請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94882完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳玉如 | zh_TW |
| dc.contributor.advisor | Yu-Ju Chen | en |
| dc.contributor.author | 張喬淳 | zh_TW |
| dc.contributor.author | Chiao-Chun Chang | en |
| dc.date.accessioned | 2024-08-21T16:08:10Z | - |
| dc.date.available | 2024-08-22 | - |
| dc.date.copyright | 2024-08-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | 1. Cohen, P. The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature, 1982, 296, 613-620.
2. Hunter, T. Signaling—2000 and Beyond. Cell, 2000, 100, 113-127. 3. Johnson, L. N., Lewis, R. J. Structural Basis for Control by Phosphorylation. Chem. Rev., 2001, 101, 2209−2242. 4. Pearlman, S. M., Serber, Z., Ferrell, J. E., Jr. A mechanism for the evolution of phosphorylation sites. Cell, 2011, 147 (4), 934-946. 5. Sharma, K., D'Souza, R. C., Tyanova, S., Schaab, C., Wisniewski, J. R., Cox, J., Mann, M. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep, 2014, 8 (5), 1583-1594. 6. Roskoski, R., Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res, 2012, 66 (2), 105-143. 7. Ardito, F., Giuliani, M., Perrone, D., Troiano, G., Lo Muzio, L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int J Mol Med, 2017, 40 (2), 271-280. 8. Seet, B. T., Dikic, I., Zhou, M. M., Pawson, T. Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol, 2006, 7 (7), 473-483. 9. Beekhof, R. B., A.; Böttger, F.; Vurchio, V.; Cottino, F.; Migliardi, G.; Trusolino, L.; Jimenez, C. R. Phosphoproteomics of patient-derived xenografts identifies targets and markers associated with sensitivity and resistance to EGFR blockade in colorectal cancer. Sci. Transl. Med., 2023, 15. 10. Jimenez, C. R., Verheul, H. M. W. Mass Spectrometry-Based Proteomics: From Cancer Biology to Protein Biomarkers, Drug Targets, and Clinical Applications. Am Soc Clin Oncol Educ Book, 2014, 34, 504-510. 11. Zhang, X., Maity, T. K., Ross, K. E., Qi, Y., Cultraro, C. M., Bahta, M., Pitts, S., Keswani, M., Gao, S., Nguyen, K. D. P., et al. Alterations in the Global Proteome and Phosphoproteome in Third Generation EGFR TKI Resistance Reveal Drug Targets to Circumvent Resistance. Cancer Res, 2021, 81 (11), 3051-3066. 12. van Alphen, C., Cloos, J., Beekhof, R., Cucchi, D. G. J., Piersma, S. R., Knol, J. C., Henneman, A. A., Pham, T. V., van Meerloo, J., Ossenkoppele, G. J., et al. Phosphotyrosine-based Phosphoproteomics for Target Identification and Drug Response Prediction in AML Cell Lines. Mol Cell Proteomics, 2020, 19 (5), 884-899. 13. Franciosa, G., Locard-Paulet, M., Jensen, L. J., Olsen, J. V. Recent advances in kinase signaling network profiling by mass spectrometry. Curr Opin Chem Biol, 2023, 73, 102260. 14. Tan, X., Lambert, P. F., Rapraeger, A. C., Anderson, R. A. Stress-Induced EGFR Trafficking: Mechanisms, Functions, and Therapeutic Implications. Trends Cell Biol, 2016, 26 (5), 352-366. 15. Mendelsohn, J., Baselga, J. Epidermal growth factor receptor targeting in cancer. Semin Oncol, 2006, 33 (4), 369-385. 16. Du, Z., Lovly, C. M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer, 2018, 17 (1), 58. 17. Lemmon, M. A., Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141 (7), 1117-1134. 18. Pawson, T. Regulation and targets of receptor tyrosine kinases. European Journal of Cancer, 2002, 38. 19. Rodems, T. S., Iida, M., Brand, T. M., Pearson, H. E., Orbuch, R. A., Flanigan, B. G., Wheeler, D. L. Adaptive responses to antibody based therapy. Semin Cell Dev Biol, 2016, 50, 153-163. 20. Wei, Y., Erfani, S., Schweer, D., de Gouvea, R., Qadir, J., Shi, J., Cheng, K., Wu, D., Craven, R., Wu, Y., et al. Targeting receptor tyrosine kinases in ovarian cancer: Genomic dysregulation, clinical evaluation of inhibitors, and potential for combinatorial therapies. Mol Ther Oncolytics, 2023, 28, 293-306. 21. Hynes, N. E., MacDonald, G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol, 2009, 21 (2), 177-184. 22. Hunter, T., Blume-Jensen, P. Oncogenic kinase signalling. Nature, 2001, 411. 23. Aboualizadeh, F., Yao, Z., Guan, J., Drecun, L., Pathmanathan, S., Snider, J., Umapathy, G., Kotlyar, M., Jurisica, I., Palmer, R., Stagljar, I. Mapping the Phospho-dependent ALK Interactome to Identify Novel Components in ALK Signaling. J Mol Biol, 2021, 433 (23), 167283. 24. Huang, L., Fu, L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B, 2015, 5 (5), 390-401. 25. Zhang, J., Yang, P. L., Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer, 2009, 9 (1), 28-39. 26. Tewari, K. S., Burger, R. A., Enserro, D., Norquist, B. M., Swisher, E. M., Brady, M. F., Bookman, M. A., Fleming, G. F., Huang, H., Homesley, H. D., et al. Final Overall Survival of a Randomized Trial of Bevacizumab for Primary Treatment of Ovarian Cancer. J Clin Oncol, 2019, 37 (26), 2317-2328. 27. Pearson, J. R. D., Regad, T. Targeting cellular pathways in glioblastoma multiforme. Signal Transduct Target Ther, 2017, 2, 17040. 28. Sudhesh Dev, S., Zainal Abidin, S. A., Farghadani, R., Othman, I., Naidu, R. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front Pharmacol, 2021, 12, 772510. 29. Casado, P., Hijazi, M., Britton, D., Cutillas, P. R. Impact of phosphoproteomics in the translation of kinase-targeted therapies. Proteomics, 2017, 17 (6). 30. Yang, Y., Li, S., Wang, Y., Zhao, Y., Li, Q. Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther, 2022, 7 (1), 329. 31. Araghi, M., Mannani, R., Heidarnejad Maleki, A., Hamidi, A., Rostami, S., Safa, S. H., Faramarzi, F., Khorasani, S., Alimohammadi, M., Tahmasebi, S., Akhavan-Sigari, R. Recent advances in non-small cell lung cancer targeted therapy; an update review. Cancer Cell Int, 2023, 23 (1), 162. 32. Yamaoka, T., Ohba, M., Ohmori, T. Molecular-Targeted Therapies for Epidermal Growth Factor Receptor and Its Resistance Mechanisms. Int J Mol Sci, 2017, 18 (11). 33. Juchum, M., Gunther, M., Laufer, S. A. Fighting cancer drug resistance: Opportunities and challenges for mutation-specific EGFR inhibitors. Drug Resist Updat, 2015, 20, 12-28. 34. Dzul Keflee, R., Leong, K. H., Ogawa, S., Bignon, J., Chan, M. C., Kong, K. W. Overview of the multifaceted resistances toward EGFR-TKIs and new chemotherapeutic strategies in non-small cell lung cancer. Biochem Pharmacol, 2022, 205, 115262. 35. Wu, Y. L., Zhou, C., Hu, C. P., Feng, J., Lu, S., Huang, Y., Li, W., Hou, M., Shi, J. H., Lee, K. Y., et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol, 2014, 15 (2), 213-222. 36. Janne, P. A., Engelman, J. A., Johnson, B. E. Epidermal growth factor receptor mutations in non-small-cell lung cancer: implications for treatment and tumor biology. J Clin Oncol, 2005, 23 (14), 3227-3234. 37. Lin, Y. X., Wang, X., Jin, H. C. EGFR-TKI resistance in NSCLC patients: mechanisms and strategies. Am J Cancer Res, 2014, 4, 411-435. 38. Ramalingam, S. S., Yang, J. C., Lee, C. K., Kurata, T., Kim, D. W., John, T., Nogami, N., Ohe, Y., Mann, H., Rukazenkov, Y., et al. Osimertinib As First-Line Treatment of EGFR Mutation-Positive Advanced Non-Small-Cell Lung Cancer. J Clin Oncol, 2018, 36 (9), 841-849. 39. He, Q., Qu, M., Bao, H., Xu, Y., Shen, T., Tan, D., Barkat, M. Q., Xu, C., Zeng, L. H., Wu, X. Multiple post-translational modifications ensure EGFR functionality: Potential therapeutic targets to overcome its drug-resistance mutations. Cytokine Growth Factor Rev, 2023, 70, 41-53. 40. Fu, K., Xie, F., Wang, F., Fu, L. Therapeutic strategies for EGFR-mutated non-small cell lung cancer patients with osimertinib resistance. J Hematol Oncol, 2022, 15 (1), 173. 41. Shi, K., Wang, G., Pei, J., Zhang, J., Wang, J., Ouyang, L., Wang, Y., Li, W. Emerging strategies to overcome resistance to third-generation EGFR inhibitors. J Hematol Oncol, 2022, 15 (1), 94. 42. Wu, X., Xing, X., Dowlut, D., Zeng, Y., Liu, J., Liu, X. Integrating phosphoproteomics into kinase-targeted cancer therapies in precision medicine. J Proteomics, 2019, 191, 68-79. 43. Grant, C., Nagasaka, M. Neoadjuvant EGFR-TKI therapy in Non-Small cell lung cancer. Cancer Treat Rev, 2024, 126, 102724. 44. Liu, X., Mei, W., Zhang, P., Zeng, C. PIK3CA mutation as an acquired resistance driver to EGFR-TKIs in non-small cell lung cancer: Clinical challenges and opportunities. Pharmacol Res, 2024, 202, 107123. 45. Shim, H. S., Choi, Y. L., Kim, L., Chang, S., Kim, W. S., Roh, M. S., Kim, T. J., Ha, S. Y., Chung, J. H., Jang, S. J., et al. Molecular Testing of Lung Cancers. J Pathol Transl Med, 2017, 51 (3), 242-254. 46. Shakoori, A. R. Fluorescence In Situ Hybridization (FISH) and Its Applications. In Chromosome Structure and Aberrations, 2017; pp 343-367. 47. Kumar, A., Tandon, A. Molecular Diagnostics for Lung Cancer. In Molecular Diagnostics in Cancer Patients, 2019; pp 27-41. 48. Mizote, S., Matsumura, M., Sekiya, M., Sugiyama, M., Sekine, A., Kobayashi, N., Kataoka, T., Iwashita, H., Okudela, K. Pathological criteria for multiplex gene-panel testing using next-generation sequencing in non-small cell lung cancer. Cancer Treat Res Commun, 2022, 32, 100614. 49. Qin, D. Next-generation sequencing and its clinical application. Cancer Biol Med, 2019, 16 (1), 4-10. 50. Qu, X., Yeung, C., Coleman, I., Nelson, P. S., Fang, M. Comparison of four next generation sequencing platforms for fusion detection: Oncomine by ThermoFisher, AmpliSeq by illumina, FusionPlex by ArcherDX, and QIAseq by QIAGEN. Cancer Genet, 2020, 243, 11-18. 51. Guibert, N., Hu, Y., Feeney, N., Kuang, Y., Plagnol, V., Jones, G., Howarth, K., Beeler, J. F., Paweletz, C. P., Oxnard, G. R. Amplicon-based next-generation sequencing of plasma cell-free DNA for detection of driver and resistance mutations in advanced non-small cell lung cancer. Ann Oncol, 2018, 29 (4), 1049-1055. 52. Savli, H., Sertdemir, N., Aydin, D., Dursun, B., Kurtas, O., Reka, S., Sunnetci-Akkoyunlu, D., Eren-Keskin, S., Uygun, K., Ozden, E., et al. TP53, EGFR and PIK3CA gene variations observed as prominent biomarkers in breast and lung cancer by plasma cell-free DNA genomic testing. J Biotechnol, 2019, 300, 87-93. 53. Yu, T. M., Morrison, C., Gold, E. J., Tradonsky, A., Layton, A. J. Multiple Biomarker Testing Tissue Consumption and Completion Rates With Single-gene Tests and Investigational Use of Oncomine Dx Target Test for Advanced Non-Small-cell Lung Cancer: A Single-center Analysis. Clin Lung Cancer, 2019, 20 (1), 20-29 e28. 54. Sherwood, J. L., Muller, S., Orr, M. C., Ratcliffe, M. J., Walker, J. Panel based MALDI-TOF tumour profiling is a sensitive method for detecting mutations in clinical non small cell lung cancer tumour. PLoS One, 2014, 9 (6), e100566. 55. Su, K. Y., Tseng, J. S., Liao, K. M., Yang, T. Y., Chen, K. C., Hsu, K. H., Yang, P. C., Yu, S. L., Chang, G. C. Mutational monitoring of EGFR T790M in cfDNA for clinical outcome prediction in EGFR-mutant lung adenocarcinoma. PLoS One, 2018, 13 (11), e0207001. 56. Gstaiger, M., Aebersold, R. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet, 2009, 10 (9), 617-627. 57. Zhang, B., Wang, J., Wang, X., Zhu, J., Liu, Q., Shi, Z., Chambers, M. C., Zimmerman, L. J., Shaddox, K. F., Kim, S., et al. Proteogenomic characterization of human colon and rectal cancer. Nature, 2014, 513 (7518), 382-387. 58. Geiger, T., Cox, J., Mann, M. Proteomic changes resulting from gene copy number variations in cancer cells. PLoS Genet, 2010, 6 (9), e1001090. 59. Tyanova, S., Albrechtsen, R., Kronqvist, P., Cox, J., Mann, M., Geiger, T. Proteomic maps of breast cancer subtypes. Nat Commun, 2016, 7, 10259. 60. Westemeier-Rice, E. S., Winters, M. T., Rawson, T. W., Martinez, I. More than the SRY: The Non-Coding Landscape of the Y Chromosome and Its Importance in Human Disease. Noncoding RNA, 2024, 10 (2). 61. Shenoy, A., Belugali Nataraj, N., Perry, G., Loayza Puch, F., Nagel, R., Marin, I., Balint, N., Bossel, N., Pavlovsky, A., Barshack, I., et al. Proteomic patterns associated with response to breast cancer neoadjuvant treatment. Mol Syst Biol, 2020, 16 (9), e9443. 62. Rosenberger, G., Li, W., Turunen, M., He, J., Subramaniam, P. S., Pampou, S., Griffin, A. T., Karan, C., Kerwin, P., Murray, D., et al. Network-based elucidation of colon cancer drug resistance mechanisms by phosphoproteomic time-series analysis. Nat Commun, 2024, 15 (1), 3909. 63. Boopathy, G. T. K., Lynn, J. L. S., Wee, S., Gunaratne, J., Hong, W. Phosphorylation of Mig6 negatively regulates the ubiquitination and degradation of EGFR mutants in lung adenocarcinoma cell lines. Cell Signal, 2018, 43, 21-31. 64. Reis, H., Herold, T., Ting, S., Worm, K., Huber, U., Christoph, D. C., Eberhardt, W. E., Kostbade, K., Kasper, S., Stamatis, G., et al. HER2 expression and markers of phosphoinositide-3-kinase pathway activation define a favorable subgroup of metastatic pulmonary adenocarcinomas. Lung Cancer, 2015, 88 (1), 34-41. 65. Giudice, G., Petsalaki, E. Proteomics and phosphoproteomics in precision medicine: applications and challenges. Brief Bioinform, 2019, 20 (3), 767-777. 66. Meissner, F., Geddes-McAlister, J., Mann, M., Bantscheff, M. The emerging role of mass spectrometry-based proteomics in drug discovery. Nat Rev Drug Discov, 2022, 21 (9), 637-654. 67. Wu, X., Liu, Y. K., Iliuk, A. B., Tao, W. A. Mass spectrometry-based phosphoproteomics in clinical applications. Trends Analyt Chem, 2023, 163. 68. Moore, J., Emili, A. Mass-Spectrometry-Based Functional Proteomic and Phosphoproteomic Technologies and Their Application for Analyzing Ex Vivo and In Vitro Models of Hypertrophic Cardiomyopathy. Int J Mol Sci, 2021, 22 (24). 69. Tanzer, M. C., Bludau, I., Stafford, C. A., Hornung, V., Mann, M. Phosphoproteome profiling uncovers a key role for CDKs in TNF signaling. Nat Commun, 2021, 12 (1), 6053. 70. Frejno, M., Meng, C., Ruprecht, B., Oellerich, T., Scheich, S., Kleigrewe, K., Drecoll, E., Samaras, P., Hogrebe, A., Helm, D., et al. Proteome activity landscapes of tumor cell lines determine drug responses. Nat Commun, 2020, 11 (1), 3639. 71. Valles-Marti, A., Mantini, G., Manoukian, P., Waasdorp, C., Sarasqueta, A. F., de Goeij-de Haas, R. R., Henneman, A. A., Piersma, S. R., Pham, T. V., Knol, J. C., et al. Phosphoproteomics guides effective low-dose drug combinations against pancreatic ductal adenocarcinoma. Cell Rep, 2023, 42 (6), 112581. 72. Pino, J. C., Posso, C., Joshi, S. K., Nestor, M., Moon, J., Hansen, J. R., Hutchinson-Bunch, C., Gritsenko, M. A., Weitz, K. K., Watanabe-Smith, K., et al. Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia. Cell Rep Med, 2024, 5 (1), 101359. 73. Kitata, R. B., Choong, W. K., Tsai, C. F., Lin, P. Y., Chen, B. S., Chang, Y. C., Nesvizhskii, A. I., Sung, T. Y., Chen, Y. J. A data-independent acquisition-based global phosphoproteomics system enables deep profiling. Nat Commun, 2021, 12 (1), 2539. 74. Zhang, X., Maity, T., Kashyap, M. K., Bansal, M., Venugopalan, A., Singh, S., Awasthi, S., Marimuthu, A., Charles Jacob, H. K., Belkina, N., et al. Quantitative Tyrosine Phosphoproteomics of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor-treated Lung Adenocarcinoma Cells Reveals Potential Novel Biomarkers of Therapeutic Response. Mol Cell Proteomics, 2017, 16 (5), 891-910. 75. Dakup, P. P., Feng, S., Shi, T., Jacobs, J. M., Wiley, H. S., Qian, W. J. Targeted Quantification of Protein Phosphorylation and Its Contributions towards Mathematical Modeling of Signaling Pathways. Molecules, 2023, 28 (3). 76. Yi, L., Shi, T., Gritsenko, M. A., X'Avia Chan, C. Y., Fillmore, T. L., Hess, B. M., Swensen, A. C., Liu, T., Smith, R. D., Wiley, H. S., Qian, W. J. Targeted Quantification of Phosphorylation Dynamics in the Context of EGFR-MAPK Pathway. Anal Chem, 2018, 90 (8), 5256-5263. 77. Martinez-Val, A., Fort, K., Koenig, C., Van der Hoeven, L., Franciosa, G., Moehring, T., Ishihama, Y., Chen, Y. J., Makarov, A., Xuan, Y., Olsen, J. V. Hybrid-DIA: intelligent data acquisition integrates targeted and discovery proteomics to analyze phospho-signaling in single spheroids. Nat Commun, 2023, 14 (1), 3599. 78. Huang da, W., Sherman, B. T., Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009, 4 (1), 44-57. 79. Gebreyesus, S. T., Muneer, G., Huang, C. C., Siyal, A. A., Anand, M., Chen, Y. J., Tu, H. L. Recent advances in microfluidics for single-cell functional proteomics. Lab Chip, 2023, 23 (7), 1726-1751. 80. Yuan, Y., Hao, L., Huang, J. S., Zhao, F. Y., Ju, Y. H., Wang, J. M., Zhang, T., Li, B. Q., Yu, Z. W. Promotion of stem cell-like phenotype of lung adenocarcinoma by FAM83A via stabilization of ErbB2. Cell Death Dis, 2024, 15 (6), 460. 81. Chang, C. C., Tai, I. Y., Chan, S. S., Lin, Y. H., Chen, Y. J., Chen, Y. J. Developing tyrosine phosphoproteome libraries and dual quantification using a hybrid DIA approach. Journal of the Chinese Chemical Society, 2024. 82. Wang, Y.-P., Ma, C., Yang, X.-K., Zhang, N., Sun, Z.-G. Pan-cancer and single-cell analysis reveal THRAP3 as a prognostic and immunological biomarker for multiple cancer types. Frontiers in Genetics, 2024, 15. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94882 | - |
| dc.description.abstract | 異常的蛋白質磷酸化通常與癌症的發生或進展具有密切的相關性,特別是受體酪胺酸激酶(RTKs),已成為設計標靶藥物或抗體藥物時具有吸引力的目標。然而,大多數RTK標靶療法最終都會出現抗藥性,導致治療效果降低。以標靶表皮生長因子受體(EGFR)治療非小細胞肺癌(NSCLC)為例,由於第一代到第三代的EGFR酪胺酸激酶抑制劑(TKIs)最終都會出現各種類型的抗藥性機制,因此選擇下一條線藥物至關重要。
在本研究中,為了對第三代EGFR-TKI(Osimertinib)產生抗藥性的肺癌晚期病人提供下一線藥物建議,我們提出了一種定量磷酸化蛋白質體學方法,透過分析過度表現的訊息傳導路徑,找出潛在的FDA認證的標靶藥物,可能能夠作為精準藥物指示用藥的參考。為了進行深度分析,我們整合了優化的磷酸化胜肽萃取方法(IMAC)和數據非依賴性採集質譜技術(DIA-MS),從23個對Osimertinib產生抗藥性肺癌晚期病人的胸腔積水,提取並各自培養的肺癌細胞株,透過DIA和數據依賴性採集(DDA)的兩種質譜方法,建立一個包含158,670條磷酸化胜肽的質譜資料庫。定量結果顯示有21,797個差異表現的磷酸化位點,其中包括19種FDA認證的肺癌藥物。根據細胞存活率分析(MTT)方法獲得的藥物反應,我們對五種TKIs(Osimertinib、Afatinib、Neratinib、Trametinib和Dasatinib)的藥性分數進行統計分析後選出各自有差異表現的磷酸化位點(DEPs),分群結果有效地將對藥物敏感與抗藥性的細胞株分開。除此之外,利用火山圖的差異性分析可找出和藥性顯著差異的磷酸化位點,再透過箱形圖的高可信度(p < 0.01)和ROC曲線的曲線下面積值(AUC)評估7個RTK相關位點作為特定藥物生物標記的潛力。為了能進一步提供更有效的病人治療用藥建議,我們正在開發資訊演算法結合標靶式DIA的方法,以精確量化這些潛在的磷酸化標記,這項研究為TKI抗藥性的概況和產生TKI抗藥性病人在精準醫療的預測方面,提供新的見解。 | zh_TW |
| dc.description.abstract | Aberrant protein phosphorylation, especially arising from receptor tyrosine kinases (RTKs) signaling, is closely linked to initiation or progression of cancer and has been attractive targets to design small molecule or antibody drugs for lung cancer. However, resistance eventually occurs for most targeting-RTKs therapies, which leads to the reduced efficacy of treatments. In the example of epidermal growth factor receptor (EGFR) therapy in non-small cell lung cancer (NSCLC), selecting the next-line drug is crucial due to the development of various types of resistance mechanism to first-to-third generation EGFR tyrosine kinase inhibitors (EGFR-TKIs).
To identify the next-line drug for late-stage patients who developed resistance to third-generation EGFR-TKI (Osimertinib), in this study, we proposed a quantitative phosphoproteomics approach to identify the potential FDA-approved drug targets from the overly activated signaling pathways in those drug-resistance lung cancer patients, which may be implemented as a precision drug indication assay. We integrated an optimized immobilized metal affinity chromatography (IMAC)-based phosphoproteomics workflow and data-independent acquisition mass spectrometry (DIA-MS) for deep profiling of 23 Osimertinib-resistant cell lines extracted from the pleural effusion of patients. A hybrid spectra library was constructed by 45 datasets established using DIA and data-dependent acquisition (DDA), covering 158,670 phosphopeptides (73,717 phosphosites, 212,926 precursors). By direct DIA, the 23 patient-derived cell lines have an average of 26,683 class-1 phosphopeptides, while the spectra library-assisted DIA-MS approach enhanced about 2-fold and 1.1-1.2 folds more phosphopeptides in these cell lines compared to the DDA and direct DIA, respectively. Quantitative comparison revealed 21,797 differential phosphosites within the druggable RTK signaling pathways, including 19 FDA-approved lung cancer drugs. According to MTT assays (from Prof. Sung Liang Yu group) to determine response or resistance to five TKIs (Osimertinib, Afatinib, Neratinib, Trametinib, and Dasatinib), unsupervised hierarchical clustering of differentially expressed phosphosites (DEPs) in different TKIs reveals classification of drug-sensitive and -resistant cell lines. Pathway enrichment analysis indicated annotation of intracellular and intercellular signaling, cellular structure and stability, and cancer-related pathways associated with DEPs. Furthermore, volcano plots highlighted significantly differential phosphosites. The potential of seven RTK-related phosphosites as drug-specific biomarkers was demonstrated with high confidence (p < 0.01) in box plots and area under curve (AUC) values 0.53-0.86 of ROC curve. For further implementation to guide decision of patient treatment, we are developing informatic algorithms combined with a targeted DIA strategy to quantify these potential phosphopeptide markers. This study provides new insight into TKI drug resistant profile and prediction toward precision medicine of TKI-resistant patients. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:08:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-21T16:08:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract ii Table of Contents iv List of Figures vi List of Tables viii Chapter 1 Introduction 1 1.1 Significance of Protein Phosphorylation and Phophoproteomics 1 1.2 TKI Targeted Therapy and Resistance 2 1.3 Current Clinical Assays to Guide Drug Selection in Lung Cancer 4 1.4 Proteomics and Phosphoproteomics for Drug Resistance Research 6 1.5 Proteomics and Phosphoproteomics for Predicting Drug Response 7 1.6 Objective 11 Chapter 2 Material and Method 13 2.1 Chemical and Material 13 2.2 Sample preparation for LC-MS/MS 13 2.2.1 Cell Line and Cell Culture 13 2.2.2 Cell Lysis and Protein Extraction 14 2.2.3 Protein Digestion 14 2.2.4 Peptide Desalting by StageTip 14 2.2.5 Phosphopeptide Enrichment by Immobilized Metal Affinity Chromatography (IMAC) 15 2.2.6 Liquid Chromatography-Mass Spectrometry Analysis 16 2.3 Data Processing and Analysis 17 2.3.1 Phosphoproteome Identification and Quantification 17 2.3.2 Statistical Analysis 18 2.3.3 Bioinformatics Analysis 19 Chapter 3 Result and Discussion 20 3.1 Experimental Design and Workflow 20 3.2 Experiment Workflow of Phosphoproteomic Preparation 21 3.3 Construction of Hybrid Phosphoproteome Spectral Library Using TKI-resistant Lung Cancer Cell Lines 22 3.4 Comparison of Phosphoproteomics Profiling Coverage between DDA and DIA LC-MS/MS methods 23 3.5 FDA-approved drug screening in TKI-resistant NSCLC cell lines 24 3.6 Bioinformatic analysis in TKI-resistant lung cancer patients 25 3.6.1 Process of statistical analysis and bioinformatic analysis 25 3.6.2 Global phosphoproteomics profiling of 23 TKI cell lines by heatmap 26 3.6.3 Differential phosphoproteome profiling for different TKI drug 27 3.6.4 Selection of Differential Phosphopeptide Associated with Drug Response Profiles 30 3.7 Application to clinical TKI-resistant lung cancer patients (CLH215) 34 3.7.1 Application of Phosphoproteomics-based Prediction for Therapeutic Recommendation 34 3.7.2 Evaluate phosphorylation expression through pattern biomarker 35 3.8 Sensitivity Evaluation of Microscale Phosphoproteomics by PC9 Cell Line 37 Chapter 4 Conclusions 38 References 40 Figures 48 Tables 74 | - |
| dc.language.iso | en | - |
| dc.subject | 質譜 | zh_TW |
| dc.subject | 磷酸化蛋白質體學 | zh_TW |
| dc.subject | 數據非依賴性採集 | zh_TW |
| dc.subject | 酪胺酸激酶抑制劑 | zh_TW |
| dc.subject | 肺癌抗藥性 | zh_TW |
| dc.subject | Data-independent acquisition (DIA) | en |
| dc.subject | Mass spectrometry | en |
| dc.subject | Lung cancer resistance | en |
| dc.subject | Tyrosine kinase inhibitor (TKI) | en |
| dc.subject | Phosphoproteomics | en |
| dc.title | 開發磷酸化蛋白質體學方法以推薦EGFR標靶治療抗藥性肺癌的下一線藥物 | zh_TW |
| dc.title | Developing Phosphoproteomics Approach to Nominate Next Treatment Drug in EGFR Targeted Therapy-resistant Lung Cancer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 俞松良;陳誼如 | zh_TW |
| dc.contributor.oralexamcommittee | Sung-Liang Yu;Yi-Ju Chen | en |
| dc.subject.keyword | 質譜,磷酸化蛋白質體學,數據非依賴性採集,酪胺酸激酶抑制劑,肺癌抗藥性, | zh_TW |
| dc.subject.keyword | Mass spectrometry,Phosphoproteomics,Data-independent acquisition (DIA),Tyrosine kinase inhibitor (TKI),Lung cancer resistance, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202403560 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-11 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 5.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
