請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94898完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹迺立 | zh_TW |
| dc.contributor.advisor | Nei-Li Chan | en |
| dc.contributor.author | 劉可婷 | zh_TW |
| dc.contributor.author | Ko-Ting Liu | en |
| dc.date.accessioned | 2024-08-21T16:21:01Z | - |
| dc.date.available | 2024-08-22 | - |
| dc.date.copyright | 2024-08-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | Adachi, N., Miyaike, M., Kato, S., Kanamaru, R., Koyama, H., and Kikuchi, A. (1997) Cellular distribution of mammalian DNA topoisomerase II is determined by its catalytically dispensable C-terminal domain. Nucleic Acids Res, 25, 3135-3142.
Adachi, Y., Luke, M., and Laemmli, U.K. (1991) Chromosome assembly in vitro: topoisomerase II is required for condensation. Cell, 64, 137-148. Akimitsu, N., Adachi, N., Hirai, H., Hossain, M.S., Hamamoto, H., Kobayashi, M., Aratani, Y., Koyama, H., and Sekimizu, K. (2003) Enforced cytokinesis without complete nuclear division in embryonic cells depleting the activity of DNA topoisomerase IIalpha. Genes Cells, 8, 393-402. Anderle, C., Stieger, M., Burrell, M., Reinelt, S., Maxwell, A., Page, M., and Heide, L. (2008) Biological activities of novel gyrase inhibitors of the aminocoumarin class. Antimicrob Agents Chemother, 52, 1982-1990. Aravind, L., Leipe, D.D., and Koonin, E.V. (1998) Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res, 26, 4205-4213. Bachant, J., Alcasabas, A., Blat, Y., Kleckner, N., and Elledge, S.J. (2002) The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA topoisomerase II. Mol Cell, 9, 1169-1182. Baldi, M.I., Benedetti, P., Mattoccia, E., and Tocchini-Valentini, G.P. (1980) In vitro catenation and decatenation of DNA and a novel eucaryotic ATP-dependent topoisomerase. Cell, 20, 461-467. Baranello, L., Wojtowicz, D., Cui, K., Devaiah, B.N., Chung, H.J., Chan-Salis, K.Y., Guha, R., Wilson, K., Zhang, X., Zhang, H., et al. (2016) RNA Polymerase II Regulates Topoisomerase 1 Activity to Favor Efficient Transcription. Cell, 165, 357-371. Bates, A.D., Berger, J.M., and Maxwell, A. (2011) The ancestral role of ATP hydrolysis in type II topoisomerases: prevention of DNA double-strand breaks. Nucleic Acids Res, 39, 6327-6339. Bax, B.D., Chan, P.F., Eggleston, D.S., Fosberry, A., Gentry, D.R., Gorrec, F., Giordano, I., Hann, M.M., Hennessy, A., Hibbs, M., et al. (2010) Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature, 466, 935-940. Bax, B.D., Murshudov, G., Maxwell, A., and Germe, T. (2019) DNA topoisomerase inhibitors: trapping a DNA-cleaving machine in motion. J Mol Biol, 431, 3427-3449. Ben Chorin, A., Masrati, G., Kessel, A., Narunsky, A., Sprinzak, J., Lahav, S., Ashkenazy, H., and Ben-Tal, N. (2020) ConSurf-DB: An accessible repository for the evolutionary conservation patterns of the majority of PDB proteins. Protein Sci, 29, 258-267. Berger, J.M., Fass, D., Wang, J.C., and Harrison, S.C. (1998) Structural similarities between topoisomerases that cleave one or both DNA strands. Proc Natl Acad Sci U S A, 95, 7876-7881. Berger, J.M., Gamblin, S.J., Harrison, S.C., and Wang, J.C. (1996) Structure and mechanism of DNA topoisomerase II. Nature, 379, 225-232. Bergerat, A., de Massy, B., Gadelle, D., Varoutas, P.C., Nicolas, A., and Forterre, P. (1997) An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature, 386, 414-417. Bergerat, A., Gadelle, D., and Forterre, P. (1994) Purification of a DNA topoisomerase II from the hyperthermophilic archaeon Sulfolobus shibatae. A thermostable enzyme with both bacterial and eucaryal features. J Biol Chem, 269, 27663-27669. Berti, M., and Vindigni, A. (2016) Replication stress: getting back on track. Nat Struct Mol Biol, 23, 103-109. Birnie, A., and Dekker, C. (2021) Genome-in-a-box: building a chromosome from the bottom up. ACS Nano, 15, 111-124. Blower, T.R., Bandak, A., Lee, A.S.Y., Austin, C.A., Nitiss, J.L., and Berger, J.M. (2019) A complex suite of loci and elements in eukaryotic type II topoisomerases determine selective sensitivity to distinct poisoning agents. Nucleic Acids Res, 47, 8163-8179. Brino, L., Urzhumtsev, A., Mousli, M., Bronner, C., Mitschler, A., Oudet, P., and Moras, D. (2000) Dimerization of Escherichia coli DNA-gyrase B provides a structural mechanism for activating the ATPase catalytic center. J Biol Chem, 275, 9468-9475. Broderick, L., Clay, G.M., Blum, R.H., Liu, Y., McVicar, R., Papes, F., Booshehri, L.M., Cowell, I.G., Austin, C.A., Putnam, C.D., and Kaufman, D.S. (2022) Disease- associated mutations in topoisomerase IIbeta result in defective NK cells. J Allergy Clin Immunol, 149, 2171-2176 e2173. Broderick, L., Yost, S., Li, D., McGeough, M.D., Booshehri, L.M., Guaderrama, M., Brydges, S.D., Kucharova, K., Patel, N.C., Harr, M., et al. (2019) Mutations in topoisomerase IIbeta result in a B cell immunodeficiency. Nat Commun, 10, 3644. Brown, P.O., and Cozzarelli, N.R. (1981) Catenation and knotting of duplex DNA by type 1 topoisomerases: a mechanistic parallel with type 2 topoisomerases. Proc Natl Acad Sci U S A, 78, 843-847. Buhler, C., Gadelle, D., Forterre, P., Wang, J.C., and Bergerat, A. (1998) Reconstitution of DNA topoisomerase VI of the thermophilic archaeon Sulfolobus shibatae from subunits separately overexpressed in Escherichia coli. Nucleic Acids Res, 26, 5157- 5162. Bunch, H., Jeong, J., Kang, K., Jo, D.S., Cong, A.T.Q., Kim, D., Kim, D., Cho, D.H., Lee, Y.M., Chen, B.P.C., et al. (2021) BRCA1-BARD1 regulates transcription through modulating topoisomerase IIbeta. Open Biol, 11, 210221. Bunch, H., Kim, D., Naganuma, M., Nakagawa, R., Cong, A., Jeong, J., Ehara, H., Vu, H., Chang, J.H., Schellenberg, M.J., and Sekine, S.I. (2023) ERK2-topoisomerase II regulatory axis is important for gene activation in immediate early genes. Nat Commun,14, 8341. Caron, P.R., Watt, P., and Wang, J.C. (1994) The C-terminal domain of Saccharomyces cerevisiae DNA topoisomerase II. Mol Cell Biol, 14, 3197-3207. Cepni, E., Borklu, E., Avci, S., Kalayci, T., Eraslan, S., and Kayserili, H. (2023) Revisiting TOP2B-related phenotypes: Three new cases and literature review. Clin Genet. Champoux, J.J. (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem, 70, 369-413. Chan, P.F., Srikannathasan, V., Huang, J., Cui, H., Fosberry, A.P., Gu, M., Hann, M.M., Hibbs, M., Homes, P., Ingraham, K., et al. (2015) Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug etoposide and moxifloxacin. Nat Commun, 6, 10048. Chen, S.F., Huang, N.L., Lin, J.H., Wu, C.C., Wang, Y.R., Yu, Y.J., Gilson, M.K., and Chan, N.L. (2018) Structural insights into the gating of DNA passage by the topoisomerase II DNA-gate. Nat Commun, 9, 3085. Chen, S.H., Chan, N.L., and Hsieh, T.S. (2013) New mechanistic and functional insights into DNA topoisomerases. Annu Rev Biochem, 82, 139-170. Christensen, M.O., Larsen, M.K., Barthelmes, H.U., Hock, R., Andersen, C.L., Kjeldsen, E., Knudsen, B.R., Westergaard, O., Boege, F., and Mielke, C. (2002) Dynamics of human DNA topoisomerases IIalpha and IIbeta in living cells. J Cell Biol, 157, 31-44. Classen, S., Olland, S., and Berger, J.M. (2003) Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proc Natl Acad Sci U S A, 100, 10629-10634. Corbett, K.D., and Berger, J.M. (2004) Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu Rev Biophys Biomol Struct, 33, 95-118. Corbett, K.D., Shultzaberger, R.K., and Berger, J.M. (2004) The C-terminal domain of DNA gyrase A adopts a DNA-bending beta-pinwheel fold. Proc Natl Acad Sci U S A, 101, 7293-7298. Cozzarelli, N.R. (1980) DNA gyrase and the supercoiling of DNA. Science, 207, 953-960. Dang, Q., Alghisi, G.C., and Gasser, S.M. (1994) Phosphorylation of the C-terminal domain of yeast topoisomerase II by casein kinase II affects DNA-protein interaction. J Mol Biol, 243, 10-24. Dao-Thi, M.H., Van Melderen, L., De Genst, E., Afif, H., Buts, L., Wyns, L., and Loris, R. (2005) Molecular basis of gyrase poisoning by the addiction toxin CcdB. J Mol Biol, 348, 1091-1102. Dar, M.A., Sharma, A., Mondal, N., and Dhar, S.K. (2007) Molecular cloning of apicoplast-targeted Plasmodium falciparum DNA gyrase genes: unique intrinsic ATPase activity and ATP-independent dimerization of PfGyrB subunit. Eukaryot Cell, 6, 398-412. Delint-Ramirez, I., Konada, L., Heady, L., Rueda, R., Jacome, A.S.V., Marlin, E., Marchioni, C., Segev, A., Kritskiy, O., Yamakawa, S., et al. (2022) Calcineurin dephosphorylates topoisomerase IIbeta and regulates the formation of neuronal- activity-induced DNA breaks. Mol Cell, 82, 3794-3809 e3798. Deweese, J.E., and Osheroff, N. (2009) The DNA cleavage reaction of topoisomerase II: wolf in sheep's clothing. Nucleic Acids Res, 37, 738-748. Deweese, J.E., and Osheroff, N. (2010) The use of divalent metal ions by type II topoisomerases. Metallomics, 2, 450-459. Dickey, J.S., and Osheroff, N. (2005) Impact of the C-terminal domain of topoisomerase IIalpha on the DNA cleavage activity of the human enzyme. Biochemistry, 44, 11546- 11554. DiGate, R.J., and Marians, K.J. (1988) Identification of a potent decatenating enzyme from Escherichia coli. J Biol Chem, 263, 13366-13373. Dong, K.C., and Berger, J.M. (2007) Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature, 450, 1201-1205. Downes, C.S., Clarke, D.J., Mullinger, A.M., Gimenez-Abian, J.F., Creighton, A.M., and Johnson, R.T. (1994) A topoisomerase II-dependent G2 cycle checkpoint in mammalian cells. Nature, 372, 467-470. Dutta, R., and Inouye, M. (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci, 25, 24-28. Edgerton, H., Johansson, M., Keifenheim, D., Mukherjee, S., Chacon, J.M., Bachant, J., Gardner, M.K., and Clarke, D.J. (2016) A noncatalytic function of the topoisomerase II CTD in Aurora B recruitment to inner centromeres during mitosis. J Cell Biol, 213, 651-664. Farr, C.J., Antoniou-Kourounioti, M., Mimmack, M.L., Volkov, A., and Porter, A.C. (2014) The alpha isoform of topoisomerase II is required for hypercompaction of mitotic chromosomes in human cells. Nucleic Acids Res, 42, 4414-4426. Fass, D., Bogden, C.E., and Berger, J.M. (1999) Quaternary changes in topoisomerase II may direct orthogonal movement of two DNA strands. Nat Struct Biol, 6, 322-326. Feng, L., Mundy, J.E.A., Stevenson, C.E.M., Mitchenall, L.A., Lawson, D.M., Mi, K., and Maxwell, A. (2021) The pentapeptide-repeat protein, MfpA, interacts with mycobacterial DNA gyrase as a DNA T-segment mimic. Proc Natl Acad Sci U S A, 118. Forood, B., Feliciano, E.J., and Nambiar, K.P. (1993) Stabilization of alpha-helical structures in short peptides via end capping. Proc Natl Acad Sci U S A, 90, 838-842. Fragola, G., Mabb, A.M., Taylor-Blake, B., Niehaus, J.K., Chronister, W.D., Mao, H., Simon, J.M., Yuan, H., Li, Z., McConnell, M.J., and Zylka, M.J. (2020) Deletion of Topoisomerase 1 in excitatory neurons causes genomic instability and early onset neurodegeneration. Nat Commun, 11, 1962. Gadelle, D., Krupovic, M., Raymann, K., Mayer, C., and Forterre, P. (2014) DNA topoisomerase VIII: a novel subfamily of type IIB topoisomerases encoded by free or integrated plasmids in archaea and bacteria. Nucleic Acids Res, 42, 8578-8591. Gardner, M.J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R.W., Carlton, J.M., Pain, A., Nelson, K.E., Bowman, S., et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, 419, 498-511. Gellert, M., Mizuuchi, K., O'Dea, M.H., and Nash, H.A. (1976) DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci U S A, 73, 3872-3876. Germe, T., Voros, J., Jeannot, F., Taillier, T., Stavenger, R.A., Bacque, E., Maxwell, A., and Bax, B.D. (2018) A new class of antibacterials, the imidazopyrazinones, reveal structural transitions involved in DNA gyrase poisoning and mechanisms of resistance. Nucleic Acids Res, 46, 4114-4128. Guipaud, O., Marguet, E., Noll, K.M., de la Tour, C.B., and Forterre, P. (1997) Both DNA gyrase and reverse gyrase are present in the hyperthermophilic bacterium Thermotoga maritima. Proc Natl Acad Sci U S A, 94, 10606-10611. Haffner, M.C., Aryee, M.J., Toubaji, A., Esopi, D.M., Albadine, R., Gurel, B., Isaacs, W.B., Bova, G.S., Liu, W., Xu, J., et al. (2010) Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet, 42, 668-675. Haffner, M.C., De Marzo, A.M., Meeker, A.K., Nelson, W.G., and Yegnasubramanian, S. (2011) Transcription-induced DNA double strand breaks: both oncogenic force and potential therapeutic target? Clin Cancer Res, 17, 3858-3864. Hardin, A.H., Sarkar, S.K., Seol, Y., Liou, G.F., Osheroff, N., and Neuman, K.C. (2011) Direct measurement of DNA bending by type IIA topoisomerases: implications for non-equilibrium topology simplification. Nucleic Acids Res, 39, 5729-5743. Hedayati, M., Haffner, M.C., Coulter, J.B., Raval, R.R., Zhang, Y., Zhou, H., Mian, O., Knight, E.J., Razavi, N., Dalrymple, S., et al. (2016) Androgen Deprivation Followed by Acute Androgen Stimulation Selectively Sensitizes AR-Positive Prostate Cancer Cells to Ionizing Radiation. Clin Cancer Res, 22, 3310-3319. Hildebrand, E.M., Polovnikov, K., Dekker, B., Liu, Y., Lafontaine, D.L., Fox, A.N., Li, Y., Venev, S.V., Mirny, L.A., and Dekker, J. (2024) Mitotic chromosomes are self- entangled and disentangle through a topoisomerase-II-dependent two-stage exit from mitosis. Mol Cell, 84, 1422-1441 e1414. Hoffmann, L., Moller, P., Pedersen-Bjergaard, J., Waage, A., Pedersen, M., and Hirsch, F.R. (1995) Therapy-related acute promyelocytic leukemia with t(15;17) (q22;q12) following chemotherapy with drugs targeting DNA topoisomerase II. A report of two cases and a review of the literature. Ann Oncol, 6, 781-788. Holm, C. (1994) Coming undone: how to untangle a chromosome. Cell, 77, 955-957. Holm, C., Goto, T., Wang, J.C., and Botstein, D. (1985) DNA topoisomerase II is required at the time of mitosis in yeast. Cell, 41, 553-563. Hsieh, T.J., Farh, L., Huang, W.M., and Chan, N.L. (2004) Structure of the topoisomerase IV C-terminal domain: a broken beta-propeller implies a role as geometry facilitator in catalysis. J Biol Chem, 279, 55587-55593. Ishida, R., Takashima, R., Koujin, T., Shibata, M., Nozaki, N., Seto, M., Mori, H., Haraguchi, T., and Hiraoka, Y. (2001) Mitotic specific phosphorylation of serine-1212 in human DNA topoisomerase IIalpha. Cell Struct Funct, 26, 215-226. Ju, B.G., Lunyak, V.V., Perissi, V., Garcia-Bassets, I., Rose, D.W., Glass, C.K., and Rosenfeld, M.G. (2006) A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science, 312, 1798-1802. Kampranis, S.C., Bates, A.D., and Maxwell, A. (1999) A model for the mechanism of strand passage by DNA gyrase. Proc Natl Acad Sci U S A, 96, 8414-8419. Kato, J., Nishimura, Y., Imamura, R., Niki, H., Hiraga, S., and Suzuki, H. (1990) New topoisomerase essential for chromosome segregation in E. coli. Cell, 63, 393-404. Kato, J., Nishimura, Y., Yamada, M., Suzuki, H., and Hirota, Y. (1988) Gene organization in the region containing a new gene involved in chromosome partition in Escherichia coli. J Bacteriol, 170, 3967-3977. King, I.F., Yandava, C.N., Mabb, A.M., Hsiao, J.S., Huang, H.S., Pearson, B.L., Calabrese, J.M., Starmer, J., Parker, J.S., Magnuson, T., et al. (2013) Topoisomerases facilitate transcription of long genes linked to autism. Nature, 501, 58-62. Koster, D.A., Croquette, V., Dekker, C., Shuman, S., and Dekker, N.H. (2005) Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature, 434, 671-674. Koster, D.A., Crut, A., Shuman, S., Bjornsti, M.A., and Dekker, N.H. (2010) Cellular strategies for regulating DNA supercoiling: a single-molecule perspective. Cell, 142, 519-530. Laponogov, I., Pan, X.S., Veselkov, D.A., McAuley, K.E., Fisher, L.M., and Sanderson, M.R. (2010) Structural basis of gate-DNA breakage and resealing by type II topoisomerases. PLoS One, 5, e11338. Laponogov, I., Sohi, M.K., Veselkov, D.A., Pan, X.S., Sawhney, R., Thompson, A.W., McAuley, K.E., Fisher, L.M., and Sanderson, M.R. (2009) Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nat Struct Mol Biol, 16, 667-669. Laponogov, I., Veselkov, D.A., Crevel, I.M., Pan, X.S., Fisher, L.M., and Sanderson, M.R. (2013) Structure of an 'open' clamp type II topoisomerase-DNA complex provides a mechanism for DNA capture and transport. Nucleic Acids Res, 41, 9911-9923. Lee, J.H., and Berger, J.M. (2019) Cell cycle-dependent control and roles of DNA topoisomerase II. Genes (Basel), 10, 859. Lee, S., Jung, S.R., Heo, K., Byl, J.A., Deweese, J.E., Osheroff, N., and Hohng, S. (2012) DNA cleavage and opening reactions of human topoisomerase IIalpha are regulated via Mg2+-mediated dynamic bending of gate-DNA. Proc Natl Acad Sci U S A, 109, 2925-2930. Li, M., and Liu, Y. (2016) Topoisomerase I in human disease pathogenesis and treatments. Genomics Proteomics Bioinformatics, 14, 166-171. Liebschner, D., Afonine, P.V., Baker, M.L., Bunkoczi, G., Chen, V.B., Croll, T.I., Hintze, B., Hung, L.W., Jain, S., McCoy, A.J., et al. (2019) Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol, 75, 861-877. Lima, C.D., Wang, J.C., and Mondragon, A. (1994) Three-dimensional structure of the 67K N-terminal fragment of E. coli DNA topoisomerase I. Nature, 367, 138-146. Ling, E.M., Basle, A., Cowell, I.G., van den Berg, B., Blower, T.R., and Austin, C.A. (2022) A comprehensive structural analysis of the ATPase domain of human DNA topoisomerase II beta bound to AMPPNP, ADP, and the bisdioxopiperazine, ICRF193. Structure, 30, 1129-1145 e1123. Linka, R.M., Porter, A.C., Volkov, A., Mielke, C., Boege, F., and Christensen, M.O. (2007) C-terminal regions of topoisomerase IIalpha and IIbeta determine isoform-specific functioning of the enzymes in vivo. Nucleic Acids Res, 35, 3810-3822. Liu, K.T., Chen, S.F., and Chan, N.L. (2024) Structural insights into the assembly of type IIA topoisomerase DNA cleavage-religation center. Nucleic Acids Res, gkae657. Liu, L.F., Liu, C.C., and Alberts, B.M. (1980) Type II DNA topoisomerases: enzymes that can unknot a topologically knotted DNA molecule via a reversible double-strand break. Cell, 19, 697-707. Luo, K., Yuan, J., Chen, J., and Lou, Z. (2009) Topoisomerase IIalpha controls the decatenation checkpoint. Nat Cell Biol, 11, 204-210. Lyu, Y.L., Lin, C.P., Azarova, A.M., Cai, L., Wang, J.C., and Liu, L.F. (2006) Role of topoisomerase IIbeta in the expression of developmentally regulated genes. Mol Cell Biol, 26, 7929-7941. Lyu, Y.L., and Wang, J.C. (2003) Aberrant lamination in the cerebral cortex of mouse embryos lacking DNA topoisomerase IIbeta. Proc Natl Acad Sci U S A, 100, 7123- 7128. Madabhushi, R. (2018) The roles of DNA topoisomerase IIbeta in transcription. Int J Mol Sci, 19. Madabhushi, R., Gao, F., Pfenning, A.R., Pan, L., Yamakawa, S., Seo, J., Rueda, R., Phan, T.X., Yamakawa, H., Pao, P.C., et al. (2015) Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell, 161, 1592-1605. McClendon, A.K., Gentry, A.C., Dickey, J.S., Brinch, M., Bendsen, S., Andersen, A.H., and Osheroff, N. (2008) Bimodal recognition of DNA geometry by human topoisomerase II alpha: preferential relaxation of positively supercoiled DNA requires elements in the C-terminal domain. Biochemistry, 47, 13169-13178. McKie, S.J., Desai, P.R., Seol, Y., Allen, A.M., Maxwell, A., and Neuman, K.C. (2022) Topoisomerase VI is a chirally-selective, preferential DNA decatenase. Elife, 11, e67021. McKie, S.J., Neuman, K.C., and Maxwell, A. (2021) DNA topoisomerases: Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis. Bioessays, 43, e2000286. McNamara, S., Wang, H., Hanna, N., and Miller, W.H., Jr. (2008) Topoisomerase IIbeta negatively modulates retinoic acid receptor alpha function: a novel mechanism of retinoic acid resistance. Mol Cell Biol, 28, 2066-2077. Michalczyk, E., Pabiś, M., Heddle, J.G., and Ghilarov, D. (2024) Structure of Escherichia coli DNA gyrase with chirally wrapped DNA supports ratchet-and-pawl mechanism for an ATP-powered supercoiling motor. BioRxiv, doi: 10.1101/2024.04.12.589215 Mistry, A.R., Felix, C.A., Whitmarsh, R.J., Mason, A., Reiter, A., Cassinat, B., Parry, A., Walz, C., Wiemels, J.L., Segal, M.R., et al. (2005) DNA topoisomerase II in therapy-related acute promyelocytic leukemia. N Engl J Med, 352, 1529-1538. Murzin, A.G. (1995) A ribosomal protein module in EF-G and DNA gyrase. Nat Struct Biol, 2, 25-26. Nakazawa, N., Arakawa, O., Ebe, M., and Yanagida, M. (2019) Casein kinase II-dependent phosphorylation of DNA topoisomerase II suppresses the effect of a catalytic topo II inhibitor, ICRF-193, in fission yeast. J Biol Chem, 294, 3772-3782. Nettles, S.A., Ikeuchi, Y., Lefton, K.B., Abbasi, L., Erickson, A., Agwu, C., Papouin, T., Bonni, A., and Gabel, H.W. (2023) MeCP2 represses the activity of topoisomerase IIbeta in long neuronal genes. Cell Rep, 42, 113538. Nicholls, T.J., Nadalutti, C.A., Motori, E., Sommerville, E.W., Gorman, G.S., Basu, S., Hoberg, E., Turnbull, D.M., Chinnery, P.F., Larsson, N.G., et al. (2018) Topoisomerase 3alpha Is Required for Decatenation and Segregation of Human mtDNA. Mol Cell, 69, 9-23 e26. Nitiss, J.L. (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer, 9, 338-350. Nitiss, J.L., Liu, Y.X., Harbury, P., Jannatipour, M., Wasserman, R., and Wang, J.C. (1992) Amsacrine and etoposide hypersensitivity of yeast cells overexpressing DNA topoisomerase II. Cancer Res, 52, 4467-4472. Osterman, A., and Mondragon, A. (2022) Structures of topoisomerase V in complex with DNA reveal unusual DNA-binding mode and novel relaxation mechanism. Elife, 11, e72702. Perillo, B., Ombra, M.N., Bertoni, A., Cuozzo, C., Sacchetti, S., Sasso, A., Chiariotti, L., Malorni, A., Abbondanza, C., and Avvedimento, E.V. (2008) DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science, 319, 202-206. Pommier, Y., Leo, E., Zhang, H., and Marchand, C. (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol, 17, 421-433. Pommier, Y., and Marchand, C. (2011) Interfacial inhibitors: targeting macromolecular complexes. Nat Rev Drug Discov, 11, 25-36. Pommier, Y., Nussenzweig, A., Takeda, S., and Austin, C. (2022) Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol, 23, 407- 427. Postow, L., Crisona, N.J., Peter, B.J., Hardy, C.D., and Cozzarelli, N.R. (2001) Topological challenges to DNA replication: conformations at the fork. Proc Natl Acad Sci U S A, 98, 8219-8226. Promonet, A., Padioleau, I., Liu, Y., Sanz, L., Biernacka, A., Schmitz, A.L., Skrzypczak, M., Sarrazin, A., Mettling, C., Rowicka, M., et al. (2020) Topoisomerase 1 prevents replication stress at R-loop-enriched transcription termination sites. Nat Commun, 11, 3940. Rajan, R., Osterman, A., and Mondragon, A. (2016) Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site. Nucleic Acids Res, 44, 3464-3474. Roca, J., Berger, J.M., Harrison, S.C., and Wang, J.C. (1996) DNA transport by a type II topoisomerase: direct evidence for a two-gate mechanism. Proc Natl Acad Sci U S A, 93, 4057-4062. Roca, J., and Wang, J.C. (1992) The capture of a DNA double helix by an ATP-dependent protein clamp: a key step in DNA transport by type II DNA topoisomerases. Cell, 71, 833-840. Rodriguez, A.C., and Stock, D. (2002) Crystal structure of reverse gyrase: insights into the positive supercoiling of DNA. EMBO J, 21, 418-426. Ryu, H., Furuta, M., Kirkpatrick, D., Gygi, S.P., and Azuma, Y. (2010) PIASy-dependent SUMOylation regulates DNA topoisomerase IIalpha activity. J Cell Biol, 191, 783-794. Sakaguchi, A., Akashi, T., and Kikuchi, A. (2001) A distinct subnuclear localization of mammalian DNA topoisomerase IIbeta in yeast. Biochem Biophys Res Commun, 283, 876-882. Schmidt, B.H., Osheroff, N., and Berger, J.M. (2012) Structure of a topoisomerase II-DNA-nucleotide complex reveals a new control mechanism for ATPase activity. Nat Struct Mol Biol, 19, 1147-1154. Schoeffler, A.J., and Berger, J.M. (2008) DNA topoisomerases: harnessing and constraining energy to govern chromosome topology. Q Rev Biophys, 41, 41-101. Schoeffler, A.J., May, A.P., and Berger, J.M. (2010) A domain insertion in Escherichia coli GyrB adopts a novel fold that plays a critical role in gyrase function. Nucleic Acids Res, 38, 7830-7844. Shintomi, K., and Hirano, T. (2021) Guiding functions of the C-terminal domain of topoisomerase IIalpha advance mitotic chromosome assembly. Nat Commun, 12, 2917. Shintomi, K., Takahashi, T.S., and Hirano, T. (2015) Reconstitution of mitotic chromatids with a minimum set of purified factors. Nat Cell Biol, 17, 1014-1023. Slesarev, A.I., Stetter, K.O., Lake, J.A., Gellert, M., Krah, R., and Kozyavkin, S.A. (1993) DNA topoisomerase V is a relative of eukaryotic topoisomerase I from a hyperthermophilic prokaryote. Nature, 364, 735-737. Smiley, R.D., Collins, T.R., Hammes, G.G., and Hsieh, T.S. (2007) Single-molecule measurements of the opening and closing of the DNA gate by eukaryotic topoisomerase II. Proc Natl Acad Sci U S A, 104, 4840-4845. Stewart, L., Redinbo, M.R., Qiu, X., Hol, W.G., and Champoux, J.J. (1998) A model for the mechanism of human topoisomerase I. Science, 279, 1534-1541. Sugimoto-Shirasu, K., Stacey, N.J., Corsar, J., Roberts, K., and McCann, M.C. (2002) DNA topoisomerase VI is essential for endoreduplication in Arabidopsis. Curr Biol, 12, 1782-1786. Takahashi, T.S., Da Cunha, V., Krupovic, M., Mayer, C., Forterre, P., and Gadelle, D. (2020) Expanding the type IIB DNA topoisomerase family: identification of new topoisomerase and topoisomerase-like proteins in mobile genetic elements. NAR Genom Bioinform, 2, lqz021. Taneja, B., Patel, A., Slesarev, A., and Mondragon, A. (2006) Structure of the N-terminal fragment of topoisomerase V reveals a new family of topoisomerases. EMBO J, 25, 398-408. Taneja, B., Schnurr, B., Slesarev, A., Marko, J.F., and Mondragon, A. (2007) Topoisomerase V relaxes supercoiled DNA by a constrained swiveling mechanism. Proc Natl Acad Sci U S A, 104, 14670-14675. Uuskula-Reimand, L., and Wilson, M.D. (2022) Untangling the roles of TOP2A and TOP2B in transcription and cancer. Sci Adv, 8, eadd4920. Vanden Broeck, A., Lotz, C., Drillien, R., Haas, L., Bedez, C., and Lamour, V. (2021) Structural basis for allosteric regulation of human topoisomerase IIalpha. Nat Commun, 12, 2962. Vanden Broeck, A., Lotz, C., Ortiz, J., and Lamour, V. (2019) Cryo-EM structure of the complete E. coli DNA gyrase nucleoprotein complex. Nat Commun, 10, 4935. Vanden Broeck, A., McEwen, A.G., Chebaro, Y., Potier, N., and Lamour, V. (2019) Structural basis for dna gyrase interaction with coumermycin a1. J Med Chem, 62, 4225-4231. Vayssieres, M., Marechal, N., Yun, L., Lopez Duran, B., Murugasamy, N.K., Fogg, J.M., Zechiedrich, L., Nadal, M., and Lamour, V. (2024) Structural basis of DNA crossover capture by Escherichia coli DNA gyrase. Science, 384, 227-232. Wall, M.K., Mitchenall, L.A., and Maxwell, A. (2004) Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria. Proc Natl Acad Sci U S A, 101, 7821-7826. Wang, J.C. (1996) DNA topoisomerases. Annu Rev Biochem, 65, 635-692. Wang, J.C. (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol, 3, 430-440. Wang, Y.R., Chen, S.F., Wu, C.C., Liao, Y.W., Lin, T.S., Liu, K.T., Chen, Y.S., Li, T.K., Chien, T.C., and Chan, N.L. (2017) Producing irreversible topoisomerase II-mediated DNA breaks by site-specific Pt(II)-methionine coordination chemistry. Nucleic Acids Res, 45, 10861-10871. Wei, H., Ruthenburg, A.J., Bechis, S.K., and Verdine, G.L. (2005) Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase. J Biol Chem, 280, 37041-37047. Wells, N.J., and Hickson, I.D. (1995) Human topoisomerase II alpha is phosphorylated in a cell-cycle phase-dependent manner by a proline-directed kinase. Eur J Biochem, 231, 491-497. Wendorff, T.J., and Berger, J.M. (2018) Topoisomerase VI senses and exploits both DNA crossings and bends to facilitate strand passage. Elife, 7, e31724. Wendorff, T.J., Schmidt, B.H., Heslop, P., Austin, C.A., and Berger, J.M. (2012) The structure of DNA-bound human topoisomerase II alpha: conformational mechanisms for coordinating inter-subunit interactions with DNA cleavage. J Mol Biol, 424, 109- 124. Wigley, D.B., Davies, G.J., Dodson, E.J., Maxwell, A., and Dodson, G. (1991) Crystal structure of an N-terminal fragment of the DNA gyrase B protein. Nature, 351, 624- 629. Woessner, R.D., Mattern, M.R., Mirabelli, C.K., Johnson, R.K., and Drake, F.H. (1991) Proliferation- and cell cycle-dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3 cells. Cell Growth Differ, 2, 209-214. Wohlkonig, A., Chan, P.F., Fosberry, A.P., Homes, P., Huang, J., Kranz, M., Leydon, V.R., Miles, T.J., Pearson, N.D., Perera, R.L., et al. (2010) Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance. Nat Struct Mol Biol, 17, 1152-1153. Wu, C.C., Li, T.K., Farh, L., Lin, L.Y., Lin, T.S., Yu, Y.J., Yen, T.J., Chiang, C.W., and Chan, N.L. (2011) Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science, 333, 459-462. Yamashiro, K., and Yamagishi, A. (2005) Characterization of the DNA gyrase from the thermoacidophilic archaeon Thermoplasma acidophilum. J Bacteriol, 187, 8531-8536. Yang, X., Li, W., Prescott, E.D., Burden, S.J., and Wang, J.C. (2000) DNA topoisomerase IIbeta and neural development. Science, 287, 131-134. Yang, X., Saha, S., Yang, W., Neuman, K.C., and Pommier, Y. (2022) Structural and biochemical basis for DNA and RNA catalysis by human Topoisomerase 3beta. Nat Commun, 13, 4656. Yoshida, M.M., and Azuma, Y. (2016) Mechanisms behind Topoisomerase II SUMOylation in chromosome segregation. Cell Cycle, 15, 3151-3152. Yoshida, M.M., Ting, L., Gygi, S.P., and Azuma, Y. (2016) SUMOylation of DNA topoisomerase IIalpha regulates histone H3 kinase Haspin and H3 phosphorylation in mitosis. J Cell Biol, 213, 665-678. Zhang, M., Liang, C., Chen, Q., Yan, H., Xu, J., Zhao, H., Yuan, X., Liu, J., Lin, S., Lu, W., and Wang, F. (2020) Histone H2A phosphorylation recruits topoisomerase IIalpha to centromeres to safeguard genomic stability. EMBO J, 39, e101863. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94898 | - |
| dc.description.abstract | DNA 拓樸異構酶在生物體中扮演重要角色,其活性特點在於能催化暫時並可逆的 DNA 斷裂,以解決細胞進行生理活動時產生的染色體拓樸結構問題。對第二型拓 樸異構酶而言,與 DNA 結合會促使其蛋白四級構形發生變化,形成結構具二維對 稱性的活性中心,以進行雙股 DNA 的切割及再接合。第二型拓樸異構酶包含多個 功能域(functional domains),其活性中心之組裝需要各個功能域在結合 DNA 後發 生協同性的構形改變並移動至適當位置、以執行後續的催化步驟。例如,DNA 結 合會誘發 TOPRIM 功能域之位移及其與二價金屬離子的配位;WHD 功能域的相 對滑動能讓活性中心的酪胺酸更靠近 DNA 與二價金屬離子,從而進行可逆的轉酯 化反應(transesterification)。為了詳細了解此酵素切割活性中心組裝的結構機制, 我們利用 X 射線晶體學解出了人類第二型拓撲異構酶 Top2α 和 Top2β 之催化核心 的結構,並由此二結構呈現之特性推論其應處於具有生理意義的起始反應狀態。結 構分析顯示,TOPRIM 功能域會以 in trans 的方式、和另一個單體的 Tower 功能域 形成交互作用界面,而這個界面的形成會使得原先被遮蔽的 DNA-binding groove 完全裸露,使得蛋白能與 DNA 結合並起始反應。我們也發現以突變破壞 TOPRIM 和 Tower 的交互作用會顯著降低第二型拓撲異構酶與 DNA 的結合、進而影響其催 化活性。此外、若干與疾病相關或能導致抗藥性的突變亦出現於此交互作用介面, 這些結果進一步強化了 TOPRIM 和 Tower 的交互作用對第二型拓撲異構酶活性的必要性。當我們將此結構與其他已結合 DNA 的第二型拓撲異構酶結構進行疊合時,能明顯觀察到 DNA 結合能誘使 TOPRIM 功能域產生大幅度的位移,並使其在整 個催化過程中穩定的與 DNA 交互作用,讓蛋白能進行 DNA 切割、再接合並釋放。 值得注意的是,在結構中我們發現了先前從未被報導過的蛋白質與 DNA 作用方式: TOPRIM 功能域與 DNA 的交互作用中,有一被精氨酸加帽的α螺旋 C 端能與 DNA 骨架形成穩定的交互作用。鑑於α螺旋極性的特性,一般認為蛋白質只會使用帶有 正電的α螺旋 N 端與 DNA 作用,而本研究首次發現蛋白質能利用精氨酸加帽的 方式中合帶負電的α螺旋 C 端,使其能與 DNA 交互作用。突變分析進一步證實了 此保留性精氨酸對第二型拓撲異構酶的重要性,亦對此胺基酸為何在所有第二型 拓撲異構酶中皆存在提供了功能上的解釋。總結來說,本研究揭示了 Tower domain 可藉由穩定 TOPRIM domain 來促進 DNA-binding groove 的暴露,使第二型拓撲異 構酶能起始反應,並詳細探討 TOPRIM 的位移對於組合切割活性中心的組成機轉。 | zh_TW |
| dc.description.abstract | The ability to catalyze reversible DNA cleavage and religation is central to topoisomerases’ role in regulating DNA topology. In type IIA topoisomerases (Top2), the formation of its DNA cleavage-religation center is driven by DNA-binding-induced structural rearrangements. These changes optimally position key catalytic modules, such as the active site tyrosine of the WHD domain and metal ion(s) chelated by the TOPRIM domain, around the scissile phosphodiester bond to perform reversible transesterification. To understand this assembly process in detail, we report the catalytic core structures of human Top2α and Top2β in an on-pathway conformational state. This state features an in trans formation of an interface between the Tower and opposing TOPRIM domain, revealing a groove for accommodating incoming Gate-segment DNA, in turn committing the enzyme for the subsequent catalytic steps. We also found that mutations disrupting the interaction between TOPRIM and Tower significantly reduce the binding of Top2 to DNA, thereby affecting its catalytic activity. Furthermore, several disease-related mutations or that cause drug resistance also map to this interface, reinforcing the essential role of the TOPRIM-Tower interaction for Top2 function. Structural superimposition further unveils how subsequent DNA-binding-induced disengagement of the TOPRIM and Tower domains allows a firm grasp of the bound DNA for cleavage/religation. Notably, we identified a previously undocumented protein-DNA interaction, formed between an arginine-capped C-terminus of an α-helix in the TOPRIM domain and the DNA backbone, significantly contributing to Top2 function. This work uncovers a previously unrecognized role of the Tower domain, highlighting its involvement in anchoring and releasing the TOPRIM domain, thus priming Top2 for DNA binding and cleavage. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:21:01Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-21T16:21:01Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
謝辭 II 摘要 III Abstract V Abbreviations VII Contents VIII List of Figures X List of Tables XI 1. Introduction 1 1.1. Masters of the DNA Realm: The Indispensable Functions and Taxonomic Classification of DNA Topoisomerases Across Diverse Species 2 1.1.1 Type I Tops: IA, IB and IC 5 1.1.2 Type II Tops: IIA and IIB 6 1.2 Structural Characterization and Catalytic Mechanisms of Type IIA Tops 11 1.2.1 Evolutionarily Conserved Domain Structures of Top2 12 1.2.2 The Least Conserved CTD of Top2: Determinant of Distinct Cellular Roles 13 1.3 The Catalytic Cycle of Top2: Unveiling the Two-Gate Mechanism for Strand-Passage 17 1.3.1 Role of Metal Ions in Top2: Dynamic Configuration of the One-Metal Cleavage 20 1.3.2 Role of ATP in Top2: Protecting Against Aberrant DSBs 21 1.4 Targeting Top2: Strategies and Therapeutic Implications 24 1.4.1 Catalytic Inhibitors: Impairment of Top2 Enzymatic Activity 24 1.4.2 Double-Edged Sword of Top2 Poisons: Induction of Cytotoxic DSBs 26 1.5 Specific aim 28 2. Methods and Materials 32 2.1 Construction, expression and purification of recombinant proteins 33 2.2 Protein crystallization 37 2.3 X-ray diffraction data collection and structure determination 38 2.4 Supercoil relaxation assay 39 2.5 Electrophoretic mobility shift assay (EMSA) 40 2.6 In vivo top2 termerature-sensitive (top2ts) complementation assay 41 3. Results 42 3.1 Structures of hTop2core Apo Forms: An on-pathway conformational state of eukaryotic Top2 competent for engaging G-segment DNA 43 3.2 Mutation-Induced Destabilization of the TOPRIM-Tower′ Interface Impairs the Catalytic Function of Top2 45 3.3 The Assembly of Top2’s DNA Cleavage-Religation Center Requires Extensive Rearrangement of Molecular Interfaces 50 3.4 Unveiling a previously unknown type of protein-DNA contact mediated by a conserved arginine in the TOPRIM-DNA interface 52 3.5 The arginine residue that caps the C-terminus of helix Bα9 and bridges the Bα9-DNA interaction is crucial for the catalytic and cellular function of Top2 54 4. Conclusion and Discussion 58 5. Figures 63 6. Tables 93 7. References 97 | - |
| dc.language.iso | en | - |
| dc.subject | DNA切割暨黏合活性中心 | zh_TW |
| dc.subject | TOPRIM功能域 | zh_TW |
| dc.subject | X射線晶體學 | zh_TW |
| dc.subject | 蛋白質構型改變 | zh_TW |
| dc.subject | 第二型拓樸異構酶 | zh_TW |
| dc.subject | macromolecular X-ray crystallography | en |
| dc.subject | protein conformational change | en |
| dc.subject | DNA cleavage/religation center assembly | en |
| dc.subject | TOPRIM domain | en |
| dc.subject | Type IIA topoisomerase | en |
| dc.title | 第二型拓樸異構酶其DNA切割暨黏合活性中心形成之結構機制 | zh_TW |
| dc.title | Structural insights into the assembly of type IIA topoisomerase DNA cleavage/religation center | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 李弘文;徐駿森;冀宏源;吳權娟;林敬哲 | zh_TW |
| dc.contributor.oralexamcommittee | Hung-Wen Li ;Chun-Hua Hsu;Hung-Yuan Chi;Chyuan-Chuan Wu;Jing-Jer Lin | en |
| dc.subject.keyword | 第二型拓樸異構酶,X射線晶體學,蛋白質構型改變,DNA切割暨黏合活性中心,TOPRIM功能域, | zh_TW |
| dc.subject.keyword | Type IIA topoisomerase,macromolecular X-ray crystallography,protein conformational change,DNA cleavage/religation center assembly,TOPRIM domain, | en |
| dc.relation.page | 109 | - |
| dc.identifier.doi | 10.6342/NTU202404261 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | - |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 19.59 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
