請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94881完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬 | zh_TW |
| dc.contributor.advisor | Chii-Wann Lin | en |
| dc.contributor.author | 黃聖勳 | zh_TW |
| dc.contributor.author | Sheng-Hsun Huang | en |
| dc.date.accessioned | 2024-08-20T16:22:36Z | - |
| dc.date.available | 2024-08-21 | - |
| dc.date.copyright | 2024-08-20 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | [1] Yan Lu, Katherine C Morris, and Simon Frechette. Current standards landscape for smart manufacturing systems. National Institute of Standards and Technology, NISTIR, 8107(3), 2016.
[2] Shilpa Nargund, Klaus Mauch, Sabrina Esswein, Bastian Niebel, Mehran Rafigh, and Pushkar Pendse. Biopharma 4.0: Digital Technologies Driving Smart Manufacturing, pages 319–335. Springer, 2024. [3] Muhammad Talha Khan and Syed Muzamil Ali. A brief review of measuring techniques for characterization of dielectric materials. International Journal of Information Technology and Electrical Engineering, 1(1):1–5, 2012. [4] K. Entesari, A. A. Helmy, and M. Moslehi-Bajestan. Integrated systems for biomedical applications: Silicon-based rf/microwave dielectric spectroscopy and sensing. Ieee Microwave Magazine, 18(5):57–72, 2017. Ex7rm Times Cited:37 Cited References Count:37. [5] Jian‐Zhong Bao, Mays L Swicord, and Christopher C Davis. Microwave dielectric characterization of binary mixtures of water, methanol, and ethanol. The Journal of chemical physics, 104(12):4441–4450, 1996. [6] S. R. Valantina. Measurement of dielectric constant: A recent trend in quality analysis of vegetable oil - a review. Trends in Food Science Technology, 113:1–11, 2021. Uk1lj Times Cited:13 Cited References Count:79. [7] J. C. Chien, A. Ameri, E. C. Yeh, A. N. Killilea, M. Anwar, and A. M. Niknejad. A high-throughput flow cytometry-on-a-cmos platform for single-cell dielectric spectroscopy at microwave frequencies. Lab on a Chip, 18(14):2065–2076, 2018. Gm6ce Times Cited:41 Cited References Count:75. [8] Nadin Alrayes and Mousa I Hussein. Metamaterial-based sensor design using split ring resonator and hilbert fractal for biomedical application. Sensing and Bio-Sensing Research, 31:100395, 2021. [9] Volkan Turgul and Izzet Kale. Characterization of the complex permittivity of glucose/water solutions for noninvasive rf/microwave blood glucose sensing. In 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, pages 1–5. IEEE. [10] S Rubalya Valantina, D Susan, S Bavasri, V Priyadarshini, R Ramya Saraswathi, and M Suriya. Experimental investigation of electro-rheological properties of modeled vegetable oils. Journal of food science and technology, 53:1328–1337, 2016. [11] C Inoue, Y Hagura, M Ishikawa, and K Suzuki. The dielectric property of soybean oil in deep‐fat frying and the effect of frequency. Journal of food science, 67(3):1126– 1129, 2002. [12] 徐嘉隆. 利用超穎物質概念之生物感測天線設計. Thesis, 2010. [13] 張富傑. 非接觸式平板天線型生物感測器之設計與應用. Thesis, 2012. [14] 陳柏伸. 非侵入式物質介電係數感測介面電路系統. Thesis, 2014. [15] 沈續濤. 微型化自動介電生物感測器系統之設計與應用. Thesis, 2016. [16] 伍恆慶. 非侵入式介電係數物質感測系統晶片與介面設計. Thesis, 2016. [17] 徐瑋良. 用於感測介電常數的CMOS 微波生醫感測器. Thesis, 2022. [18] Safa O Kasap. Electronic materials and Devices. McGraw-Hill New York, 2006. [19] Vadim F Lvovich. Impedance spectroscopy: applications to electrochemical and dielectric phenomena. John Wiley Sons, 2012. [20] D. El Khaled, N. N. Castellano, J. A. Gazquez, A. J. Perea-Moreno, and F. Manzano- Agugliaro. Dielectric spectroscopy in biomaterials: Agrophysics. Materials (Basel), 9(5):310, 2016. El Khaled, Dalia Castellano, Nuria N Gazquez, Jose A Perea-Moreno, Alberto-Jesus Manzano-Agugliaro, Francisco eng Review Switzerland 2016/04/27 Materials (Basel). 2016 Apr 27;9(5):310. doi: 10.3390/ma9050310. [21] Chon-ung Kim, Guofeng Li, Jie Li, Hakchol Jong, Cholwu Ro, Yunho Song, Gilhung Pak, and Songil Im. Numerical analysis on effective electric field penetration depth for interdigital impedance sensor. In Journal of Physics: Conference Series, volume 418, page 012020. IOP Publishing. [22] A. V. Mamishev, K. Sundara-Rajan, F. Yang, Y. Q. Du, and M. Zahn. Interdigital sensors and transducers. Proceedings of the Ieee, 92(5):808–845, 2004. 814tu Times Cited:405 Cited References Count:187. [23] A. Hajimiri and T. H. Lee. Design issues in cmos differential oscillators. Ieee Journal of Solid-State Circuits, 34(5):717–724, 1999. 191ug Times Cited:659 Cited References Count:8. [24] P. Andreani, A. Bonfanti, L. Romanò, and C. Samori. Analysis and design of a 1.8-ghz cmos quadrature vco. Ieee Journal of Solid-State Circuits, 37(12):1737–1747, 2002. 623el Times Cited:299 Cited References Count:31. [25] Colin Walls. Embedded RTOS Design: Insights and Implementation. Newnes, 2020. [26] Milan Prokin. Dma transfer method for wide-range speed and frequency measurement. IEEE transactions on instrumentation and measurement, 42(4):842–846, 1993. [27] Arthur Lombardi Campos. Design of a low-power 10-bit 12-MS/s asynchronous SAR ADC. Thesis, 2020. [28] David A Johns and Ken Martin. Analog integrated circuit design. John Wiley Sons, 2008. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94881 | - |
| dc.description.abstract | 由於生技製藥產業的發展和大眾對健康的重視,非接觸式、即時且精準的微波感測器在生醫工程中的應用變得越來越重要。透過分析微波波段電磁波與物質互動的訊號,可以進行物質介電係數的量測。
本研究將基於LC 振盪架構之介電係數感測器與微控制器整合,開發自動化非接觸式介電係數感測系統。在設計中,以微控制器中的計數器、SAR ADC 獲取振盪器的頻率與振幅訊號值,並對其以數位濾波器降低雜訊的影響。透過基於LC 振盪器的介電係數感測器的數學模型分析量測數據,可得到待測物的複數介電係數。本研究設計了不同的量測平台並建立量測流程,以降低環境影響與人為操作誤差。藉由分析量測得到的數據,對此系統的感測性能與即時量測功能進行驗證。 在靜態量測結果中,顯示此感測系統對不同樣本具有顯著的辨識能力,並且與折射率計、向量網路分析儀的量測結果呈現高度相關。在微流道動態量測結果中,顯示感測系統能即時反映反應區域的變化,驗證了其即時量測特性,並展現其對微量樣本的感測潛力。 | zh_TW |
| dc.description.abstract | Due to the development of the biopharmaceutical industry and the increasing public concern for health, the application of non-contact, real-time, and precise microwave sensors in biomedical engineering is becoming increasingly important. By analyzing the interaction signals between microwave electromagnetic waves and materials, the dielectric constant of substances can be measured.
This study integrates an LC oscillator-based dielectric constant sensor with a microcontroller to develop an automated non-contact dielectric sensor system. In the our design, the frequency and amplitude signal values of the oscillator are obtained using the microcontroller’s counters and SAR ADC, with digital filters applied to reduce noise interference. The measurement results are analyzed using a mathematical model based on the LC oscillator dielectric sensor to obtain the complex dielectric constant of the material under test. Various measurement platforms were designed and measurement procedures established to minimize environmental impact and artifact. Through the analysis of measurement data, the sensing performance and real-time measurement capabilities were validated. The static measurement results showed that this dielectric sensor system has significant discrimination capabilities for different samples and is highly correlated with the results from refractometers and vector network analyzers. In the dynamic measurement results using a microfluidic system, the dielectric sensor system demonstrated the ability to reflect changes in the reaction region in real-time, verifying its real-time characteristics and its potential for sensing small-volume samples. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-20T16:22:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-20T16:22:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書i
致謝iii 摘要v Abstract vii 目次ix 圖次xii 表次xv 第一章緒論1 1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 介電係數量測方法. . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 介電係數感測應用. . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 介電係數感測器設計. . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 研究動機與貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 論文架構及章節介紹. . . . . . . . . . . . . . . . . . . . . . . . . . 10 第二章介電係數感測系統原理及設計13 2.1 介電係數原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 介電係數感測系統設計. . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 指叉型電極. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.2 交叉耦合LC 振盪器. . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.3 基於LC 振盪器的介電係數感測器之數學模型. . . . . . . . . . 21 2.2.4 訊號處理電路. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 讀值自動化之微處理器設計. . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 感測器頻率讀取電路. . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.2 感測器振幅讀取電路. . . . . . . . . . . . . . . . . . . . . . . . 29 第三章系統驗證之材料與方法33 3.1 自動化非接觸式介電係數感測系統. . . . . . . . . . . . . . . . . . 33 3.1.1 介電係數感測器. . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1.2 讀值自動化之微控制器. . . . . . . . . . . . . . . . . . . . . . . 33 3.2 量測之架構設計與實驗方法. . . . . . . . . . . . . . . . . . . . . . 34 3.2.1 靜態量測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.2 動態量測:微流道系統. . . . . . . . . . . . . . . . . . . . . . . 38 第四章量測結果與資料分析41 4.1 靜態量測結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.1 乙醇、甲醇濃度校正曲線. . . . . . . . . . . . . . . . . . . . . . 42 4.1.2 感測性能評估. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.1.3 樣本辨別能力比較. . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2 動態量測結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.1 即時性驗證. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.2 微量樣本量測驗證. . . . . . . . . . . . . . . . . . . . . . . . . . 49 第五章結語與未來展望55 參考文獻57 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 介電係數 | zh_TW |
| dc.subject | 指叉型電極 | zh_TW |
| dc.subject | 生醫感測器 | zh_TW |
| dc.subject | LC 振盪器 | zh_TW |
| dc.subject | Biosensor | en |
| dc.subject | LC oscillator | en |
| dc.subject | Dielectric constant | en |
| dc.subject | Interdigital electrode viii | en |
| dc.title | 自動化非接觸式介電係數感測系統設計與驗證 | zh_TW |
| dc.title | Design and Verification of An Automated Non-contact Dielectric Sensor System | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 彭盛裕;林致廷 | zh_TW |
| dc.contributor.oralexamcommittee | Sheng-Yu Peng;Chih-Ting Lin | en |
| dc.subject.keyword | 介電係數,LC 振盪器,生醫感測器,指叉型電極, | zh_TW |
| dc.subject.keyword | Dielectric constant,LC oscillator,Biosensor,Interdigital electrode viii, | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202403311 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | 2026-09-01 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2026-09-01 | 18.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
