請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94903
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林淑華 | zh_TW |
dc.contributor.advisor | Shu-Wha Lin | en |
dc.contributor.author | 廖育濬 | zh_TW |
dc.contributor.author | Yu-Chun Liao | en |
dc.date.accessioned | 2024-08-21T16:23:23Z | - |
dc.date.available | 2024-08-22 | - |
dc.date.copyright | 2024-08-21 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-10 | - |
dc.identifier.citation | 1. Inaba, H., M. Greaves, and C.G. Mullighan. "Acute lymphoblastic leukaemia." Lancet 381.9881 (2013): 1943-1955.
2. 財團法人中華民國癌症基金會. 財團法人中華民國兒童癌症基金會2022年度報告. 財團法人中華民國兒童基金會, 2023. Print. 3. Inaba, H. and C.G. Mullighan. "Pediatric acute lymphoblastic leukemia." Haematologica 105.11 (2020): 2524-2539. 4. "Treatment of Children with Acute Lymphocytic Leukemia (ALL)." American Cancer Society June 24 2024. Web. June 24 2024. 5. Biondi, A., et al. "Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): a randomised, open-label, intergroup study." Lancet Oncol 13.9 (2012): 936-945. 6. Pagliaro, L., et al. "Acute lymphoblastic leukaemia." Nature Reviews Disease Primers 10.1 (2024): 41. 7. Ganguly, S., et al. "Philadelphia Chromosome Positive and Philadelphia-Like Acute Lymphoblastic Leukemia in Children and Adolescents: Current Management, Controversies and Emerging Concepts." Indian J Pediatr 91.1 (2024): 37-46. 8. Conter, V., et al. "Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study." Blood 115.16 (2010): 3206-3214. 9. Bain, B.J. and L. Estcourt, FAB Classification of Leukemia, in Brenner's Encyclopedia of Genetics (Second Edition), S. Maloy and K. Hughes, Editors. 2013, Academic Press: San Diego. p. 5-7. 10. Alaggio, R., et al. "The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms." Leukemia 36.7 (2022): 1720-1748. 11. Brady, S.W., et al. "The genomic landscape of pediatric acute lymphoblastic leukemia." Nat Genet 54.9 (2022): 1376-1389. 12. ISCN 2020: An International System for Human Cytogenomic Nomenclature (2020). 2020, S.Karger AG. 13. Haas, O.A. and A. Borkhardt. "Hyperdiploidy: the longest known, most prevalent, and most enigmatic form of acute lymphoblastic leukemia in children." Leukemia 36.12 (2022): 2769-2783. 14. Kuo, W.-H., et al. "Outcome of acute leukemia patients with central nervous system (CNS) involvement treated with total body or CNS irradiation before transplantation." Therapeutic Radiology and Oncology 2 (2018). 15. Wu, S.Y., et al. "Central Nervous System Prophylaxis and Treatment in Acute Leukemias." Current Treatment Options in Oncology 23.12 (2022): 1829-1844. 16. Suryaprakash, S. and H. Inaba. "Acute Lymphoblastic Leukemia with Central Nervous System Involvement-Challenges in Management." Indian J Pediatr 91.1 (2024): 59-66. 17. Winick, N., et al. "Impact of Initial CSF Findings on Outcome Among Patients With National Cancer Institute Standard- and High-Risk B-Cell Acute Lymphoblastic Leukemia: A Report From the Children’s Oncology Group." Journal of Clinical Oncology 35.22 (2017): 2527-2534. 18. Perruso, L.L., et al. "Patterns and prognostic impact of CNS infiltration in adults with newly diagnosed acute lymphoblastic leukemia." Ann Hematol 103.6 (2024): 2033-2039. 19. Pui, C.H. and S.C. Howard. "Current management and challenges of malignant disease in the CNS in paediatric leukaemia." Lancet Oncol 9.3 (2008): 257-268. 20. Liu, S. and Y. Wang. "Diagnosis and management of adult central nervous system leukemia." Blood Sci 5.3 (2023): 141-149. 21. Frishman-Levy, L. and S. Izraeli. "Advances in understanding the pathogenesis of CNS acute lymphoblastic leukaemia and potential for therapy." Br J Haematol 176.2 (2017): 157-167. 22. Sanchez, R., et al. "Clinical characteristics of patients with central nervous system relapse in BCR-ABL1-positive acute lymphoblastic leukemia: the importance of characterizing ABL1 mutations in cerebrospinal fluid." Ann Hematol 96.7 (2017): 1069-1075. 23. Alsadeq, A. and D.M. Schewe. "Acute lymphoblastic leukemia of the central nervous system: on the role of PBX1." Haematologica 102.4 (2017): 611-613. 24. Jeha, S., et al. "Increased risk for CNS relapse in pre-B cell leukemia with the t(1;19)/TCF3-PBX1." Leukemia 23.8 (2009): 1406-1409. 25. Gentile, G., et al. "Development of combination therapies with BTK inhibitors and dasatinib to treat CNS-infiltrating E2A-PBX1+/preBCR+ ALL." Blood Adv 8.11 (2024): 2846-2860. 26. Winters, A.C. and K.M. Bernt. "MLL-Rearranged Leukemias-An Update on Science and Clinical Approaches." Front Pediatr 5 (2017): 4. 27. Górecki, M., et al. "Updates in KMT2A Gene Rearrangement in Pediatric Acute Lymphoblastic Leukemia." Biomedicines 11.3 (2023): 821. 28. Meyer, C., et al. "The KMT2A recombinome of acute leukemias in 2023." Leukemia 37.5 (2023): 988-1005. 29. Jeha, S., et al. "Improved CNS Control of Childhood Acute Lymphoblastic Leukemia Without Cranial Irradiation: St Jude Total Therapy Study 16." J Clin Oncol 37.35 (2019): 3377-3391. 30. Yao, H., et al. "Leukaemia hijacks a neural mechanism to invade the central nervous system." Nature 560.7716 (2018): 55-60. 31. Shah Scharff, B.F.S., et al. "A comprehensive clinical study of integrins in acute lymphoblastic leukemia indicates a role of α6/CD49f in persistent minimal residual disease and α5 in the colonization of cerebrospinal fluid." Leuk Lymphoma 61.7 (2020): 1714-1718. 32. Rajakumar, S.A., et al. "Targeted blockade of immune mechanisms inhibit B precursor acute lymphoblastic leukemia cell invasion of the central nervous system." Cell Reports Medicine 2.12 (2021): 100470. 33. Gebing, P., et al. "A brain organoid/ALL co-culture model reveals the AP-1 pathway as critically associated with CNS involvement of BCP-ALL." Blood Adv (2024). 34. Stong, R.C., et al. "Human acute leukemia cell line with the t(4;11) chromosomal rearrangement exhibits B lineage and monocytic characteristics." Blood 65.1 (1985): 21-31. 35. Goedhart, J. and M.S. Luijsterburg. "VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots." Sci Rep 10.1 (2020): 20560. 36. Ge, S.X., D. Jung, and R. Yao. "ShinyGO: a graphical gene-set enrichment tool for animals and plants." Bioinformatics 36.8 (2019): 2628-2629. 37. Fernández-Sevilla, L.M., et al. "Acute lymphoblastic leukemia cells are able to infiltrate the brain subventricular zone stem cell niche and impair neurogenesis." Haematologica 107.4 (2022): 1004-1007. 38. Williams, M.T.S., et al. "The ability to cross the blood–cerebrospinal fluid barrier is a generic property of acute lymphoblastic leukemia blasts." Blood 127.16 (2016): 1998-2006. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94903 | - |
dc.description.abstract | 急性淋巴性白血病(Acute lymphoblastic leukemia,ALL)為淋巴系前驅白血球發生基因突變,進而不良性增生所造成的惡性血液疾病。其好發於年輕族群,在台灣為兒童癌症發生率之首。根據免疫分型,急性淋巴性白血病可分為T細胞型(T-ALL)及B細胞型(B-ALL),並再根據基因突變分為不同亞型。在B-ALL中,常見突變有hyperdiploid、hypodiploid、KMT2A rearrangement、BCR::ABL1、ETV6::RUNX1、TCF3::PBX1等,其中KMT2A rearrangement屬於中樞神經侵犯高風險亞型,同時該亞型預後較差,且在一歲以下嬰幼兒新診斷病例占約70%以上。在現行治療下,對於中樞神經侵犯已有良好的成效,然而對於其本身的機制尚未明瞭。過往文獻提出過多種不同假說,指出某些基因與中樞神經侵犯有關,如2018年有文獻提出B-ALL細胞藉由表現integrin α6,利用血管外壁之laminin由顱骨骨髓腔爬行至蜘蛛網膜下腔;2020年一文獻則觀察到ITGA5及ITGA9的表現量上升與B-ALL細胞於中樞神經系統定殖(colonization)成正相關性;2021年又有另一文獻則提出B-ALL細胞利用蝕骨作用以及CXCR4介導的趨化訊號得以從顱骨進入蜘蛛網膜下腔。然而目前尚未有一定論提出某一機制主導中樞神經侵犯發生,不同亞型是否由同一機制主導也並未確定。綜上所述,本研究旨在探討與B-ALL中樞神經侵犯相關之基因,並集中於KMT2A rearrangement亞型;鑒於中樞神經侵犯檢體不易大量取得,本研究亦使用病人腫瘤異體移植模型(Patient-derived xenograft model,PDX model)克服此一困難。本研究先對十五位KMT2A rearrangement B-ALL病人原有檢體進行RNA定序分析,未發現有基因集於有中樞神經侵犯病人之血癌細胞顯著調升,推論其原因為病人原有檢體非中樞神經侵犯檢體,故未能觀察到與中樞神經侵犯能力及發生等相關的基因表現變化。本研究接著使用重度免疫缺陷NSG™小鼠進行PDX模型之建立,並先採用人類血癌細胞株RS4;11進行異體移植前驅實驗。RS4;11移植於小鼠後,可自小鼠頭部切片觀察到其分布於蜘蛛網膜下腔區域,表明該移植模型可呈現中樞神經侵犯表型。鑒於RS4;11移植模型的成功,我們自前述病人中挑選六位病人個別建立PDX模型,其中三位病人診斷時有中樞神經侵犯,三位則無。對自PDX小鼠分離之中樞神經侵犯細胞進行RNA定序分析,發現整合素基因如ITGA6、ITGA7、ITGA9、ITGB5有顯著調升,同時數個整合素基因如ITGA2B、ITGB2、ITGB3等有顯著調降。以過表徵分析(ORA)則自KEGG資料庫辨別出如「ECM receptor interaction」、「PI3K-Akt signaling pathway」等基因集有所調升,前者包含整合素基因ITGA7、ITGA9、ITGB5,後者包含ITGA6。綜上所述,本研究成功建立PDX模型以供辨識主導KMT2A rearrangement B-ALL中樞神經侵犯的基因路徑。 | zh_TW |
dc.description.abstract | Acute lymphoblastic leukemia (ALL) is a malignant hematologic disease caused by genetic mutations in lymphoid precursor cells, leading to abnormal proliferation. It predominantly affects young individuals and is the most common childhood cancer in Taiwan. ALL can be classified into T-cell type (T-ALL) and B-cell type (B-ALL) by immunophenotyping, and further classified into different subtypes according to the genetic mutation of the cancer cells. In B-ALL, common mutations include hyperdiploid, hypodiploid, KMT2A rearrangement (KMT2A-r), BCR::ABL1, ETV6::RUNX1, TCF3::PBX1, etc.. The KMT2A-r subtype is associated with a high risk of central nervous system (CNS) involvement and has a poorer prognosis, with over 70% of new diagnoses in infants under one year old. Current treatments have shown good efficacy against CNS involvement, but the underlying mechanisms remain unclear. Previous studies have proposed various hypotheses linking certain genes to CNS involvement. For instance, a 2018 study suggested that B-ALL cells express integrin α6, using laminin on the vascular wall to migrate from the cranial bone marrow cavity to the subarachnoid space. A 2020 study observed increased expression of ITGA5 and ITGA9, correlating with B-ALL cell colonization in the CNS. Another study in 2021 proposed that B-ALL cells utilize osteolysis and CXCR4-mediated chemotaxis to enter the subarachnoid space from the cranial bone. However, no definitive mechanism has been suggested, and it is unclear whether different subtypes are governed by the same mechanism. Our study aims to investigate genes related to CNS involvement in B-ALL, especially focusing on the KMT2A-r subtype. Due to the difficulty in obtaining large quantities of CNS involvement samples, we also utilize patient-derived xenograft (PDX) model to overcome this challenge. Initial RNA sequencing analysis of original samples from 15 KMT2A-r B-ALL patients did not reveal significant gene set upregulation in leukemia cells from patients with CNS involvement. We proposed that because the original samples were not from CNS involvement samples, we weren’t able to observe expression changes of genes related to CNS involvement. We then established PDX models using severely immunodeficient NSG™ mice, while first establishing xenograft model with human KMT2A-r B-ALL cell line RS4;11 as a pilot study. After transplantation, we observed RS4;11 in the subarachnoid space in mice head sections. Thus we confirm that the RS4;11 xenograft model can represent CNS involvement phenotypes. Based on the successful results of RS4;11, we select six patients, three with CNS involvement and three without, and we establish PDX models for individual patients. RNA sequencing analysis of CNS involvement cells isolated from PDX mice revealed significant upregulation of integrin genes such as ITGA6, ITGA7, ITGA9, and ITGB5 and downregulation of several integrin genes such as ITGA2B, ITGB2, and ITGB3. Furthermore, Over-Representation Analysis (ORA) identified several gene sets that are enriched in CNS involvement cells, such as “ECM receptor interaction”, in which ITGA7, ITGA9, and ITGB5 are included, and “PI3K-Akt signaling pathway”, in which ITGA6 is included. Taken together, we have established PDX models that allow us to identify novel pathways that govern CNS involvement in KMT2A-r B-ALL | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:23:22Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-21T16:23:23Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii 英文摘要 iv 表次 ix 圖次 x 中英對照表 xi 縮寫表 xii 第一章 緒論 1 1.1急性淋巴性白血病 1 1.2急性淋巴性白血病之亞型 2 1.3急性淋巴性白血病之中樞神經侵犯 2 1.4中樞神經侵犯發生與白血病亞型相關性與KMT2A-r亞型 3 1.5中樞神經侵犯機制尚未明瞭 4 1.6研究動機 4 第二章 實驗方法與材料 6 2.1細胞株及病人血癌細胞 6 2.1.1細胞株 6 2.1.2病人血癌細胞 6 2.2實驗動物 6 2.3人類白血病細胞異體移植小鼠模型 6 2.3.1尾靜脈注射 6 2.3.2血癌細胞生長監測及小鼠檢體採集 7 2.3.3小鼠檢體血癌細胞萃取 7 2.3.4流式細胞儀分析 8 2.4血癌細胞RNA萃取及定序分析 9 2.5小鼠頭部石蠟包埋製作 9 2.6組織免疫化學染色 10 2.7數據分析 10 第三章 實驗結果 11 3.1 KMT2A-r B-ALL病人基因表現差異分析 11 3.1.1病人資訊 11 3.1.2有中樞神經侵犯之病人未有基因路徑顯著調升 11 3.2人類血癌細胞株前驅實驗 11 3.2.1人類血癌細胞株異體移植模型之建立 11 3.2.2中樞神經侵犯可見於細胞株異體移植模型 12 3.3病人腫瘤異體移植(PDX)模型 12 3.3.1 PDX模型之建立 12 3.3.2病人之中樞神經侵犯表型可重現於PDX模型 13 3.4 PDX模型檢體RNA定序分析 14 3.4.1 Pt#2 PDX檢體RNA定序分析 14 3.4.2 Pt#3 PDX檢體RNA定序分析 14 3.4.3 Pt#11 PDX檢體RNA定序分析 15 3.4.4 Pt#1 PDX檢體RNA定序分析 15 3.4.5過表徵分析(Over-Representation Analysis,ORA) 15 第四章 討論 17 4.1 病人原有檢體之RNA定序分析 17 4.2 RS4;11異體移植模型與PDX模型之建立 17 4.3無中樞神經侵犯病人之PDX模型呈現中樞神經侵犯表型 18 4.4 PDX小鼠中樞神經侵犯細胞之RNA定序分析 19 第五章 結論與展望 21 參考文獻 22 表 27 圖 37 附錄 64 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用病人腫瘤異體移植小鼠模型探討KMT2A-r亞型B細胞急性淋巴性白血病中樞神經侵犯相關基因 | zh_TW |
dc.title | Investigating genes related to central nervous system invasion of KMT2A-r B cell acute lymphoblastic leukemia utilizing patient-derived xenograft mouse model | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 楊永立;林亮音;徐玉真 | zh_TW |
dc.contributor.oralexamcommittee | Yung-Li Yang;Liang-In Lin;Yu-Chen Hsu | en |
dc.subject.keyword | 小兒癌症,急性淋巴性白血病,中樞神經侵犯,KMT2A-r亞型,整合素, | zh_TW |
dc.subject.keyword | pediatric cancer,acute lymphoblastic leukemia,CNS involvement,KMT2A rearrangement,integrin, | en |
dc.relation.page | 66 | - |
dc.identifier.doi | 10.6342/NTU202404171 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-12 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 醫學檢驗暨生物技術學系 | - |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 3.6 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。