176, 45-52. https://doi.org/10.1016/j.aquatox.2016.04.013 Choudhary, R. C., Kuschner, C. E., Kazmi, J., McDevitt, L., Espin, B. B., Essaihi, M., Nishikimi, M., Becker, L. B., & Kim, J. (2024). The role of phospholipid alterations in mitochondrial and brain dysfunction after cardiac arrest. International Journal of Molecular Sciences, 25(9). https://doi.org/10.3390/ijms25094645 Coen, M., Lenz, E. M., Nicholson, J. K., Wilson, I. D., Pognan, F., & Lindon, J. C. (2003). An integrated metabonomic investigation of acetaminophen toxicity in the mouse using NMR spectroscopy. Chemical research in toxicology, 16(3), 295-303. https://doi.org/10.1021/tx0256127 Control, C. f. D., & Prevention. (2017). Per-and polyfluorinated substances (PFAS) factsheet. Chemical Facsheets. Costello, E., Rock, S., Stratakis, N., Eckel, S. P., Walker, D. I., Valvi, D., Cserbik, D., Jenkins, T., Xanthakos, S. A., Kohli, R., Sisley, S., Vasiliou, V., Merrill, M. A. L., Rosen, H., Conti, D. V., McConnell, R., & Chatzi, L. (2022). Exposure to per- and Polyfluoroalkyl Substances and Markers of Liver Injury: A Systematic Review and Meta-Analysis. Environmental health perspectives, 130(4), 046001. https://doi.org/doi:10.1289/EHP10092 Das, K. P., Wood, C. R., Lin, M. T., Starkov, A. A., Lau, C., Wallace, K. B., Corton, J. C., & Abbott, B. D. (2017). Perfluoroalkyl acids-induced liver steatosis: Effects on genes controlling lipid homeostasis. Toxicology, 378, 37-52. https://doi.org/10.1016/j.tox.2016.12.007 David, N., Antignac, J.-P., Roux, M., Marchand, P., Michalak, S., Oberti, F., Fouchard, I., Lannes, A., Blanchet, O., & Cales, P. (2023). Associations between perfluoroalkyl substances and the severity of non-alcoholic fatty liver disease. Environment international, 180, 108235. https://doi.org/10.1016/j.envint.2023.108235 Davis, J. W., Vanden Heuvel, J. P., & Peterson, R. E. (1991). Effects of perfluorodecanoic acid on de novo fatty acid and cholesterol synthesis in the rat. Lipids, 26(10), 857-859. https://doi.org/10.1007/BF02536170 De Carvalho, C. C., & Caramujo, M. J. (2018). The various roles of fatty acids. Molecules, 23(10), 2583. https://doi.org/10.3390/molecules23102583 DeLuca, N. M., Angrish, M., Wilkins, A., Thayer, K., & Hubal, E. A. C. (2021). Human exposure pathways to poly-and perfluoroalkyl substances (PFAS) from indoor media: A systematic review protocol. Environment international, 146, 106308. https://doi.org/10.1016/j.envint.2020.106308 Domanski, M. J., Tian, X., Wu, C. O., Reis, J. P., Dey, A. K., Gu, Y., Zhao, L., Bae, S., Liu, K., & Hasan, A. A. (2020). Time course of LDL cholesterol exposure and cardiovascular disease event risk. Journal of the American College of Cardiology, 76(13), 1507-1516. https://doi.org/10.1016/j.jacc.2020.07.059 Donato, P., Cacciola, F., Beccaria, M., Dugo, P., & Mondello, L. (2015). Lipidomics. In Comprehensive Analytical Chemistry (Vol. 68, pp. 395-439). Elsevier. https://doi.org/10.1016/B978-0-444-63340-8.00008-X Dunder, L., Lind, P. M., Salihovic, S., Stubleski, J., Kärrman, A., & Lind, L. (2022). Changes in plasma levels of per- and polyfluoroalkyl substances (PFAS) are associated with changes in plasma lipids - A longitudinal study over 10 years. Environmental Research, 211, 112903. https://doi.org/10.1016/j.envres.2022.112903 Emwas, A.-H., Roy, R., McKay, R. T., Tenori, L., Saccenti, E., Gowda, G. N., Raftery, D., Alahmari, F., Jaremko, L., & Jaremko, M. (2019). NMR spectroscopy for metabolomics research. Metabolites, 9(7), 123. https://doi.org/10.3390/metabo9070123 Evich, M. G., Davis, M. J., McCord, J. P., Acrey, B., Awkerman, J. A., Knappe, D. R., Lindstrom, A. B., Speth, T. F., Tebes-Stevens, C., & Strynar, M. J. (2022). Per-and polyfluoroalkyl substances in the environment. Science, 375(6580), eabg9065. https://doi.org/10.1126/science.abg9065 Fahy, E., Cotter, D., Sud, M., & Subramaniam, S. (2011). Lipid classification, structures and tools. Biochimica et Biophysica Acta (BBA) - General Subjects, 1811(11), 637-647. https://doi.org/10.1016/j.bbalip.2011.06.009 Fenton, S. E., Ducatman, A., Boobis, A., DeWitt, J. C., Lau, C., Ng, C., Smith, J. S., & Roberts, S. M. (2021). Per‐and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environmental toxicology and chemistry, 40(3), 606-630. https://doi.org/10.1002/etc.4890 Fragki, S., Dirven, H., Fletcher, T., Grasl-Kraupp, B., Bjerve Gützkow, K., Hoogenboom, R., Kersten, S., Lindeman, B., Louisse, J., Peijnenburg, A., Piersma, A. H., Princen, H. M. G., Uhl, M., Westerhout, J., Zeilmaker, M. J., & Luijten, M. (2021). Systemic PFOS and PFOA exposure and disturbed lipid homeostasis in humans: what do we know and what not? Critical Reviews in Toxicology, 51(2), 141-164. https://doi.org/10.1080/10408444.2021.1888073 Frawley, R. P., Smith, M., Cesta, M. F., Hayes-Bouknight, S., Blystone, C., Kissling, G. E., Harris, S., & Germolec, D. (2018). Immunotoxic and hepatotoxic effects of perfluoro-n-decanoic acid (PFDA) on female Harlan Sprague–Dawley rats and B6C3F1/N mice when administered by oral gavage for 28 days. Journal of Immunotoxicology, 15(1), 41-52. https://doi.org/10.1080/1547691X.2018.1445145 Gaballah, S., Swank, A., Sobus, J. R., Howey, X. M., Schmid, J., Catron, T., McCord, J., Hines, E., Strynar, M., & Tal, T. (2020). Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to GenX and other PFAS. Environmental health perspectives, 128(4), 047005. https://doi.org/10.1289/EHP5843 Gao, B., Tu, P., Chi, L., Shen, W., & Gao, N. (2022). Perfluorooctanoic acid-disturbed serum and liver lipidome in C57BL/6 mice. Chemical research in toxicology, 35(12), 2252-2259. https://doi.org/10.1021/acs.chemrestox.2c00239 Göckener, B., Weber, T., Rüdel, H., Bücking, M., & Kolossa-Gehring, M. (2020). Human biomonitoring of per-and polyfluoroalkyl substances in German blood plasma samples from 1982 to 2019. Environment international, 145, 106123. https://doi.org/10.1016/j.envint.2020.106123 Gomez-Larrauri, A., Presa, N., Dominguez-Herrera, A., Ouro, A., Trueba, M., & Gomez-Muñoz, A. (2020). Role of bioactive sphingolipids in physiology and pathology. Essays in biochemistry, 64(3), 579-589. https://doi.org/10.1042/EBC20190091 Goodrich, J. A., Walker, D. I., He, J., Lin, X., Baumert, B. O., Hu, X., Alderete, T. L., Chen, Z., Valvi, D., & Fuentes, Z. C. (2023). Metabolic signatures of youth exposure to mixtures of per-and polyfluoroalkyl substances: a multi-cohort study. Environmental health perspectives, 131(2), 027005. https://doi.org/10.1289/EHP11372 Gorrochategui, E., Pérez-Albaladejo, E., Casas, J., Lacorte, S., & Porte, C. (2014). Perfluorinated chemicals: differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells. Toxicology and applied pharmacology, 277(2), 124-130. https://doi.org/10.1016/j.taap.2014.03.012 Guo, P., Furnary, T., Vasiliou, V., Yan, Q., Nyhan, K., Jones, D. P., Johnson, C. H., & Liew, Z. (2022). Non-targeted metabolomics and associations with per-and polyfluoroalkyl substances (PFAS) exposure in humans: A scoping review. Environment international, 162, 107159. https://doi.org/10.1016/j.envint.2022.107159 Guo, S., Wang, Y., Zhou, D., & Li, Z. (2014). Significantly increased monounsaturated lipids relative to polyunsaturated lipids in six types of cancer microenvironment are observed by mass spectrometry imaging. Scientific reports, 4(1), 5959. https://doi.org/10.1038/srep05959 Han, R., Hu, M., Zhong, Q., Wan, C., Liu, L., Li, F., Zhang, F., & Ding, W. (2018). Perfluorooctane sulphonate induces oxidative hepatic damage via mitochondria-dependent and NF-κB/TNF-α-mediated pathway. Chemosphere, 191, 1056-1064. https://doi.org/10.1016/j.chemosphere.2017.08.070 Han, X. (2016). Lipidomics for studying metabolism. Nature Reviews Endocrinology, 12(11), 668-679. https://doi.org/10.1038/nrendo.2016.98 Han, X., Abendschein, D. R., Kelley, J. G., & Gross, R. W. (2000). Diabetes-induced changes in specific lipid molecular species in rat myocardium. Biochemical Journal, 352 Pt 1(Pt 1), 79-89. https://doi.org/10.1042/0264-6021:3520079 Holčapek, M., Liebisch, G., & Ekroos, K. (2018). Lipidomic analysis. Analytical Chemistry, 90(7), 4249-4257. https://doi.org/10.1021/acs.analchem.7b05395 Hong, J. H., Lee, W. C., Hsu, Y. M., Liang, H. J., Wan, C. H., Chien, C. L., & Lin, C. Y. (2014). Characterization of the biochemical effects of naphthalene on the mouse respiratory system using NMR‐based metabolomics. Journal of Applied Toxicology, 34(12), 1379-1388. https://doi.org/10.1002/jat.2970 Hoover, G., Kar, S., Guffey, S., Leszczynski, J., & Sepúlveda, M. S. (2019). In vitro and in silico modeling of perfluoroalkyl substances mixture toxicity in an amphibian fibroblast cell line. Chemosphere, 233, 25-33. https://doi.org/10.1016/j.chemosphere.2019.05.065 Hu, W., Jones, P. D., DeCoen, W., King, L., Fraker, P., Newsted, J., & Giesy, J. P. (2003). Alterations in cell membrane properties caused by perfluorinated compounds. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 135(1), 77-88. https://doi.org/10.1016/s1532-0456(03)00043-7 Huang, H., Huang, C., Wang, L., Ye, X., Bai, C., Simonich, M. T., Tanguay, R. L., & Dong, Q. (2010). Toxicity, uptake kinetics and behavior assessment in zebrafish embryos following exposure to perfluorooctanesulphonicacid (PFOS). Aquatic toxicology, 98(2), 139-147. https://doi.org/10.1016/j.aquatox.2010.02.003 Huang, M., Jiao, J., Zhuang, P., Chen, X., Wang, J., & Zhang, Y. (2018). Serum polyfluoroalkyl chemicals are associated with risk of cardiovascular diseases in national US population. Environment international, 119, 37-46. https://doi.org/10.1016/j.envint.2018.05.051 Huang, Q., Zhang, J., Martin, F. L., Peng, S., Tian, M., Mu, X., & Shen, H. (2013). Perfluorooctanoic acid induces apoptosis through the p53-dependent mitochondrial pathway in human hepatic cells: a proteomic study. Toxicology letters, 223(2), 211-220. https://doi.org/10.1016/j.toxlet.2013.09.002 Huang, Y., Zhang, Z., Chen, H., Feng, J., Cai, S., & Chen, Z. (2015). A high-resolution 2D J-resolved NMR detection technique for metabolite analyses of biological samples. Scientific reports, 5(1), 8390. https://doi.org/10.1038/srep08390 Hung, T. H. (2023). Lipid Responses to Perfluorooctanesulfonic Acid Exposure in Multiple Organs of Rats using Nuclear Magnetic Resonance National Taiwan University]. Taipei. https://hdl.handle.net/11296/t29m44 Iacobellis, G. (2015). Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nature Reviews Endocrinology, 11(6), 363-371. https://doi.org/10.1038/nrendo.2015.58 Jensen, R. C., Andersen, M. S., Larsen, P. V., Glintborg, D., Dalgård, C., Timmermann, C. A. G., Nielsen, F., Sandberg, M. B., Andersen, H. R., Christesen, H. T., Grandjean, P., & Jensen, T. K. (2020). Prenatal exposures to perfluoroalkyl acids and associations with markers of adiposity and plasma lipids in infancy: An odense child cohort study. Environmental health perspectives, 128(7), 077001. https://doi.org/10.1289/EHP5184 Jo, A., Ji, K., & Choi, K. (2014). Endocrine disruption effects of long-term exposure to perfluorodecanoic acid (PFDA) and perfluorotridecanoic acid (PFTrDA) in zebrafish (Danio rerio) and related mechanisms. Chemosphere, 108, 360-366. https://doi.org/10.1016/j.chemosphere.2014.01.080 Kawashima, Y., Kobayashi, H., Miura, H., & Kozuka, H. (1995). Characterization of hepatic responses of rat to administration of perfluorooctanoic and perfluorodecanoic acids at low levels. Toxicology, 99(3), 169-178. https://doi.org/10.1016/0300-483x(95)03027-d Khan, E. A., Grønnestad, R., Krøkje, Å., Bartosov, Z., Johanson, S. M., Müller, M. H., & Arukwe, A. (2023). Alteration of hepato-lipidomic homeostasis in A/J mice fed an environmentally relevant PFAS mixture. Environment international, 173, 107838. https://doi.org/10.1016/j.envint.2023.107838 Kirkwood-Donelson, K. I., Chappel, J., Tobin, E., Dodds, J. N., Reif, D. M., DeWitt, J. C., & Baker, E. S. (2024). Investigating mouse hepatic lipidome dysregulation following exposure to emerging per-and polyfluoroalkyl substances (PFAS). Chemosphere, 354, 141654. https://doi.org/10.1016/j.chemosphere.2024.141654 Konwerski, M., Gąsecka, A., Opolski, G., Grabowski, M., & Mazurek, T. (2022). Role of epicardial adipose tissue in cardiovascular diseases: A review. Biology, 11(3), 355. https://doi.org/10.3390/biology11030355 Labine, L. M., & Simpson, M. J. (2020). The use of nuclear magnetic resonance (NMR) and mass spectrometry (MS)–based metabolomics in environmental exposure assessment. Current opinion in environmental science & health, 15, 7-15. https://doi.org/10.1016/j.coesh.2020.01.008 Lankadurai, B. P., Nagato, E. G., & Simpson, M. J. (2013). Environmental metabolomics: An emerging approach to study organism responses to environmental stressors. Environmental Reviews, 21(3), 180-205. https://doi.org/10.1139/er-2013-001 Lee, S. H., Tseng, W. C., Du, Z. Y., Lin, W. Y., Chen, M. H., Lin, C. C., Lien, G. W., Liang, H. J., Wen, H. J., Guo, Y. L., Chen, P. C., & Lin, C. Y. (2021). Lipid responses to environmental perfluoroalkyl substance exposure in a Taiwanese child cohort. Environmental Pollution, 283, 117007. https://doi.org/10.1016/j.envpol.2021.117007 Li, C., Jiang, L., Qi, Y., Zhang, D., Liu, X., Han, W., Ma, W., Xu, L., Jin, Y., Luo, J., Zhao, K., & Yu, D. (2023). Integration of metabolomics and proteomics reveals the underlying hepatotoxic mechanism of perfluorooctane sulfonate (PFOS) and 6:2 chlorinated polyfluoroalkyl ether sulfonic acid (6:2 Cl-PFESA) in primary human hepatocytes. Ecotoxicology and Environmental Safety, 249, 114361. https://doi.org/10.1016/j.ecoenv.2022.114361 Li, X., Li, T., Wang, Z., Wei, J., Liu, J., Zhang, Y., & Zhao, Z. (2021). Distribution of perfluorooctane sulfonate in mice and its effect on liver lipidomic. Talanta, 226, 122150. https://doi.org/10.1016/j.talanta.2021.122150 Li, Z., Agellon, L. B., Allen, T. M., Umeda, M., Jewell, L., Mason, A., & Vance, D. E. (2006). The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metabolism, 3(5), 321-331. https://doi.org/10.1016/j.cmet.2006.03.007 Liu, X., Liu, S., Qiu, W., Magnuson, J. T., Liu, Z., Yang, G., Chen, H., Li, Y., Xu, X., & Zheng, C. (2022). Cardiotoxicity of PFOA, PFOS, and PFOSA in Early Life Stage Zebrafish: Molecular Changes to Behavioral-level Response. Sustainable Horizons, 3, 100027. https://doi.org/https://doi.org/10.1016/j.horiz.2022.100027 Liu, Y., Liu, S., Huang, J., Liu, Y., Wang, Q., Chen, J., Sun, L., & Tu, W. (2023). Mitochondrial dysfunction in metabolic disorders induced by per- and polyfluoroalkyl substance mixtures in zebrafish larvae. Environment international, 176, 107977. https://doi.org/10.1016/j.envint.2023.107977 Loizides-Mangold, U. (2013). On the future of mass-spectrometry-based lipidomics. FEBS Journal, 280(12), 2817-2829. https://doi.org/10.1111/febs.12202 Louisse, J., Rijkers, D., Stoopen, G., Janssen, A., Staats, M., Hoogenboom, R., Kersten, S., & Peijnenburg, A. (2020). Perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorononanoic acid (PFNA) increase triglyceride levels and decrease cholesterogenic gene expression in human HepaRG liver cells. Archives of Toxicology, 94(9), 3137-3155. https://doi.org/10.1007/s00204-020-02808-0 Luo, Y. S., Ying, R. Y., Chen, X. T., Yeh, Y. J., Wei, C. C., & Chan, C. C. (2024). Integrating high-throughput phenotypic profiling and transcriptomic analyses to predict the hepatosteatosis effects induced by per- and polyfluoroalkyl substances. Journal of Hazardous Materials, 469, 133891. https://doi.org/10.1016/j.jhazmat.2024.133891 Malhotra, P., Gill, R. K., Saksena, S., & Alrefai, W. A. (2020). Disturbances in cholesterol homeostasis and non-alcoholic fatty liver diseases. Frontiers in Medicine-Lausanne, 7, 467. https://doi.org/10.3389/fmed.2020.00467 Mobacke, I., Lind, L., Dunder, L., Salihovic, S., & Lind, P. M. (2018). Circulating levels of perfluoroalkyl substances and left ventricular geometry of the heart in the elderly. Environment international, 115, 295-300. https://doi.org/10.1016/j.envint.2018.03.033 Nagana Gowda, G. A., & Raftery, D. (2021). NMR-based metabolomics. Advances in Experimental Medicine and Biology, 1280, 19-37. https://doi.org/10.1007/978-3-030-51652-9_2 Nam, M., Jung, Y., Ryu, D. H., & Hwang, G. S. (2017). A metabolomics-driven approach reveals metabolic responses and mechanisms in the rat heart following myocardial infarction. International Journal of Cardiology, 227, 239-246. https://doi.org/10.1016/j.ijcard.2016.11.127 Narimatsu, S., Nakanishi, R., Hanioka, N., Saito, K., & Kataoka, H. (2011). Characterization of inhibitory effects of perfluorooctane sulfonate on human hepatic cytochrome P450 isoenzymes: focusing on CYP2A6. Chemico-Biological Interactions, 194(2-3), 120-126. https://doi.org/10.1016/j.cbi.2011.09.002 Olsen, G. W., Burris, J. M., Ehresman, D. J., Froehlich, J. W., Seacat, A. M., Butenhoff, J. L., & Zobel, L. R. (2007). Half-life of serum elimination of perfluorooctanesulfonate,perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environmental health perspectives, 115(9), 1298-1305. https://doi.org/10.1289/ehp.10009 Olson, C. T., & Andersen, M. E. (1983). The acute toxicity of perfluorooctanoic and perfluorodecanoic acids in male rats and effects on tissue fatty acids. Toxicology and applied pharmacology, 70(3), 362-372. https://doi.org/10.1016/0041-008x(83)90154-0 Oostendorp, M., Engelke, U. F., Willemsen, M. A., & Wevers, R. A. (2006). Diagnosing inborn errors of lipid metabolism with proton nuclear magnetic resonance spectroscopy. Clinical Chemistry, 52(7), 1395-1405. https://doi.org/10.1373/clinchem.2006.069112 Pakiet, A., Jakubiak, A., Mierzejewska, P., Zwara, A., Liakh, I., Sledzinski, T., & Mika, A. (2020). The effect of a high-fat diet on the fatty acid composition in the hearts of mice. Nutrients, 12(3), 824. https://doi.org/10.3390/nu12030824 Panieri, E., Baralic, K., Djukic-Cosic, D., Buha Djordjevic, A., & Saso, L. (2022). PFAS molecules: A major concern for the human health and the environment. Toxics, 10(2), 44. https://doi.org/10.3390/toxics10020044 Pradas, I., Huynh, K., Cabré, R., Ayala, V., Meikle, P. J., Jové, M., & Pamplona, R. (2018). Lipidomics reveals a tissue-specific fingerprint. Frontiers in Physiology, 9, 1165. https://doi.org/10.3389/fphys.2018.01165 Quinville, B. M., Deschenes, N. M., Ryckman, A. E., & Walia, J. S. (2021). A comprehensive review: sphingolipid metabolism and implications of disruption in sphingolipid homeostasis. International Journal of Molecular Sciences, 22(11), 5793. https://doi.org/10.3390/ijms22115793 Rhee, J., Loftfield, E., Albanes, D., Layne, T. M., Stolzenberg-Solomon, R., Liao, L. M., Playdon, M. C., Berndt, S. I., Sampson, J. N., Freedman, N. D., Moore, S. C., & Purdue, M. P. (2023). A metabolomic investigation of serum perfluorooctane sulfonate and perfluorooctanoate. Environment international, 180, 108198. https://doi.org/10.1016/j.envint.2023.108198 Sadrabadi, F., Alarcan, J., Sprenger, H., Braeuning, A., & Buhrke, T. (2024). Impact of perfluoroalkyl substances (PFAS) and PFAS mixtures on lipid metabolism in differentiated HepaRG cells as a model for human hepatocytes. Arch Toxicol, 98(2), 507-524. https://doi.org/10.1007/s00204-023-03649-3 Sáiz-Vazquez, O., Puente-Martínez, A., Ubillos-Landa, S., Pacheco-Bonrostro, J., & Santabárbara, J. (2020). Cholesterol and Alzheimer's disease risk: A meta-meta-analysis. Brain Sciences, 10(6). https://doi.org/10.3390/brainsci10060386 Shi, Q., Zhang, X., Liu, X., Yan, C., & Lu, S. (2024). Visualization of PFOA accumulation and its effects on phospholipid in zebrafish liver by MALDI imaging. Analytical and Bioanalytical Chemistry, 416(10), 2493-2501. https://doi.org/10.1007/s00216-024-05214-y Sinem, N., & Abdullah, K. (2019). Introductory chapter: Insight into the omics technologies and molecular medicine. In N. Sinem & A. Hakima (Eds.), Molecular Medicine (pp. Ch. 1). IntechOpen. https://doi.org/10.5772/intechopen.86450 Sonnenberg, N. K., Ojewole, A. E., Ojewole, C. O., Lucky, O. P., & Kusi, J. (2023). Trends in Serum Per- and Polyfluoroalkyl Substance (PFAS) Concentrations in Teenagers and Adults, 1999–2018 NHANES. International journal of environmental research and public health, 20(21), 6984. https://www.mdpi.com/1660-4601/20/21/6984 Stoffels, C. B. A., Angerer, T. B., Robert, H., Poupin, N., Lakhal, L., Frache, G., Mercier-Bonin, M., & Audinot, J. N. (2023). Lipidomic profiling of PFOA-exposed mouse liver by multi-modal mass spectrometry analysis. Analytical Chemistry, 95(16), 6568-6576. https://doi.org/10.1021/acs.analchem.2c05470 Tomášová, P., Čermáková, M., Pelantová, H., Vecka, M., Kratochvílová, H., Lipš, M., Lindner, J., Ivák, P., Netuka, I., Šedivá, B., Haluzík, M., & Kuzma, M. (2020). Lipid profiling in epicardial and subcutaneous adipose tissue of patients with coronary artery disease. Journal of Proteome Research, 19(10), 3993-4003. https://doi.org/10.1021/acs.jproteome.0c00269 Tomczyk, M. M., & Dolinsky, V. W. (2020). The cardiac lipidome in models of cardiovascular disease. Metabolites, 10(6), 254. https://doi.org/10.3390/metabo10060254 UNEP. (2006). Report of the Persistent Organic Pollutants Review Committee on the work of its second meeting. Retrieved from https://chm.pops.int/Implementation/IndustrialPOPs/PFAS/Overview/tabid/5221/Default.aspx UNEP. (2016). Report of the Persistent Organic Pollutants Review Committee on the work of its twelfth meeting. Retrieved from https://chm.pops.int/Implementation/IndustrialPOPs/PFAS/Overview/tabid/5221/Default.aspx van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7, 142. https://doi.org/10.1186/1471-2164-7-142 Viant, M. R. (2003). Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochemical and Biophysical Research Communications, 310(3), 943-948. https://doi.org/10.1016/j.bbrc.2003.09.092 Vignoli, A., Ghini, V., Meoni, G., Licari, C., Takis, P. G., Tenori, L., Turano, P., & Luchinat, C. (2019). Hochdurchsatz-metabolomik mit 1D-NMR. Angewandte Chemie, 131(4), 980-1007. https://doi.org/10.1002/ange.201804736 Wan, C., Han, R., Liu, L., Zhang, F., Li, F., Xiang, M., & Ding, W. (2016). Role of miR-155 in fluorooctane sulfonate-induced oxidative hepatic damage via the Nrf2-dependent pathway. Toxicology and applied pharmacology, 295, 85-93. https://doi.org/10.1016/j.taap.2016.01.023 Wang, P., Liu, D., Yan, S., Cui, J., Liang, Y., & Ren, S. (2022). Adverse Effects of Perfluorooctane Sulfonate on the Liver and Relevant Mechanisms. Toxics, 10(5). https://doi.org/10.3390/toxics10050265 Wang, R., Li, B., Lam, S. M., & Shui, G. (2020). Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression. Journal of Genetics and Genomics, 47(2), 69-83. https://doi.org/10.1016/j.jgg.2019.11.009 Want, E. J., Masson, P., Michopoulos, F., Wilson, I. D., Theodoridis, G., Plumb, R. S., Shockcor, J., Loftus, N., Holmes, E., & Nicholson, J. K. (2013). Global metabolic profiling of animal and human tissues via UPLC-MS. Nature protocols, 8(1), 17-32. https://doi.org/10.1038/nprot.2012.135 Warren, T., McAllister, R., Morgan, A., Rai, T. S., McGilligan, V., Ennis, M., Page, C., Kelly, C., Peace, A., Corfe, B. M., Mc Auley, M., & Watterson, S. (2021). The interdependency and co-regulation of the vitamin D and cholesterol metabolism. Cells, 10(8). https://doi.org/10.3390/cells10082007 Wen, Z.-J., Wei, Y.-J., Zhang, Y.-F., & Zhang, Y.-F. (2023). A review of cardiovascular effects and underlying mechanisms of legacy and emerging per- and polyfluoroalkyl substances (PFAS). Archives of Toxicology, 97(5), 1195-1245. https://doi.org/10.1007/s00204-023-03477-5 Wielsøe, M., Long, M., Ghisari, M., & Bonefeld-Jørgensen, E. C. (2015). Perfluoroalkylated substances (PFAS) affect oxidative stress biomarkers in vitro. Chemosphere, 129, 239-245. https://doi.org/10.1016/j.chemosphere.2014.10.014 Wishart, D. S. (2019). NMR metabolomics: A look ahead. Journal of Magnetic Resonance, 306, 155-161. https://doi.org/10.1016/j.jmr.2019.07.013 Wolters, M., von der Haar, A., Baalmann, A. K., Wellbrock, M., Heise, T. L., & Rach, S. (2021). Effects of n-3 polyunsaturated fatty acid supplementation in the prevention and treatment of depressive disorders-A systematic review and meta-analysis. Nutrients, 13(4). https://doi.org/10.3390/nu13041070 Xu, D., Li, L., Tang, L., Guo, M., & Yang, J. (2022). Perfluorooctane sulfonate induces heart toxicity involving cardiac apoptosis and inflammation in rats. Experimental and Therapeutic Medicine, 23(1), 14. https://doi.org/10.3892/etm.2021.10936 Yang, Y., Deng, J., Liu, Y., He, K., Xiang, Z., & Luan, T. (2019). A microscale solid-phase microextraction probe for the in situ analysis of perfluoroalkyl substances and lipids in biological tissues using mass spectrometry [10.1039/C9AN01195A]. Analyst, 144(18), 5637-5645. https://doi.org/10.1039/C9AN01195A Zahm, S., Bonde, J. P., Chiu, W. A., Hoppin, J., Kanno, J., Abdallah, M., Blystone, C. R., Calkins, M. M., Dong, G.-H., Dorman, D. C., Fry, R., Guo, H., Haug, L. S., Hofmann, J. N., Iwasaki, M., Machala, M., Mancini, F. R., Maria-Engler, S. S., Møller, P., . . . Schubauer-Berigan, M. K. (2024). Carcinogenicity of perfluorooctanoic acid and perfluorooctanesulfonic acid. The Lancet Oncology, 25(1), 16-17. https://doi.org/https://doi.org/10.1016/S1470-2045(23)00622-8 Zeng, H. C., He, Q. Z., Li, Y. Y., Wu, C. Q., Wu, Y. M., & Xu, S. Q. (2015). Prenatal exposure to PFOS caused mitochondia-mediated apoptosis in heart of weaned rat. Environmental Toxicology, 30(9), 1082-1090. https://doi.org/10.1002/tox.21981 Zhang, D. Y., Xu, X. L., Shen, X. Y., Ruan, Q., & Hu, W. L. (2015). Analysis of apoptosis induced by perfluorooctane sulfonates (PFOS) in mouse Leydig cells in vitro. Toxicology Mechanisms and Methods, 25(1), 21-25. https://doi.org/10.3109/15376516.2014.971140 Zhang, Y., Zhao, H., Liu, B., Shu, H., Zhang, L., Bao, M., Yi, W., Tan, Y., Ji, X., Zhang, C., Zhao, N., Pang, G., He, D., Wang, Y., Li, L., Yi, J., & Lu, C. (2021). Human serum metabolomic analysis reveals progression for high blood pressure in type 2 diabetes mellitus. BMJ Open Diabetes Research & Care, 9(1). https://doi.org/10.1136/bmjdrc-2021-002337 Zhang, Y. T., Zeeshan, M., Su, F., Qian, Z. M., Dee Geiger, S., Edward McMillin, S., Wang, Z. B., Dong, P. X., Ou, Y. Q., Xiong, S. M., Shen, X. B., Zhou, P. E., Yang, B. Y., Chu, C., Li, Q. Q., Zeng, X. W., Feng, W. R., Zhou, Y. Z., & Dong, G. H. (2022). Associations between both legacy and alternative per- and polyfluoroalkyl substances and glucose-homeostasis: The Isomers of C8 health project in China. Environment international, 158, 106913. https://doi.org/10.1016/j.envint.2021.106913 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94924 | - |
| dc.description.abstract | 全氟與多氟烷基物質(PFASs)是一類廣泛應用於工業和消費產品中的合成化學品。先前的研究已經指出PFASs與代謝症候群,例如脂質代謝紊亂以及其他不良健康影響的相關性。全氟癸酸(PFDA)是PFASs的一種,最近的研究顯示約70%的臺灣兒童血清中檢測到了PFDA。然而,對PFDA的研究有限,且其毒性和潛在機制仍不清楚。因此,本研究旨在利用脂質體學方法,探討大鼠多個器官對PFDA暴露的脂質反應,以確定目標器官並理解其脂質效應及可能的健康不良影響。
本研究採用18隻Sprague-Dawley雄性大鼠作為模型,分別每天以每公斤體重0、0.5和1毫克的PFDA進行管胃餵食持續21天,測量體重和器官重量變化。隨後犧牲大鼠,並收集與萃取肝臟、心臟、腎臟、肺臟、胰臟和睪丸的組織樣本,採用核磁共振為基礎的脂質體學方法來識別關鍵脂質反應。取得的核磁共振圖譜會經過圖譜前處理並進行多變量包含偏最小平方法判別分析(PLS-DA)和單變量分析,最後進行數據及生物資訊的解釋。 暴露後,肝臟重量與肝臟重量與體重之比例顯著增加。以PLS-DA進行的脂質分析顯示,肝臟和心臟對PFDA暴露的反應具有劑量依賴性。肝臟中膽固醇、磷脂醯膽鹼(PC)/磷脂醯乙醇胺(PE)的濃度降低,而脂肪酸(FA)濃度增加。在心臟中,甘油脂(GLs)濃度降低,而甘油磷脂(GPs)濃度增加。這些脂質改變在肝臟中可能與細胞膜功能的變化與粒線體功能障礙有關,而在心臟中則是與心血管相關疾病有關。然而,在肺、腎臟、胰臟和睪丸中未觀察到顯著的脂質變化。 總體而言,本研究利用核磁共振為基礎的脂質體學方法揭示了PFDA誘導大鼠多個器官的脂質變化。結果顯示PFDA暴露對肝臟和心臟的脂質變化影響較大,暗示著肝臟和心臟可能是主要的標的器官。我們的研究結果為未來PFDA在肝臟和心臟中毒理的機制研究提供了一個方向。 | zh_TW |
| dc.description.abstract | Per- and polyfluoroalkyl substances (PFASs) are a class of synthetic chemicals widely used in industrial and consumer products. Previous studies have reported associations between PFASs and metabolic syndromes, such as lipid metabolism disorders, and other adverse health effects. As a type of PFASs, perfluorodecanoic acid (PFDA) was recently reported in approximately 70% of Taiwanese children’s serum samples. However, research on PFDA is limited, and its toxicity and underlying mechanisms remain unclear. Therefore, this study aimed to investigate the lipid response of PFDA exposure on multiple organs of rats using lipidomic approaches in order to identify target organs and understand lipid effects and possible adverse health effects.
Eighteen male Sprague-Dawley rats were administered with doses of 0, 0.5, and 1 mg/kg body weight of PFDA by oral gavage daily for 21 days. Changes of body weight and organ weight were measured. Subsequently, the rats were sacrificed, and the liver, heart, kidney, testis, pancreas, and lung were collected and extracted for nuclear magnetic resonance (NMR)-based lipidomics to identify key lipid responses. The obtained spectra were processed followed by multivariate analysis including partial least squares discriminant analysis (PLS-DA) and univariate analysis were conducted after spectral pretreatment followed by data interpretation. After treatment, significant increases were observed in the liver and the ratio of liver to body weight. PLS-DA models from the analysis of lipids revealed dose-dependent responses in the liver and heart after exposure to PFDA. The levels of cholesterol, and PC/PE were decreased, while the levels of FA was increased in the liver. In the heart, decreased GLs level and increased GPs level were observed. These lipid alterations in the liver may be associated with cell membrane dysfunction and mitochondrial dysfunction; while lipid changes in the heart may be associated with cardiovascular-related diseases. No significant lipid changes were observed in the lung, kidney, pancreas, and testis from the rats treated with PFDA. In conclusion, this study utilized NMR-based lipidomics to reveal lipid changes in multiple organs induced by PFDA exposure in rats. The results suggest that PFDA exposure has a greater impact on lipid changes in the liver and heart, implying that these organs may be the primary target organs. Our findings suggest the possible mechanisms of PFDA in the liver and the heart for future mechanism study. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:37:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-21T16:37:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv Content vi List of figures viii List of tables ix I. Introduction 1 1-1 Per- and polyfluoroalkyl substances (PFASs) 1 1-2 Perfluorodecanoic acid (PFDA) 6 1-3 Lipidomics 7 1-4 Application of metabolomics/lipidomics to PFASs toxicity study 10 1-5 Study aims 12 II. Materials and methods 13 2-1 A framework for experiment 13 2-2 The experimental animal’s handle procedure 14 2-3 Lipid profile measurement in multiorgan by 1H NMR spectroscopy 15 2-3-1 Sample preparation 15 2-3-2 Measurement of lipid profiles by NMR 16 2-3-3 Spectral processing 18 2-4 Statistical analysis 18 2-5 Lipid identification 21 III. Results 22 3-1 Alterations in the body weights and the tissue weights of PFDA-exposed rats 22 3-2 The 1H-NMR spectrum of lipid profiles from organs of PFDA exposed rats 23 3-3 Multivariate analysis of lipidomes in the organs of PFDA-exposed rats 23 3-4 Univariate analysis of lipids in the organs of PFDA-exposed rats 25 IV. Discussion 27 4-1 The lipid effects of PFDA exposure on the rat liver 27 4-2 The lipid effects of PFDA exposure on the rat heart 31 4-3 Lipid changes in the liver and heart may be associated with mitochondrial dysfunction 33 4-4 Comparison with results from PFOS study using similar approach 34 4-5 The contribution and the limitation 35 V. Conclusion 37 References 38 | - |
| dc.language.iso | en | - |
| dc.subject | 全氟與多氟烷基物質 | zh_TW |
| dc.subject | 毒性 | zh_TW |
| dc.subject | 核磁共振儀 | zh_TW |
| dc.subject | 脂質體學 | zh_TW |
| dc.subject | 全氟癸酸 | zh_TW |
| dc.subject | perfluorodecanoic acid | en |
| dc.subject | nuclear magnetic resonance | en |
| dc.subject | Per- and polyfluoroalkyl substances | en |
| dc.subject | toxicity | en |
| dc.subject | lipidomics | en |
| dc.title | 應用核磁共振儀探討全氟癸酸暴露對大鼠之多器官脂質影響 | zh_TW |
| dc.title | Effects of Perfluorodecanoic Acid on Lipid Profiles in Multiple Organs of Rats using Nuclear Magnetic Resonance | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 魏嘉徵;羅宇軒;李昇翰 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Cheng Wei;Yu-Syuan Luo;Sheng-Han Lee | en |
| dc.subject.keyword | 全氟與多氟烷基物質,全氟癸酸,脂質體學,核磁共振儀,毒性, | zh_TW |
| dc.subject.keyword | Per- and polyfluoroalkyl substances,perfluorodecanoic acid,lipidomics,nuclear magnetic resonance,toxicity, | en |
| dc.relation.page | 82 | - |
| dc.identifier.doi | 10.6342/NTU202403362 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-05 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| dc.date.embargo-lift | 2029-08-05 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.5 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
