請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94913完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馮嬿臻 | zh_TW |
| dc.contributor.advisor | Yen-Chen Feng | en |
| dc.contributor.author | 趙珮妤 | zh_TW |
| dc.contributor.author | Pei-Yu Chao | en |
| dc.date.accessioned | 2024-08-21T16:27:26Z | - |
| dc.date.available | 2024-08-22 | - |
| dc.date.copyright | 2024-08-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-09 | - |
| dc.identifier.citation | 1. Ferrari, A.J.; Stockings, E.; Khoo, J.-P.; Erskine, H.E.; Degenhardt, L.; Vos, T.; Whiteford, H.A. The Prevalence and Burden of Bipolar Disorder: Findings from the Global Burden of Disease Study 2013. Bipolar Disorders 2016, 18, 440–450, doi:10.1111/bdi.12423.
2. O’Connell, K.S.; Coombes, B.J. Genetic Contributions to Bipolar Disorder: Current Status and Future Directions. Psychol Med 51, 2156–2167, doi:10.1017/S0033291721001252. 3. Polderman, T.J.C.; Benyamin, B.; de Leeuw, C.A.; Sullivan, P.F.; van Bochoven, A.; Visscher, P.M.; Posthuma, D. Meta-Analysis of the Heritability of Human Traits Based on Fifty Years of Twin Studies. Nat Genet 2015, 47, 702–709, doi:10.1038/ng.3285. 4. Stapp, E.K.; Mendelson, T.; Merikangas, K.R.; Wilcox, H.C. Parental Bipolar Disorder, Family Environment, and Offspring Psychiatric Disorders: A Systematic Review. Journal of Affective Disorders 2020, 268, 69–81, doi:10.1016/j.jad.2020.03.005. 5. McIntyre, R.S.; Berk, M.; Brietzke, E.; Goldstein, B.I.; López-Jaramillo, C.; Kessing, L.V.; Malhi, G.S.; Nierenberg, A.A.; Rosenblat, J.D.; Majeed, A.; et al. Bipolar disorders. The Lancet 2020, 396, 1841–1856, doi:10.1016/S0140-6736(20)31544-0. 6. Large-Scale Genome-Wide Association Analysis of Bipolar Disorder Identifies a New Susceptibility Locus near ODZ4 | Nature Genetics Available online: https://www.nature.com/articles/ng.943 (accessed on 8 June 2024). 7. A Genome-Wide Association Study Implicates Diacylglycerol Kinase Eta (DGKH) and Several Other Genes in the Etiology of Bipolar Disorder | Molecular Psychiatry Available online: https://www.nature.com/articles/4002012 (accessed on 8 June 2024). 8. Evidence for Genetic Heterogeneity between Clinical Subtypes of Bipolar Disorder | Translational Psychiatry Available online: https://www.nature.com/articles/tp2016242 (accessed on 8 June 2024). 9. Genome-Wide Association Study Meta-Analysis of European and Asian-Ancestry Samples Identifies Three Novel Loci Associated with Bipolar Disorder | Molecular Psychiatry Available online: https://www.nature.com/articles/mp2011157 (accessed on 9 June 2024). 10. Cichon, S.; Mühleisen, T.W.; Degenhardt, F.A.; Mattheisen, M.; Miró, X.; Strohmaier, J.; Steffens, M.; Meesters, C.; Herms, S.; Weingarten, M.; et al. Genome-Wide Association Study Identifies Genetic Variation in Neurocan as a Susceptibility Factor for Bipolar Disorder. The American Journal of Human Genetics 2011, 88, 372–381, doi:10.1016/j.ajhg.2011.01.017. 11. Ferreira, M.A.R.; O’Donovan, M.C.; Meng, Y.A.; Jones, I.R.; Ruderfer, D.M.; Jones, L.; Fan, J.; Kirov, G.; Perlis, R.H.; Green, E.K.; et al. Collaborative Genome-Wide Association Analysis Supports a Role for ANK3 and CACNA1C in Bipolar Disorder. Nat Genet 2008, 40, 1056–1058, doi:10.1038/ng.209. 12. Association at SYNE1 in Both Bipolar Disorder and Recurrent Major Depression | Molecular Psychiatry Available online: https://www.nature.com/articles/mp201248 (accessed on 9 June 2024). 13. Green, E.K.; Hamshere, M.; Forty, L.; Gordon-Smith, K.; Fraser, C.; Russell, E.; Grozeva, D.; Kirov, G.; Holmans, P.; Moran, J.L.; et al. Replication of Bipolar Disorder Susceptibility Alleles and Identification of Two Novel Genome-Wide Significant Associations in a New Bipolar Disorder Case–Control Sample. Mol Psychiatry 2013, 18, 1302–1307, doi:10.1038/mp.2012.142. 14. Hou, L.; Bergen, S.E.; Akula, N.; Song, J.; Hultman, C.M.; Landén, M.; Adli, M.; Alda, M.; Ardau, R.; Arias, B.; et al. Genome-Wide Association Study of 40,000 Individuals Identifies Two Novel Loci Associated with Bipolar Disorder. Human Molecular Genetics 2016, 25, 3383–3394, doi:10.1093/hmg/ddw181. 15. Two Variants in Ankyrin 3 (ANK3) Are Independent Genetic Risk Factors for Bipolar Disorder | Molecular Psychiatry Available online: https://www.nature.com/articles/mp2008134 (accessed on 9 June 2024). 16. Genome-Wide Association and Meta-Analysis of Bipolar Disorder in Individuals of European Ancestry | PNAS Available online: https://www.pnas.org/doi/abs/10.1073/pnas.0813386106 (accessed on 9 June 2024). 17. Sklar, P.; Smoller, J.W.; Fan, J.; Ferreira, M. a. R.; Perlis, R.H.; Chambert, K.; Nimgaonkar, V.L.; McQueen, M.B.; Faraone, S.V.; Kirby, A.; et al. Whole-Genome Association Study of Bipolar Disorder. Mol Psychiatry 2008, 13, 558–569, doi:10.1038/sj.mp.4002151. 18. Genome-Wide Association Study of Bipolar Disorder in European American and African American Individuals | Molecular Psychiatry Available online: https://www.nature.com/articles/mp200943 (accessed on 9 June 2024). 19. Genome-Wide Association Study of 14,000 Cases of Seven Common Diseases and 3,000 Shared Controls | Nature Available online: https://www.nature.com/articles/nature05911 (accessed on 9 June 2024). 20. Stahl, E.A.; Breen, G.; Forstner, A.J.; McQuillin, A.; Ripke, S.; Trubetskoy, V.; Mattheisen, M.; Wang, Y.; Coleman, J.R.I.; Gaspar, H.A.; et al. Genome-Wide Association Study Identifies 30 Loci Associated with Bipolar Disorder. Nat Genet 2019, 51, 793–803, doi:10.1038/s41588-019-0397-8. 21. Mullins, N.; Forstner, A.J.; O’Connell, K.S.; Coombes, B.; Coleman, J.R.I.; Qiao, Z.; Als, T.D.; Bigdeli, T.B.; Børte, S.; Bryois, J.; et al. Genome-Wide Association Study of More than 40,000 Bipolar Disorder Cases Provides New Insights into the Underlying Biology. Nat Genet 2021, 53, 817–829, doi:10.1038/s41588-021-00857-4. 22. Genetic Relationship between Five Psychiatric Disorders Estimated from Genome-Wide SNPs | Nature Genetics Available online: https://www.nature.com/articles/ng.2711 (accessed on 13 June 2024). 23. Finding the Missing Heritability of Complex Diseases | Nature Available online: https://www.nature.com/articles/nature08494 (accessed on 10 June 2024). 24. Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I.; Brown, M.A.; Yang, J. 10 Years of GWAS Discovery: Biology, Function, and Translation. The American Journal of Human Genetics 2017, 101, 5–22, doi:10.1016/j.ajhg.2017.06.005. 25. Owen, M.J.; Williams, N.M. Explaining the Missing Heritability of Psychiatric Disorders. World Psychiatry 2021, 20, 294–295, doi:10.1002/wps.20870. 26. Ganna, A.; Satterstrom, F.K.; Zekavat, S.M.; Das, I.; Kurki, M.I.; Churchhouse, C.; Alfoldi, J.; Martin, A.R.; Havulinna, A.S.; Byrnes, A.; et al. Quantifying the Impact of Rare and Ultra-Rare Coding Variation across the Phenotypic Spectrum. The American Journal of Human Genetics 2018, 102, 1204–1211, doi:10.1016/j.ajhg.2018.05.002. 27. Nishioka, M.; Takayama, J.; Sakai, N.; Kazuno, A.; Ishiwata, M.; Ueda, J.; Hayama, T.; Fujii, K.; Someya, T.; Kuriyama, S.; et al. Deep Exome Sequencing Identifies Enrichment of Deleterious Mosaic Variants in Neurodevelopmental Disorder Genes and Mitochondrial tRNA Regions in Bipolar Disorder. Mol Psychiatry 2023, 1–13, doi:10.1038/s41380-023-02096-x. 28. M, K.; N, M.; T, S.; Aa, K.; M, I.; K, F.; K, M.; A, T.; T, K. Exome Sequencing for Bipolar Disorder Points to Roles of de Novo Loss-of-Function and Protein-Altering Mutations. Molecular psychiatry 2016, 21, doi:10.1038/mp.2016.69. 29. Goes, F.S.; Pirooznia, M.; Parla, J.S.; Kramer, M.; Ghiban, E.; Mavruk, S.; Chen, Y.-C.; Monson, E.T.; Willour, V.L.; Karchin, R.; et al. Exome Sequencing of Familial Bipolar Disorder. JAMA Psychiatry 2016, 73, 590–597, doi:10.1001/jamapsychiatry.2016.0251. 30. Han, M.-R.; Han, K.-M.; Kim, A.; Kang, W.; Kang, Y.; Kang, J.; Won, E.; Tae, W.-S.; Cho, Y.; Ham, B.-J. Whole-Exome Sequencing Identifies Variants Associated with Structural MRI Markers in Patients with Bipolar Disorders. Journal of Affective Disorders 2019, 249, 159–168, doi:10.1016/j.jad.2019.02.028. 31. Jia, X.; Goes, F.S.; Locke, A.E.; Palmer, D.; Wang, W.; Cohen-Woods, S.; Genovese, G.; Jackson, A.U.; Jiang, C.; Kvale, M.; et al. Investigating Rare Pathogenic/Likely Pathogenic Exonic Variation in Bipolar Disorder. Mol Psychiatry 2021, 26, 5239–5250, doi:10.1038/s41380-020-01006-9. 32. Palmer, D.S.; Howrigan, D.P.; Chapman, S.B.; Adolfsson, R.; Bass, N.; Blackwood, D.; Boks, M.P.M.; Chen, C.-Y.; Churchhouse, C.; Corvin, A.P.; et al. Exome Sequencing in Bipolar Disorder Identifies AKAP11 as a Risk Gene Shared with Schizophrenia. Nat Genet 2022, 54, 541–547, doi:10.1038/s41588-022-01034-x. 33. First Large Genetic Study of Bipolar Disorder in Asian Populations Launches Available online: https://www.broadinstitute.org/news/first-large-genetic-study-bipolar-disorder-asian-populations-launches (accessed on 10 June 2024). 34. A Brief History of Human Disease Genetics | Nature Available online: https://www.nature.com/articles/s41586-019-1879-7 (accessed on 10 June 2024). 35. Weiner, D.J.; Nadig, A.; Jagadeesh, K.A.; Dey, K.K.; Neale, B.M.; Robinson, E.B.; Karczewski, K.J.; O’Connor, L.J. Polygenic Architecture of Rare Coding Variation across 394,783 Exomes. Nature 2023, 614, 492–499, doi:10.1038/s41586-022-05684-z. 36. Ikeda, M.; Takahashi, A.; Kamatani, Y.; Okahisa, Y.; Kunugi, H.; Mori, N.; Sasaki, T.; Ohmori, T.; Okamoto, Y.; Kawasaki, H.; et al. A Genome-Wide Association Study Identifies Two Novel Susceptibility Loci and Trans Population Polygenicity Associated with Bipolar Disorder. Mol Psychiatry 2018, 23, 639–647, doi:10.1038/mp.2016.259. 37. Mullins, N.; Huang, H. Genetic Architecture of Bipolar Disorder in Individuals of Han Chinese and European Ancestries. JAMA Psychiatry 2021, 78, 248–249, doi:10.1001/jamapsychiatry.2020.3639. 38. Li, H.-J.; Zhang, C.; Hui, L.; Zhou, D.-S.; Li, Y.; Zhang, C.-Y.; Wang, C.; Wang, L.; Li, W.; Yang, Y.; et al. Novel Risk Loci Associated With Genetic Risk for Bipolar Disorder Among Han Chinese Individuals: A Genome-Wide Association Study and Meta-Analysis. JAMA Psychiatry 2021, 78, 320, doi:10.1001/jamapsychiatry.2020.3738. 39. Comparative Genetic Architectures of Schizophrenia in East Asian and European Populations | Nature Genetics Available online: https://www.nature.com/articles/s41588-019-0512-x (accessed on 10 June 2024). 40. Chang, C.-E.; Wang, J.; Lin, Y.-T.; Chiu, C.-C.; Hsieh, M.-H.; Huang, M.-C.; Lu, M.-L.; Chen, H.-C.; Chen, W.J.; Kuo, P.-H. Characterization of Clinical Features and Comorbidities between Bipolar Affective Disorder with and without Depressive Episodes. Psychological Medicine 2023, 53, 4103–4113, doi:10.1017/S0033291722000782. 41. Association, A.P. Diagnostic and Statistical Manual of Mental Disorders. Text Revision 2000. 42. DeFelice, M.; Grimsby, J.L.; Howrigan, D.; Yuan, K.; Chapman, S.B.; Stevens, C.; DeLuca, S.; Townsend, M.; Buxbaum, J.; Pericak-Vance, M.; et al. Blended Genome Exome (BGE) as a Cost Efficient Alternative to Deep Whole Genomes or Arrays 2024, 2024.04.03.587209. 43. Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Current Protocols in Bioinformatics 2013, 43, 11.10.1-11.10.33, doi:10.1002/0471250953.bi1110s43. 44. Panoutsopoulou, K.; Walter, K. Quality Control of Common and Rare Variants. In Genetic Epidemiology: Methods and Protocols; Evangelou, E., Ed.; Springer: New York, NY, 2018; pp. 25–36 ISBN 978-1-4939-7868-7. 45. Rare Variant Quality Control | SpringerLink Available online: https://link.springer.com/chapter/10.1007/978-1-4939-2824-8_3 (accessed on 6 May 2024). 46. Wang, J.; Raskin, L.; Samuels, D.C.; Shyr, Y.; Guo, Y. Genome Measures Used for Quality Control Are Dependent on Gene Function and Ancestry. Bioinformatics 2015, 31, 318–323, doi:10.1093/bioinformatics/btu668. 47. McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol 2016, 17, 122, doi:10.1186/s13059-016-0974-4. 48. Feng, Y.-C.A.; Howrigan, D.P.; Abbott, L.E.; Tashman, K.; Cerrato, F.; Singh, T.; Heyne, H.; Byrnes, A.; Churchhouse, C.; Watts, N.; et al. Ultra-Rare Genetic Variation in the Epilepsies: A Whole-Exome Sequencing Study of 17,606 Individuals. The American Journal of Human Genetics 2019, 105, 267–282, doi:10.1016/j.ajhg.2019.05.020. 49. Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A Method and Server for Predicting Damaging Missense Mutations. Nat Methods 2010, 7, 248–249, doi:10.1038/nmeth0410-248. 50. Ng, P.C.; Henikoff, S. SIFT: Predicting Amino Acid Changes That Affect Protein Function. Nucleic Acids Research 2003, 31, 3812–3814, doi:10.1093/nar/gkg509. 51. Wang, X. Firth Logistic Regression for Rare Variant Association Tests. Front. Genet. 2014, 5, doi:10.3389/fgene.2014.00187. 52. Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The Mutational Constraint Spectrum Quantified from Variation in 141,456 Humans. Nature 2020, 581, 434–443, doi:10.1038/s41586-020-2308-7. 53. Ganna, A.; Genovese, G.; Howrigan, D.P.; Byrnes, A.; Kurki, M.I.; Zekavat, S.M.; Whelan, C.W.; Kals, M.; Nivard, M.G.; Bloemendal, A.; et al. Ultra-Rare Disruptive and Damaging Mutations Influence Educational Attainment in the General Population. Nat Neurosci 2016, 19, 1563–1565, doi:10.1038/nn.4404. 54. Satterstrom, F.K.; Kosmicki, J.A.; Wang, J.; Breen, M.S.; Rubeis, S.D.; An, J.-Y.; Peng, M.; Collins, R.; Grove, J.; Klei, L.; et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism 2019, 484113. 55. Singh, T.; Poterba, T.; Curtis, D.; Akil, H.; Al Eissa, M.; Barchas, J.D.; Bass, N.; Bigdeli, T.B.; Breen, G.; Bromet, E.J.; et al. Rare Coding Variants in Ten Genes Confer Substantial Risk for Schizophrenia. Nature 2022, 604, 509–516, doi:10.1038/s41586-022-04556-w. 56. Polygenic Prediction via Bayesian Regression and Continuous Shrinkage Priors | Nature Communications Available online: https://www.nature.com/articles/s41467-019-09718-5 (accessed on 22 June 2024). 57. Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of Protein-Coding Genetic Variation in 60,706 Humans. Nature 2016, 536, 285–291, doi:10.1038/nature19057. 58. A Framework for the Interpretation of de Novo Mutation in Human Disease | Nature Genetics Available online: https://www.nature.com/articles/ng.3050 (accessed on 25 June 2024). 59. Kosmicki, J.A.; Samocha, K.E.; Howrigan, D.P.; Sanders, S.J.; Slowikowski, K.; Lek, M.; Karczewski, K.J.; Cutler, D.J.; Devlin, B.; Roeder, K.; et al. Refining the Role of de Novo Protein-Truncating Variants in Neurodevelopmental Disorders by Using Population Reference Samples. Nat Genet 2017, 49, 504–510, doi:10.1038/ng.3789. 60. Andlauer, T.F.M.; Guzman-Parra, J.; Streit, F.; Strohmaier, J.; González, M.J.; Gil Flores, S.; Cabaleiro Fabeiro, F.J.; del Río Noriega, F.; Perez, F.P.; Haro González, J.; et al. Bipolar Multiplex Families Have an Increased Burden of Common Risk Variants for Psychiatric Disorders. Mol Psychiatry 2021, 26, 1286–1298, doi:10.1038/s41380-019-0558-2. 61. Courtois, E.; Schmid, M.; Wajsbrot, O.; Barau, C.; Le Corvoisier, P.; Aouizerate, B.; Bellivier, F.; Belzeaux, R.; Dubertret, C.; Kahn, J.-P.; et al. Contribution of Common and Rare Damaging Variants in Familial Forms of Bipolar Disorder and Phenotypic Outcome. Transl Psychiatry 2020, 10, 1–10, doi:10.1038/s41398-020-0783-0. 62. Dattani, S.; Sham, P.C.; Jermy, B.S.; Coleman, J.R.I.; Howard, D.M.; Lewis, C.M. Common and Rare Variant Associations with Latent Traits Underlying Depression, Bipolar Disorder, and Schizophrenia. Transl Psychiatry 2023, 13, 46, doi:10.1038/s41398-023-02324-6. 63. Charney, A.W.; Stahl, E.A.; Green, E.K.; Chen, C.-Y.; Moran, J.L.; Chambert, K.; Belliveau, R.A.; Forty, L.; Gordon-Smith, K.; Lee, P.H.; et al. Contribution of Rare Copy Number Variants to Bipolar Disorder Risk Is Limited to Schizoaffective Cases. Biological Psychiatry 2019, 86, 110–119, doi:10.1016/j.biopsych.2018.12.009. 64. Rødevand, L.; Bahrami, S.; Frei, O.; Chu, Y.; Shadrin, A.; O’Connell, K.S.; Smeland, O.B.; Elvsåshagen, T.; Hindley, G.F.L.; Djurovic, S.; et al. Extensive Bidirectional Genetic Overlap between Bipolar Disorder and Cardiovascular Disease Phenotypes. Transl Psychiatry 2021, 11, 407, doi:10.1038/s41398-021-01527-z. 65. Girdhar, K.; Hoffman, G.E.; Bendl, J.; Rahman, S.; Dong, P.; Liao, W.; Hauberg, M.E.; Sloofman, L.; Brown, L.; Devillers, O.; et al. Chromatin Domain Alterations Linked to 3D Genome Organization in a Large Cohort of Schizophrenia and Bipolar Disorder Brains. Nat Neurosci 2022, 25, 474–483, doi:10.1038/s41593-022-01032-6. 66. Fadelli, I.; Xpress, M. Study Identifies Chromatin Alterations in the Brains of Patients with Schizophrenia and Bipolar Disorder Available online: https://medicalxpress.com/news/2022-04-chromatin-brains-patients-schizophrenia-bipolar.html (accessed on 27 June 2024). 67. Takaesu, Y. Circadian Rhythm in Bipolar Disorder: A Review of the Literature. Psychiatry Clin Neurosci 2018, 72, 673–682, doi:10.1111/pcn.12688. 68. Esaki, Y.; Obayashi, K.; Saeki, K.; Fujita, K.; Iwata, N.; Kitajima, T. Association between Circadian Activity Rhythms and Mood Episode Relapse in Bipolar Disorder: A 12-Month Prospective Cohort Study. Transl Psychiatry 2021, 11, 1–8, doi:10.1038/s41398-021-01652-9. 69. Balaraman, Y.; Lahiri, D.K.; Nurnberger, J.I. Variants in Ion Channel Genes Link Phenotypic Features of Bipolar Illness to Specific Neurobiological Process Domains. Mol Neuropsychiatry 2015, 1, 23–35, doi:10.1159/000371886. 70. Jang, T.; Kaul, M. Immune, RNA, and Neurocognitive Genetic Networks in Bipolar Disorder Subtypes: A Transcriptomic Meta-Analysis. Res Sq 2024, rs.3.rs-3508951, doi:10.21203/rs.3.rs-3508951/v1. 71. Klei, L.; McClain, L.L.; Mahjani, B.; Panayidou, K.; De Rubeis, S.; Grahnat, A.-C.S.; Karlsson, G.; Lu, Y.; Melhem, N.; Xu, X.; et al. How Rare and Common Risk Variation Jointly Affect Liability for Autism Spectrum Disorder. Molecular Autism 2021, 12, 66, doi:10.1186/s13229-021-00466-2. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94913 | - |
| dc.description.abstract | 雙極性情感疾患(躁鬱症)的特徵是躁症和鬱症交互發作,大約影響全球1-2%的人口。早期雙胞胎研究所估計遺傳力約為70%,然而,透過全基因組關聯研究所發現的常見變異所貢獻的遺傳力僅為25%。這種差距被稱為「遺傳性缺失」,部分原因可能是 GWAS 未完全捕捉到罕見變異的影響。目前罕見變異的研究結果異質性很高,且關注東亞人群的研究相對稀少。因此,我們的目標是使用全外顯子定序資料去衡量罕見變異對於躁鬱症在臺灣族群的影響。
我們使用透過混合基因外險子組方法產生的WES 數據,分析483名躁鬱症患者和535名對照組。經過一系列的品質管制,我們保留了1,017個個體,並提取出平均深度為40x的外顯子區域,再對其變異使用Ensembl’s Variants Effect Predictor 進行註釋,將其根據預測的功能分為同義變異、錯義變異和蛋白質截斷變異。接著,對於不同次要等位基因個數進行三種負擔測試,以檢查 躁鬱症和罕見變異之間的關聯,包括透過 Firth羅吉斯迴歸分析的全外顯子組和基因集負擔測試,以及使用費雪精確檢定分析的基因負擔測試。最後,採用整合罕見變異攜帶者狀態和躁鬱症多基因風險評分的聯合模型,以探討常見和罕見變異對於躁鬱症遺傳風險的綜合影響。 負擔測試顯示罕見變異在外顯子組範圍內有小而顯著的富集,特別是在較低的次要等位基因個數閾值和對於有嚴重功能的變異類別,例如破壞性錯義變異,而在同義變異中並沒有觀察到效益。當縮小限制在高機率不耐受功能喪失的受限基因時,負擔訊號變得更強。然而,我們沒有觀察到蛋白質截斷變異的效應,這可能因為蛋白質截斷變異的數量過少。儘管沒有發現任何顯著的單一基因,但在與躁鬱症、晝夜節律和電壓門控制離子通道活性相關的基因集中觀察到罕見變異的富集; 也觀察到與精神分裂症和自閉症有關的基因存在關聯性,凸顯了特定的生物學途徑。最後,我們的聯合模型方法顯示,與中等多基因風險評分的蛋白質截斷變異非攜帶者相比,高多基因風險評分的蛋白質截斷變異非攜帶者較有可能罹患躁鬱症,且可能性又略高於高多基因風險評分的蛋白質截斷變異攜帶者。此外,我們也觀察到常見和罕見變異之間可能存在交互作用,代表他們對於躁鬱症有綜合的貢獻。 儘管受到小樣本的限制,我們使用臺灣世代研究中的外顯子數據檢測到罕見變異對於躁鬱症具有中等的影響。此外,我們觀察到躁鬱症和其他精神疾病之間具有重疊的罕見變異負擔,以及常見變異和罕見變異對於躁鬱症的聯合效應。這些發現提供了對東亞人躁鬱症複雜性的見解,並強調了全面性的遺傳分析對於躁鬱症病因的重要性。未來的方向可整合來自不同來源的數據,以擴大樣本數量,並將分析其他更多與躁鬱症相關的特徵。 | zh_TW |
| dc.description.abstract | Bipolar disorder (BD) is characterized by manic and depressive episodes and affects approximately 1-2% of the global population. The heritability from twin studies is about 70%; however, the estimated SNP-based heritability of common variants found by genome-wide association studies (GWAS) is only 25%. This gap is called “missing heritability”, which may be partially explained by the effects of rare deleterious variants not fully captured by GWAS. Research on rare variants has shown heterogenous findings, and few have focused on the East Asian populations. Here, we aim to evaluate the impact of rare deleterious variants on BD in the Taiwanese population using whole exome sequencing (WES) data.
We analyzed 483 BD patients and 535 controls in our WES data, generated via the Blended Genome Exome (BGE) method. After a series of quality control, we kept 1,017 individuals and focused on exome regions where the average read depth was 40x. We used Ensembl’s Variant Effect Predictor (VEP) to annotate variants and grouped them into synonymous, missense, and protein-truncating variants (PTVs) based on the predicted functional consequences. Then, we performed three levels of burden tests for qualifying variants at different minor allele count (MAC) thresholds to examine the association between BD and rare deleterious variants, including exome-wide and gene-set burden tests via Firth’s logistic regression, and gene-based burden tests using Fisher’s exact test. Finally, we employed a joint modeling approach integrating rare variants carrier status and BD polygenic risk scores (PRS) to elucidate the combined effect of common and rare genetic variants on BD risk. Burden tests revealed a small yet significant exome-wide enrichment of rare deleterious variants, particularly for more severe functional classes such as damaging missense variants and at lower MAC thresholds, with no inflation observed in synonymous variants. The burden signals became stronger when restricting to constrained genes with high probability of being Loss-of-function Intolerant (pLI scores> 0.95). However, we did not observe an excess of PTVs in BD, likely due to extremely low counts. While no gene emerged as exome-wide significant, an enrichment of rare deleterious variants was observed in genes associated with BD, circadian rhythm and voltage-gated ion channel activity; a suggestive association was observed for gene implicated in schizophrenia and autism spectrum disorder, highlighting specific biological pathways. Finally, our joint model approach showed that comparing to PTVs non-carriers with intermediate PRS, those with high PRS were more likely to develop BD, slightly larger than that among carriers with high PRS. This model also revealed a marginal interaction between common and rare variants, suggesting their combined contribution to BD risk. Despite the constraint of a small sample size, we detected an overall moderate effect of rare variants on BD using exome data in a Taiwanese cohort. Additionally, we observed overlap of rare-variant burden between BD and other psychiatric traits, and a joint effect of common and rare variants underlying BD susceptibility. These findings provide insights into the genetic complexity of BD among East Asians and highlighting the importance of comprehensive genetic analyses to unravel its etiology. Future directions could include integrating data from various sources to enlarge the sample size and expanding the analysis to BD spectrum phenotypes. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:27:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-21T16:27:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract iii Chapter 1 Introduction 1 Chapter 2 Methods 4 2.1 Study Participants 4 2.2 Whole-Exome Sequencing Data 4 2.3 Quality Control 5 2.4 Variant Annotation 6 2.5 Rare-variant Burden Test 7 2.5.1 Exome-wide burden 7 2.5.2 Candidate gene sets 8 2.5.3 Gene-based burden 8 2.6 Joint Modeling of Rare Variants and Polygenic Risk Score 9 Chapter 3 Results 11 3.1 WES, QC, sample and annotation overview 11 3.2 Contribution of each functional annotation to BD risk 11 3.3 Enrichment of rare variants in highly constrained genes 13 3.4 Burden in tissues and candidate gene sets 14 3.4.1 Brain-enriched genes 15 3.4.2 Genes previously associated with BD, SCZ, ASD 16 3.4.3 Genes derived from previous genetic studies of psychiatric disorders 17 3.5 Gene-based analysis 20 3.6 Joint modeling of rare and common variants 22 3.6.1 Joint analysis of carrier status and PRS 22 3.6.2 Contribution of carrier status and PRS to BD risk 24 Chapter 4 Conclusion 26 References 30 Supplementary Information 36 | - |
| dc.language.iso | en | - |
| dc.subject | 雙極性情感疾患 | zh_TW |
| dc.subject | 東亞人群 | zh_TW |
| dc.subject | 負擔測試 | zh_TW |
| dc.subject | 罕見變異 | zh_TW |
| dc.subject | 全外顯子定序 | zh_TW |
| dc.subject | whole exome sequencing | en |
| dc.subject | burden analysis | en |
| dc.subject | bipolar disorder | en |
| dc.subject | East Asian populations | en |
| dc.subject | rare variants | en |
| dc.title | 臺灣族群中罕見外顯子變異 對於雙極性情感疾患的遺傳傾向 | zh_TW |
| dc.title | Genetic Liability of Bipolar Disorder from Rare Exonic Variants in the Taiwanese Population | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭柏秀;盧子彬;許書睿 | zh_TW |
| dc.contributor.oralexamcommittee | Po-Hsiu Kuo;Tzu-Pin Lu;Shujui Hsu | en |
| dc.subject.keyword | 雙極性情感疾患,全外顯子定序,罕見變異,負擔測試,東亞人群, | zh_TW |
| dc.subject.keyword | bipolar disorder,whole exome sequencing,rare variants,burden analysis,East Asian populations, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202404111 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
| dc.date.embargo-lift | 2029-08-09 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 9.08 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
