請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94897完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余忠仁 | zh_TW |
| dc.contributor.advisor | Chong-Jen Yu | en |
| dc.contributor.author | 張嘉凌 | zh_TW |
| dc.contributor.author | Chia-Ling Chang | en |
| dc.date.accessioned | 2024-08-21T16:19:52Z | - |
| dc.date.available | 2024-08-22 | - |
| dc.date.copyright | 2024-08-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | 1. Diseases GBD, Injuries C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204-1222.
2. Weiss ST, Silverman EK. Pro: Genome-wide association studies (GWAS) in asthma. Am J Respir Crit Care Med. 2011;184(6):631-633. 3. Whittaker RH. Evolution and measurement of species diversity. Taxon. 1972;p. 213-251. 4. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71(12):8228-8235. 5. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 2011;5(2):169-172. 6. Whittaker RH. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs. 1960;30(3), 279-338. 7. Budden KF, Shukla SD, Rehman SF, et al. Functional effects of the microbiota in chronic respiratory disease. Lancet Respir Med. 2019;7(10):907-920. 8. Huang YJ, Porsche C, Kozik AJ, Lynch SV. Microbiome-Immune Interactions in Allergy and Asthma. J Allergy Clin Immunol Pract. 2022;10(9):2244-2251. 9. Durack J, Lynch SV, Nariya S, et al. Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment. J Allergy Clin Immunol. 2017;140(1):63-75. 10. Teo SM, Tang HHF, Mok D, et al. Airway Microbiota Dynamics Uncover a Critical Window for Interplay of Pathogenic Bacteria and Allergy in Childhood Respiratory Disease. Cell Host Microbe. 2018;24(3):341-352 e345. 11. Zhou Y, Jackson D, Bacharier LB, et al. The upper-airway microbiota and loss of asthma control among asthmatic children. Nat Commun. 2019;10(1):5714. 12. Taylor SL, Leong LEX, Choo JM, et al. Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology. J Allergy Clin Immunol. 2018;141(1):94-103 e115. 13. Tang HHF, Lang A, Teo SM, et al. Developmental patterns in the nasopharyngeal microbiome during infancy are associated with asthma risk. J Allergy Clin Immunol. 2021;147(5):1683-1691. 14. Chen M, He S, Miles P, et al. Nasal Bacterial Microbiome Differs Between Healthy Controls and Those With Asthma and Allergic Rhinitis. Front Cell Infect Microbiol. 2022;12:841995. 15. Johnson JS, Spakowicz DJ, Hong BY, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10(1):5029. 16. Klindworth A, Pruesse E, Schweer T, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):e1. 17. Huang YJ, Nariya S, Harris JM, et al. The airway microbiome in patients with severe asthma: Associations with disease features and severity. J Allergy Clin Immunol. 2015;136(4):874-884. 18. Durack J, Christian LS, Nariya S, et al. Distinct associations of sputum and oral microbiota with atopic, immunologic, and clinical features in mild asthma. J Allergy Clin Immunol. 2020;146(5):1016-1026. 19. Sverrild A, Kiilerich P, Brejnrod A, et al. Eosinophilic airway inflammation in asthmatic patients is associated with an altered airway microbiome. J Allergy Clin Immunol. 2017;140(2):407-417 e411. 20. Barcik W, Boutin RCT, Sokolowska M, Finlay BB. The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity. 2020;52(2):241-255. 21. Morin A, McKennan CG, Pedersen CT, et al. Epigenetic landscape links upper airway microbiota in infancy with allergic rhinitis at 6 years of age. J Allergy Clin Immunol. 2020;146(6):1358-1366. 22. Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5(1):e8578. 23. Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18(5):716-725. 24. Huang YJ, Nelson CE, Brodie EL, et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol. 2011;127(2):372-381 e371-373. 25. Venkatesan P. 2023 GINA report for asthma. Lancet Respir Med. 2023;11(7):589. 26. Fuhlbrigge A, Peden D, Apter AJ, et al. Asthma outcomes: exacerbations. J Allergy Clin Immunol. 2012;129(3 Suppl):S34-48. 27. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581-583. 28. Quin C, Estaki M, Vollman DM, Barnett JA, Gill SK, Gibson DL. Probiotic supplementation and associated infant gut microbiome and health: a cautionary retrospective clinical comparison. Sci Rep. 2018;8(1):8283. 29. Bokulich NA, Kaehler BD, Rideout JR, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome. 2018;6(1):90. 30. Rognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. 31. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852-857. 32. Balvociute M, Huson DH. SILVA, RDP, Greengenes, NCBI and OTT - how do these taxonomies compare? BMC Genomics. 2017;18(Suppl 2):114. 33. Gyarmati P, Kjellander C, Aust C, Song Y, Ohrmalm L, Giske CG. Metagenomic analysis of bloodstream infections in patients with acute leukemia and therapy-induced neutropenia. Sci Rep. 2016;6:23532. 34. Hong X, Chen J, Liu L, et al. Metagenomic sequencing reveals the relationship between microbiota composition and quality of Chinese Rice Wine. Sci Rep. 2016;6:26621. 35. Jiang XT, Peng X, Deng GH, et al. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb Ecol. 2013;66(1):96-104. 36. Noval Rivas M, Burton OT, Wise P, et al. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. J Allergy Clin Immunol. 2013;131(1):201-212. 37. Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. 38. Panzer AR, Lynch SV. Influence and effect of the human microbiome in allergy and asthma. Curr Opin Rheumatol. 2015;27(4):373-380. 39. Feleszko W, Jaworska J, Rha RD, et al. Probiotic-induced suppression of allergic sensitization and airway inflammation is associated with an increase of T regulatory-dependent mechanisms in a murine model of asthma. Clin Exp Allergy. 2007;37(4):498-505. 40. Mammen MJ, Scannapieco FA, Sethi S. Oral-lung microbiome interactions in lung diseases. Periodontol 2000. 2020;83(1):234-241. 41. Espuela-Ortiz A, Lorenzo-Diaz F, Baez-Ortega A, et al. Bacterial salivary microbiome associates with asthma among african american children and young adults. Pediatr Pulmonol. 2019;54(12):1948-1956. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94897 | - |
| dc.description.abstract | 背景:氣喘是呼吸道對許多過敏原反應過度而發生慢性反覆性的呼吸道發炎疾病。微生物菌叢與呼吸道黏膜上皮細胞緊密接觸,微生物菌叢失調可能是導致呼吸道慢性發炎的重要原因之一。上下呼吸道不論結構上或功能上皆緊密相關,因此,鼻腔及口腔微生物菌叢失調,亦可能對於下呼道慢性發炎,如氣喘的疾病控制,造成顯著的影響。微生物菌叢在氣喘病患急性發作易感性上所扮演的角色。
方法:本研究在國立臺灣大學醫學院附設醫院及其新竹分院進行。收案診斷為氣喘的成人病患,並追蹤三個月。所有病患在收案後均接受鼻腔和口腔微生物菌叢的檢查。 結果:本研究一共收案61名氣喘病患。病患年齡中位數為44歲(範圍:21–72歲)。男性佔所有病患比例的18%。回歸分析發現:鼻腔細菌叢的alpha多樣性與ACT分數呈負相關和eosinophil數量呈正相關,但與IgE濃度跟FEV1/FVC數值的相關性不顯著。收案後三個月內,34%的病患曾經有氣喘急性惡化。曾經發生氣喘急性惡化病患的鼻腔細菌叢的alpha多樣性(alpha diversity)有低於無急性惡化病患的傾向。兩組間鼻腔細菌叢組成不同。相較於未發生氣喘急性惡化病患,曾經發生急性惡化的患者鼻腔在種的層級有較低比例的Cutibacterium acnes (1.44±2.14% vs. 4.11±6.34%, P = 0.019)、Anaerococcus Octavius (0.06±0.26% vs. 0.54±1.31%, P = 0.029)、 Pseudomonas yamanorum (0.02±0.08% vs. 0.40±0.97%, P = 0.019)、Acinetobacter johnsonii (0.02±0.08% vs. 0.07±0.19%, P = 0.015)、Pseudobdellovibrio exovorus (0.01±0.03% vs. 0.13±0.27%, P = 0.037)和 Brevibacillus marinus (0.002±0.01% vs. 0.05±0.14%, P = 0.032);在屬的層級有較低比例的Cutibacterium (1.55±2.19% vs. 4.36±6.42%, P = 0.015), Anaerococcus (0.09±0.36% vs. 1.02±2.36%, P = 0.018), Lactobacillus (0.00±0.00% vs. 0.34±0.95%, P = 0.031), Blautia (0.001±0.004% vs. 0.11±0.34%, P = 0.039), Pseudobdellovibrio (0.01±0.03% vs. 0.07±0.19%, P = 0.036), Brevibacillus (0.003±0.01% vs. 0.06±0.13%, P = 0.016);在門的層級有較低比例的 Cyanobacteria (0.00±0.00% vs. 0.02±0.07%, P = 0.046)。在口腔細菌叢方面,我們發現口腔細菌叢的alpha多樣性與ACT分數、eosinophil數量、IgE濃度和FEV1/FVC數值的相關性不顯著。兩組間,口腔細菌叢的alpha多樣性和beta多樣性皆無顯著差異。然而,相較於未發生氣喘急性惡化病患,曾經發生急性惡化的患者口腔在種的層級有較低比例的Streptococcus sanguis (0.29±0.32% vs. 0.69±1.08%, P = 0.036)、 Streptococcus gwanjuense (0.02±0.05% vs. 0.16±0.43%, P = 0.041)、Actinomyces graevenitzii (0.04±0.06% vs. 0.17±0.38%, P = 0.033)、Butyrivibrio hungatei (0.01±0.02% vs. 0.04±0.06%, P = 0.047)和Leptotrichia buccalis (0.004±0.01% vs. 0.02±0.05%, P = 0.035);在屬的層級有較低比例的Butyrivibrio (0.02±0.02% vs. 0.04±0.06%, P = 0.048)。 結論:曾急性惡化的氣喘病患,其鼻腔細菌叢的alpha多樣性似乎低於未曾氣喘急性惡化病患。曾氣喘急性惡化患者的鼻腔中,在屬的層級有較低比例的Cutibacterium、Anaerococcus、Lactobacillus、Blautia、Pseudobdellovibrio 和 Brevibacillus。口腔細菌叢的alpha多樣性和beta多樣性在曾急性發作與未曾急性發作病患中皆無顯著差異。本研究未收案健康人做比較,且收案人數較少。鼻腔微生物和氣喘急性發作易感性的機轉,需要進一步以動物介入實驗探討。 | zh_TW |
| dc.description.abstract | Background: Asthma is a chronic and recurrent inflammatory disease of the airways, triggered by an overreaction of the respiratory system to various allergens. The microbiome is in close contact with the respiratory mucosal epithelial cells, and its dysbiosis may be one of the key factors contributing to chronic airway inflammation. The upper and lower respiratory tracts are closely related both structurally and functionally. Therefore, dysbiosis of the nasal and oral microbiota may also significantly impact the control of chronic lower airway inflammation, such as in asthma. The role of the microbiome in the susceptibility to acute exacerbations in asthma patients is also noteworthy.
Methods: The study conducted at National Taiwan University Hospital in Taipei and its Hsinchu Branch in Taiwan. Adult patients diagnosed with asthma were recruited at 3-month follow-up. All patients underwent nasal and oral microbiome examinations after enrollment. Results: A total of 61 patients with asthma were enrolled. The mean patient age was 44 years (range: 21–72 years). Men comprised 18% (11/61) of all patients. Within the 3-month period, 34% of the patients experienced exacerbations. Patients with exacerbated asthma tended to have lower nasal alpha diversity than those without exacerbations. Nasal alpha diversity may correlate negatively with ACT scores and positively with eosinophil counts, but not with IgE levels or value of FEV1/FVC. The nasal bacterial composition differed between the two groups. Compared to patient with non-exacerbated asthma, those with exacerbated asthma had a lower proportion of nasal Cutibacterium acnes (1.44±2.14% vs. 4.11±6.34%, P value = 0.019), Anaerococcus octavius (0.06±0.26% vs. 0.54±1.31%, P value = 0.029), Pseudomonas yamanorum (0.02±0.08% vs. 0.40±0.97%, P value = 0.019), Acinetobacter johnsonii (0.02±0.08% vs. 0.07±0.19%, P value = 0.015), Pseudobdellovibrio exovorus (0.01±0.03% vs. 0.13±0.27%, P value = 0.037), and Brevibacillus marinus (0.002±0.01% vs. 0.05±0.14%, P value = 0.032) at species level, had a lower proportion of nasal Cutibacterium (1.55±2.19% vs. 4.36±6.42%, P value = 0.015), Anaerococcus (0.09±0.36% vs. 1.02±2.36%, P value = 0.018), Lactobacillus (0.00±0.00% vs. 0.34±0.95%, P value = 0.031), Blautia (0.001±0.004% vs. 0.11±0.34%, P value = 0.039), Pseudobdellovibrio (0.01±0.03% vs. 0.07±0.19%, P value = 0.036), Brevibacillus (0.003±0.01% vs. 0.06±0.13%, P value = 0.016) at the genus level, and had a lower proportion of nasal Cyanobacteria (0.00±0.00% vs. 0.02±0.07%, P value = 0.046) at the phylum level. There were no differences in oral alpha diversity and beta diversity between the two groups. Oral alpha diversity index was not associated with ACT score, eosinophil count, IgE level or value of FEV1/FVC. However, compared with patients with non-exacerbated asthma, those with exacerbated asthma had a lower proportion of oral Streptococcus sanguis (0.29±0.32% vs. 0.69±1.08%, P value = 0.036), Streptococcus gwanjuense (0.02±0.05% vs. 0.16±0.43%, P value = 0.041), Actinomyces graevenitzii (0.04±0.06% vs. 0.17±0.38%, P value = 0.033), Butyrivibrio hungatei (0.01±0.02% vs. 0.04±0.06%, P value = 0.047), and Leptotrichia buccalis (0.004±0.01% vs. 0.02±0.05%, P value = 0.035) at the species level, and had a lower proportion of oral Butyrivibrio (0.02±0.02% vs. 0.04±0.06%, P value = 0.048) at the genus level. Discussion: The nasal microbiome may be an important factor influencing susceptibility to asthma exacerbations. Patients with exacerbated asthma seemed to have lower alpha diversity in their nasal microbiome compared to those with non-exacerbated asthma. Patients with exacerbated asthma had a lower proportion of nasal Cutibacterium, Anaerococcus, Lactobacillus, Blautia, Pseudobdellovibrio, and Brevibacillus at the genus level. There were no significant differences in the alpha diversity and beta diversity of the oral microbiome between patients who had experienced exacerbations and those who had not. This study did not include healthy individuals for comparison, and the sample size was relatively small. Further animal interventional studies are needed to explore the mechanisms by which nasal microbiome may influence susceptibility to asthma exacerbations. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:19:51Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-21T16:19:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Introduction……………………………………………………………………… 1
Material and Method ………………………………………………… 4 Results…………………………………………………………………………………… 7 Discussion…………………………………………………………………………… 12 Conclusion…………………………………………………………………………… 14 Reference……………………………………………………………………………… 15 Table………………………………………………………………………………………… 18 Figure……………………………………………………………………………………… 19 | - |
| dc.language.iso | en | - |
| dc.subject | 鼻腔衛生物菌叢 | zh_TW |
| dc.subject | 口腔微生物菌叢 | zh_TW |
| dc.subject | 氣喘 | zh_TW |
| dc.subject | 急性發作 | zh_TW |
| dc.subject | alpha多樣性 | zh_TW |
| dc.subject | alpha diversity | en |
| dc.subject | exacerbation | en |
| dc.subject | asthma | en |
| dc.subject | oral microbiome | en |
| dc.subject | nasal microbiome | en |
| dc.title | 鼻腔及口腔微生物菌叢在氣喘的角色 | zh_TW |
| dc.title | The role of nasal and oral microbiome in asthma | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 簡榮彥 | zh_TW |
| dc.contributor.coadvisor | Jung-Yien Chien | en |
| dc.contributor.oralexamcommittee | 鄭世隆;陳介章 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Lung Cheng;Chieh-Chang Chen | en |
| dc.subject.keyword | 鼻腔衛生物菌叢,口腔微生物菌叢,氣喘,急性發作,alpha多樣性, | zh_TW |
| dc.subject.keyword | nasal microbiome,oral microbiome,asthma,exacerbation,alpha diversity, | en |
| dc.relation.page | 108 | - |
| dc.identifier.doi | 10.6342/NTU202404158 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床醫學研究所 | - |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 7.93 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
