Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94902
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李苑玲zh_TW
dc.contributor.advisorYuan-Ling Leeen
dc.contributor.author吳崇瑋zh_TW
dc.contributor.authorChung-Wei Wuen
dc.date.accessioned2024-08-21T16:22:55Z-
dc.date.available2024-08-22-
dc.date.copyright2024-08-21-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citationAbraham, W. (1983). Principles of biochemistry: mammalian biochemistry.
Aguilar, P., & Linsuwanont, P. (2011). Vital pulp therapy in vital permanent teeth with cariously exposed pulp: a systematic review. Journal of endodontics, 37(5), 581-587.
Abraham, W. (1983). Principles of biochemistry: mammalian biochemistry.
Aguilar, P., & Linsuwanont, P. (2011). Vital pulp therapy in vital permanent teeth with cariously exposed pulp: a systematic review. Journal of endodontics, 37(5), 581-587.
Al-Sanabani, J. S., Madfa, A. A., & Al-Sanabani, F. A. (2013). Application of calcium phosphate materials in dentistry. International journal of biomaterials, 2013.
Bakhtiar, H., Mazidi S, A., Mohammadi Asl, S., Ellini, M., Moshiri, A., Nekoofar, M., & Dummer, P. (2018). The role of stem cell therapy in regeneration of dentine-pulp complex: a systematic review. Progress in biomaterials, 7(4), 249-268.
Banava, S., Fazlyab, M., Heshmat, H., Mojtahedzadeh, F., & Motahhary, P. (2015). Histological evaluation of single and double-visit direct pulp capping with different materials on sound human premolars: a randomized controlled clinical trial. Iranian Endodontic Journal, 10(2), 82.
Boskey, A., & Posner, A. (1976). Formation of hydroxyapatite at low supersaturation. The Journal of Physical Chemistry, 80(1), 40-45.
Brown, W. E. (1962). Octacalcium phosphate and hydroxyapatite: crystal structure of octacalcium phosphate.
Chang, S.-W., Kim, J.-Y., Kim, M.-J., Kim, G.-H., Yi, J.-K., Lee, D.-W., . . . Kim, E.-C. (2016). Combined effects of mineral trioxide aggregate and human placental extract on rat pulp tissue and growth, differentiation and angiogenesis in human dental pulp cells. Acta Odontologica Scandinavica, 74(4), 298-306.
Chang, Y.-L., Lew, D., Park, J. B., & Keller, J. C. (1999). Biomechanical and morphometric analysis of hydroxyapatite-coated implants with varying crystallinity. Journal of Oral and Maxillofacial Surgery, 57(9), 1096-1108. doi:http://dx.doi.org/10.1016/S0278-2391(99)90333-6
Cherng, A., Chow, L. C., & Takagi, S. (2004). Reduction in dentin permeability using mildly supersaturated calcium phosphate solutions. Archives of oral biology, 49(2), 91-98.
Cvek, M. (1992). Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Endod Dent Traumatol, 8(2), 45-55. doi:10.1111/j.1600-9657.1992.tb00228.x
Dorozhkin, S. V. (2010). Amorphous calcium (ortho)phosphates. Acta Biomater, 6(12), 4457-4475. doi:10.1016/j.actbio.2010.06.031
Dorozhkin, S. V., & Epple, M. (2002). Biological and Medical Significance of Calcium Phosphates. Angewandte Chemie International Edition, 41(17), 3130-3146. doi:10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1
Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677-689. doi:10.1016/j.cell.2006.06.044
Friedman, S., & Mor, C. (2004). The success of endodontic therapy-healing and functionality. CDA J, 32(6), 493-503.
Galler, K. M., D’souza, R., Hartgerink, J., & Schmalz, G. (2011). Scaffolds for dental pulp tissue engineering. Advances in Dental Research, 23(3), 333-339.
Glimcher, M. J. (1984). Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Philos Trans R Soc Lond B Biol Sci, 304(1121), 479-508. Retrieved from http://rstb.royalsocietypublishing.org/content/304/1121/479.long
Grynpas, M. D., & Omelon, S. (2007). Transient precursor strategy or very small biological apatite crystals? In (Vol. 41, pp. 162-164): Elsevier.
Huang, G.-J., Gronthos, S., & Shi, S. (2009). Critical reviews in oral biology & medicine: mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. Journal of Dental Research, 88(9), 792.
Huang, G. T.-J., Yamaza, T., Shea, L. D., Djouad, F., Kuhn, N. Z., Tuan, R. S., & Shi, S. (2010). Stem/progenitor cell–mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Engineering Part A, 16(2), 605-615.
IMAI, Y., & AKIMOTO, T. (1990). A new method of treatment for dentin hypersensitivity by precipitation of calcium phosphate in situ. Dental materials journal, 9(2), 167-172,229.
Iohara, K., Zheng, L., Ito, M., Ishizaka, R., Nakamura, H., Into, T., . . . Nakashima, M. (2009). Regeneration of dental pulp after pulpotomy by transplantation of CD31-/CD146-side population cells from a canine tooth.
Ishikawa, K., Suge, T., Yoshiyama, M., Kawasaki, A., Asaoka, K., & Ebisu, S. (1994). Occlusion of dentinal tubules with calcium phosphate using acidic calcium phosphate solution followed by neutralization. Journal of Dental Research, 73(6), 1197-1204.
Johansen, E., & Parks, H. F. (1962). Electron-microscopic observations on sound human dentine. Arch Oral Biol, 7, 185-193.
Kisby, L. (2016). Vital pulp therapy in primary teeth: an update. Dentistry today, 35(5), 112-113.
Mansbridge, J. (2009). A “selection model” of political representation. Journal of Political Philosophy, 17(4), 369-398.
Matsumine, A., Kusuzaki, K., Matsubara, T., Okamura, A., Okuyama, N., Miyazaki, S., . . . Uchida, A. (2006). Calcium phosphate cement in musculoskeletal tumor surgery. Journal of Surgical Oncology, 93(3), 212-220. doi:10.1002/jso.20355
Moussa, D. G., & Aparicio, C. (2019). Present and future of tissue engineering scaffolds for dentin‐pulp complex regeneration. Journal of tissue engineering and regenerative medicine, 13(1), 58-75.
Neiders, M. E., Weiss, L., & Cudney, T. L. (1970). An electrokinetic characterization of human tooth surfaces. Arch Oral Biol, 15(2), 135-151. doi:10.1016/0003-9969(70)90049-x
Pan, H., Liu, X. Y., Tang, R., & Xu, H. Y. (2010). Mystery of the transformation from amorphous calcium phosphate to hydroxyapatite. Chemical communications, 46(39), 7415-7417.
Posner, A. S., & Tannenbaum, P. J. (1984). The mineral phase of dentin. Dentin and dentinogenesis, 2, 17-36.
Qu, T., Jing, J., Ren, Y., Ma, C., Feng, J. Q., Yu, Q., & Liu, X. (2015). Complete pulpodentin complex regeneration by modulating the stiffness of biomimetic matrix. Acta Biomater, 16, 60-70. doi:10.1016/j.actbio.2015.01.029
Quinaux, N., & Richelle, L. (1967). X-RAY DIFFRACTION AND INFRARED ANALYSIS OF BONE SPECIFIC GRAVITY FRACTIONS IN GROWING RAT. Israel Journal of Medical Sciences, 3(5), 677-&.
Ravindran, S., Huang, C.-C., & George, A. (2014). Extracellular matrix of dental pulp stem cells: applications in pulp tissue engineering using somatic MSCs. Frontiers in physiology, 4, 395.
Rutherford, R. B., & Gu, K. (2000). Treatment of inflamed ferret dental pulps with recombinant bone morphogenetic protein‐7. European journal of oral sciences, 108(3), 202-206.
Suchanek, W., & Yoshimura, M. (1998). Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research, 13(01), 94-117. doi:doi:10.1557/JMR.1998.0015
Suge, T., Ishikawa, K., Kawasaki, A., Yoshiyama, M., Asaoka, K., & Ebisu, S. (1995). Duration of dentinal tubule occlusion formed by calcium phosphate precipitation method: in vitro evaluation using synthetic saliva. Journal of Dental Research, 74(10), 1709-1714.
Tung, M. S., Bowen, H. J., Derkson, G. D., & Pashley, D. H. (1993). Effects of calcium phosphate solutions on dentin permeability. J Endod, 19(8), 383-387. doi:10.1016/S0099-2399(06)81500-1
Vacanti, J. P., & Langer, R. (1999). Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. The lancet, 354, S32-S34.
Veis, A. (2005). Materials science. A window on biomineralization. Science, 307(5714), 1419-1420. doi:10.1126/science.1109440
Wang, L., & Stegemann, J. P. (2010). Extraction of high quality RNA from polysaccharide matrices using cetlytrimethylammonium bromide. Biomaterials, 31(7), 1612-1618.
Watson, M. L., & Avery, J. K. (1954). The development of the hamster lower incisor as observed by electron microscopy. Am J Anat, 95(1), 109-161. doi:10.1002/aja.1000950105
Weiner, S., & Price, P. A. (1986). Disaggregation of bone into crystals. Calcif Tissue Int, 39(6), 365-375.
Weiss, M. P., Voegel, J. C., & Frank, R. M. (1981). Enamel crystallite growth: width and thickness study related to the possible presence of octocalcium phosphate during amelogenesis. J Ultrastruct Res, 76(3), 286-292. Retrieved from http://www.sciencedirect.com/science/article/pii/S0022532081800597
Witherspoon, D. E. (2008). Vital pulp therapy with new materials: new directions and treatment perspectives—permanent teeth. Pediatric dentistry, 30(3), 220-224.
Wu, Y., Glimcher, M. J., Rey, C., & Ackerman, J. L. (1994). A unique protonated phosphate group in bone mineral not present in synthetic calcium phosphates. Identification by phosphorus-31 solid state NMR spectroscopy. J Mol Biol, 244(4), 423-435. doi:10.1006/jmbi.1994.1740
Yang, R., Tan, L., Cen, L., & Zhang, Z. (2016). An injectable scaffold based on crosslinked hyaluronic acid gel for tissue regeneration. RSC Advances, 6(20), 16838-16850. doi:10.1039/c5ra27870h
Yang, X., Xie, B., Wang, L., Qin, Y., Henneman, Z. J., & Nancollas, G. H. (2011). Influence of magnesium ions and amino acids on the nucleation and growth of hydroxyapatite. CrystEngComm, 13(4), 1153-1158.
Zhang, J., Zhang, W., & Wang, L. (2022). In Situ Observation of Dicalcium Phosphate Monohydrate Formation and Phase Transformation. The Journal of Physical Chemistry B, 126(26), 4881-4888.
Zhao, J., Liu, Y., Sun, W.-b., & Yang, X. (2012). First detection, characterization, and application of amorphous calcium phosphate in dentistry. Journal of Dental Sciences, 7(4), 316-323.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94902-
dc.description.abstract傳統人工合成的氫氧基磷灰石(hydroxyapatite, HAP)為結晶性良好的磷酸鹽材料,是臨床醫療常見的人工骨粉材料,在做為骨傳導(osteoconduction)的應用上具有相當良好的療效。近年研究發現生物體中的HAP隨著硬組織的不同而呈現不同的次級結構,在生物礦化過程扮演重要調控角色。因此開發HAP前驅物或晶體結構較不穩定之磷酸鈣材料,用於生物硬組織再生研究成為新興的課題。由於感染的根管在進行情創與修形後,會影響根管表面硬組織的形態特徵與組成性質,在後續若要進行牙本質-牙髓再生(dentin-pulp regeneration)處置時可能不利於幹細胞的貼附、生長與分化。因此本研究目的是利用沈積法在根管內表面形成一層均質覆蓋且結晶性不佳的磷酸鈣沈積物,透過可釋放鈣離與磷酸根離子的特性吸引並調控幹細胞的生物礦化行為,並且改變根管表面形態特徵以利於幹細胞貼附生長。本研究首先使用接近飽和濃度的10% Na2HPO4與不同濃度的CaCl2溶液進行沉澱反應來製備磷酸鈣沈積物,從產物結晶尺寸與反應酸鹼值結果,選擇0.05 M與0.1 M CaCl2進行後續實驗。接著在牙本質樣本的根管表面直接進行沈積反應,評估反應時間、CaCl2濃度對於牙本質表面之磷酸鈣沈積物形態、組成成分、晶體結構與覆蓋牙本質表面行為的影響效應。最後再以牙根根管模型進行研究,測試溶液沖洗位置與CaCl2濃度對於根管表面形成磷酸鈣沈積物的覆蓋行為。
掃描式電子顯微鏡(scanning electron microscope, SEM)分析發現,當反應時間大於15分鐘時,無論是0.05 M與0.1 M CaCl2組均可於牙本質表面形成高覆蓋率的磷酸鈣沈積物,主要呈現表面針刺狀或條狀結晶覆蓋的球狀結構,與HAP結構相似,0.1 M組在反應時間大於30分鐘時開始可觀察到少量片狀結晶散布於球狀主結構中。此外隨著反應時間與CaCl2濃度增加,穿透式電子顯微鏡(transmission electron microscope, TEM)分析發現產物鈣磷比從1.31增加到1.47,同時產物晶體也逐漸呈現方向性排列形態,而選區電子衍射(selected area electron diffraction, SAED)的晶體繞射點亦趨明顯,顯示產物結晶性提升,其結構鑑定為缺鈣型氫氧基磷灰石(calcium-deficient hydroxyapatite , CDHA)。覆蓋率分析方面,當反應時間為15分鐘時,0.05 M組平均覆蓋率為97.82%、平均覆蓋厚度為18.71 µm,0.1 M 組平均覆蓋率為97.57%、平均覆蓋厚度為12.79 µm,兩組的平均覆蓋率與覆蓋厚度相似,沒有統計顯著差異。於牙根根管模型的研究結果發現,針頭置於根管中段進行沖洗所形成磷酸鈣沉積物覆蓋情況最佳,當反應時間為15分鐘時,0.05 M組的產物均呈現球狀結構,其平均覆蓋率為93.39 %,0.1 M 組則除了球狀結構外亦有片狀結構出現,其平均覆蓋率為95.88 %,兩者間沒有統計顯著差異。
總結來說,將針頭置於根管中段沖洗0.05 M CaCl2 15分鐘,可在牙根根管樣本表面形成覆蓋率高、均值度佳、低結晶性的磷酸鈣沈積物,推測將有利於調控齒源性幹細胞的生物礦化行為,進而達到促進牙本質與牙髓組織再生的結果。
zh_TW
dc.description.abstractArtificial hydroxyapatite(HAP) is a kind of calcium phosphate with well crystallized and good biocompatibility. It is widely used in bone graft material because good osteoconductive ability results in good treatment outcomes. There are several HAP substructures in different hard tissues, and it plays an essential regulatory role in the biomineralization process. Therefore, developing HAP precursors or calcium phosphate materials with relatively unstable crystal structures for studying biological hard tissue regeneration has become an emerging topic. The morphological characteristics and composition of the hard tissue on the surface of the root canal might be affected by canal debridement and enlargement, and may be unfavorable for subsequent dentin-pulp regeneration for attachment, growth, and differentiation of stem cells. Therefore, the purpose of this study is to use the precipitation method to form a layer of calcium phosphate deposits with homogeneous coverage and poor crystallinity on the inner surface of the root canal. Change the morphological characteristics of root canal surface to facilitate the growth of stem cells.
In this study, we use the precipitation method to form calcium phosphate using a serial application of a 10% Na2HPO4 and different concentrations of CaCl2 and observe the appropriate crystal form and size under the optical microscope as a result of an ionic reaction. Considering the neutral pH value and small crystal size of calcium phosphate formation, we choose 0.05M and 0.1M CaCl2 as ideal concentrations and apply them to the following experiment. Then, the deposition reaction was performed directly on the dentin samples. The effect of reaction time and CaCl2 concentration on the morphology, composition, crystal structure, and behavior of covering the dentin surface of calcium phosphate deposits were evaluated. Finally, the root canal samples were used to study the coverage behavior by different solution irrigation positions and CaCl2 concentration in forming calcium phosphate deposits on the root canal surface.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:22:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-21T16:22:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝詞 i
中文摘要 ii
英文摘要 iv
目次 vi
圖次 ix
表次 xii
縮寫表 xiii
第一章 前言 1
第二章 文獻回顧 3
2.1 現代根管治療之發展與限制 3
2.2 組織工程於牙本質-牙髓再生之目前應用與限制 4
2.3 支架設計 6
2.3.1 清創後的根管表面 6
2.3.2 材料基值剛性與誘導組織再生的關聯 6
2.3.3 磷酸鈣於生物醫學上的應用 7
2.3.4 磷酸鈣於牙本質再生的應用 9
第三章 動機與目的 10
第四章 材料與方法 11
4.1 儀器裝置 11
4.2 藥品材料 11
4.3 利用沈澱法製備磷酸鈣 12
4.4 氯化鈣濃度對磷酸鈣晶體形成的影響效應 12
4.5 牙本質樣本與牙根根管樣本製備 12
4.6 影響磷酸鈣在牙本質表面生成變因分析 13
4.6.1 反應時間與氯化鈣濃度變因 13
4.6.2 掃描式電子顯微鏡(SEM)觀察 14
4.6.3 穿透式電子顯微鏡-能量光譜(TEM-EDS)及選區電子衍射(SAED)分析 14
4.6.4 磷酸鈣沈積物覆蓋率半定量分析 14
4.7 影響磷酸鈣在牙根根管表面生成變因分析 15
4.7.1 沖洗針頭位置變因 15
4.7.2 沖洗針頭位置變因 15
第五章 結果 17
5.1 氯化鈣濃度的影響效應 17
5.2 反應時間對磷酸鈣沈積物覆蓋牙本質表面的影響效應 17
5.2.1 磷酸鈣覆蓋牙本質行為評估 17
5.2.2 磷酸鈣產物顯微結構觀察 18
5.2.3 磷酸鈣產物晶相鑑定 18
5.2.4 磷酸鈣產物鈣磷比分析 19
5.3 氯化鈣濃度對磷酸鈣沈積物覆蓋牙本質表面的影響效應 20
5.3.1 磷酸鈣覆蓋牙本質表面形態觀察(光學顯微鏡+SEM) 20
5.3.2 磷酸鈣覆蓋率與覆蓋厚度分析 20
5.3.3 磷酸鈣產物晶相鑑定 18
5.3.4 磷酸鈣產物鈣磷比分析 19
5.4 根管內表面生成磷酸鈣沈積物行為分析 21
5.4.1 沖洗位置的影響效應 21
5.4.2 0.05M氯化鈣於根管內表面生成磷酸鈣沈積物覆蓋行為 21
5.4.3 0.1M氯化鈣於根管內表面生成磷酸鈣沈積物覆蓋行為 22
第六章 討論 23
6.1 實驗模型之探討 23
6.1.1 使用沉澱法於牙本質表面形成磷酸鈣結晶沈澱 20
6.1.2 使用牙根根管樣本 20
6.2 磷酸鈣覆蓋率及覆蓋厚度之探討 24
6.3 晶體組成與結構分析之探討 24
6.4 晶體形態分析之探討 25
第七章 結論 26
參考文獻 27
附錄 32
-
dc.language.isozh_TW-
dc.subject牙本質-牙髓再生zh_TW
dc.subject牙根根管zh_TW
dc.subject缺鈣型氫氧基磷灰石zh_TW
dc.subject非晶性磷酸鈣zh_TW
dc.subjectroot canalen
dc.subjectamorphous calcium phosphateen
dc.subjectpulp-dentin regenerationen
dc.subjectcalcium-deficient hydroxyapatiteen
dc.title根管壁磷酸鈣沈積於誘導牙本質再生之應用zh_TW
dc.titleCalcium Phosphate Deposition in Canal Wall for Induction of Dentinogenesisen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林思洸;林弘萍;陳振中zh_TW
dc.contributor.oralexamcommitteeSze-Kwan Lin;Hong-Ping Lin;Chun-Chung Chanen
dc.subject.keyword牙本質-牙髓再生,牙根根管,缺鈣型氫氧基磷灰石,非晶性磷酸鈣,zh_TW
dc.subject.keywordpulp-dentin regeneration,root canal,amorphous calcium phosphate,calcium-deficient hydroxyapatite,en
dc.relation.page59-
dc.identifier.doi10.6342/NTU202404225-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床牙醫學研究所-
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf4.76 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved