請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94878完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐冠倫 | zh_TW |
| dc.contributor.advisor | Kuan-Lun Hsu | en |
| dc.contributor.author | 陳姵如 | zh_TW |
| dc.contributor.author | Pei-Ru Chen | en |
| dc.date.accessioned | 2024-08-20T16:21:37Z | - |
| dc.date.available | 2024-08-21 | - |
| dc.date.copyright | 2024-08-20 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | [1] M.F. Grübler, Getriebelehre: eine Theorie des Zwanglaufes und der ebenen Mechanismen. Springer, 1917.
[2] K. Kutzbach, "Mechanische leitungsverzweigung, ihre gesetze und anwendungen," Maschinenbau, vol. 8, no. 21, pp. 710-716, 1929. [3] 劉經元,求解空間過拘束機構瞬心軸及軸線面之系統化方法,碩士論文,國立臺灣大學工學院機械工程學系,2023 [4] P. T. Sarrus, "Note sur la transformation des mouvements rectilignes alternatifs,en mouvements circulaires: et rèciproquement, " Academie des Sciences, vol. 36, pp. 1036-1038, 1853. [5] G. T. Bennett, "A new mechanism," Engineering, vol. 76, pp. 777-778, 1903. [6] E. Delassus, "Les chains articulées fermées et déformables à quatre membres," Bull. Sci. Math., vol. 46, no. 2, pp. 283-304, 1922. [7] R. Bricard, "Leçons de cinématique," Gauthier-Villars, vol 2, pp. 7-12, 1927. [8] F. Myard, "Contribution à la géométrie des systèmes articulés, " Bulletin de la Société Mathématique de France, vol. 59, pp. 183-210, 1931. [9] M. Goldberg, "New five-bar and six-bar linkages in three dimensions, " Transactions of ASME, vol. 65, pp. 649-661, 1943. [10] R. Franke, Vom Aufbau der Getriebe, Deutscher Ingenieur, Düsseldorf, Germany, pp. 97–106, 1943. [11] K. J. Waldron, "Hybrid overconstrained linkages," Journal of Mechanisms, vol. 3, no. 2, pp. 73-78, 1967 [12] K. J. Waldron, The Mobility of Linkages, Doctoral dissertation, Stanford University, Stanford, CA, 1969 [13] K. Wohlhart, "A new 6R space mechanism, " Proceedings of the seventh world congress on the theory of machines and mechanisms, Sevilla, Spain, vol. 1, pp. 193-198, 1987. [14] K. Wohlhart, "Merging two general Goldberg 5R linkages to obtain a new 6R space mechanism, " Mechanism and Machine Theory, vol. 26, no. 7, pp. 659-668, 1991. [15] C. Mavroidis, and B. Roth, "Analysis of Overconstrained Mechanisms, " Journal of Mechanical Design, vol. 117, no. 1, pp. 69-74, 1995. [16] C. Mavroidis, and B. Roth, "New and Revised Overconstrained Mechanisms, " Journal of Mechanical Design, vol. 117, no. 1, pp. 75-82, 1995. [17] P. Schatz, Rhythmusforschung und Technik, Stuttgart:Verlag Freies Geistesleben., 1998. [18] M. Skreiner, "A study of the geometry and the kinematics of instantaneous spatial motion", Journal of Mechanisms, vol. 1, issue 2, pp.115-143, 1966 [19] C. H. Suh, “Differential Displacement Matrices and the Generation of Screw Axis Surfaces in Kinematics,” Journal of Manufacturing Science and Engineering, Vol. 93, Issue 1, 1971. [20] K. H. Hunt, Kinematic geometry of mechanism, Oxford Engineering Science Series, Oxford, England, pp.85-90, 1978. [21] J. E. Baker, “The axodes of the Bennettt linkage,” Mechanism and Machine Theory, Vol. 36, Issue 1, pp.105-116, 2001. [22] C. Huang and H. T. Tu, “Linear Property of the Screw Surface of the Spatial RPRP Linkage,” Journal of Mechanical Design, Vol. 128, Issue 3, pp. 581-586, 2006. [23] Q. Shena, K. Russell, W. T. Leec and R. S. Sodhid, “On cam system design to replicate spatial four-bar mechanism coupler motion,” Inverse Problems in Science and Engineering, Vol. 19, No. 2, pp. 251–265, 2011. [24] G. Figliolini, P. Rea, and J. Angeles, “The synthesis of the axodes of spatial four-bar linkages,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1597-1605, 2012 [25] W. L. Edge, The Theory of Ruled Surfaces, Cambridge University Press, pp. 791-793, 1931. [26] C. H. Suh, “Differential Displacement Matrices and the Generation of Screw Axis Surfaces in Kinematics,” Journal of Manufacturing Science and Engineering, Vol. 93, Issue 1, 1971. [27] J. Denavit, and R. S. Hartenberg, "A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices," Journal of Applied Mechanics, vol. 22, no. 2, pp. 215-221, 1955. [28] K. H. Hunt, Kinematic geometry of mechanism, Oxford Engineering Science Series, Oxford, England, pp.85-90, 1978. [29] C. Y. Song, Y. Chen and I. M. Chen, "Kinematic Study of the Original and Revised General Line-Symmetric Bricard 6R Linkages," Journal of Mechanisms and Robotics, Vol. 6, Issue 3, 2014. [30] M.E. Mortenson, Geometric Modeling, John Wiley & Sons, 2006 [31] J.E. Baker, "The axodes of the Bennett linkage," Mechanism and Machine Theory. vol. 36, issue 1, pp.105-116, 2001 [32] J. E. Baker, "The Curve of Striction of the Bennett Loop’s Fixed Axode ," Journal of Mechanical Design, vol. 127, issue4, pp.607-611, 2005 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94878 | - |
| dc.description.abstract | 本論文使用瞬時螺距速度矩陣求解Bennett機構、Bricard機構、Franke機構及Wohlhart機構之瞬心軸,並繪製運動範圍內瞬心軸組合成的軸線面。Bricard機構、Franke機構及Wohlhart機構為具有不同對稱特性的空間六連桿過拘束機構。通過求解這三個機構的瞬心軸後,觀察其軸線面,其中Franke機構的軸線面呈現面對稱的特徵。此外,本論文透過雙三次Hermite 曲面擬合,繪製出Bennett機構之軸線面,並觀察討論Bennett軸線面的直紋曲面參數式與雙曲面參數式相似的特徵。 | zh_TW |
| dc.description.abstract | This thesis determines the instant screw axes of Bennett mechanism, Bricard mechanism, Franke mechanism and Wohlhart mechanism with the velocity matrix of instant pitch, and plots the axodes formed by all instant screw axes. The Bricard, Franke, and Wohlhart mechanisms are spatial six-bar overconstrained mechanisms with different symmetry characteristics. By observing the axodes of these three mechanisms, revealing that the ruled surface of the Franke mechanism exhibits plane symmetry characteristics. Additionally, this thesis uses bicubic Hermite surface fitting to plot the axode of the Bennett mechanism and discusses the similarities between the axode of the Bennett and hyperbolic surfaces in ruled suface parametric representation form. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-20T16:21:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-20T16:21:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 目次 v 圖次 viii 表次 xviii 符號對照表 xxi 第一章 前言 1 1.1 緒論 1 1.2 文獻探討 2 1.3 研究目標 4 第二章 求解瞬心軸與繪製軸線面 5 2.1 空間機構之瞬心軸 5 2.2 瞬時螺距速度矩陣 6 2.3 求解瞬心軸與繪製軸線面 7 2.3.1 DH座標轉換 7 2.3.2 求解瞬心軸之步驟 9 2.3.3 繪製軸線面 13 第三章 求解Bennett機構瞬心軸及軸線面 13 3.1 求出Bennett機構瞬心軸ISA13G1 14 3.2 利用三軸定理驗證Bennett機構瞬心軸ISA13 位置 29 3.3 求出Bennett機構瞬心軸ISA24G1 30 3.4 利用三軸定理驗證Bennett機構瞬心軸ISA24 位置 43 第四章 求解Bricard機構瞬心軸及軸線面 45 4.1 求出Bricard機構ISA13G1、ISA14G1、ISA15G1 46 4.2 利用三軸定理驗證Bricard機構ISA13 、ISA14 、ISA15 位置 64 4.3 求出Bricard機構ISA24G1、ISA25G1、ISA26G1 68 4.4 利用三軸定理驗證Bricard機構ISA24 、ISA25 、ISA26 位置 85 4.5 求出Bricard機構ISA35G1、ISA36G1 88 4.6 利用三軸定理驗證Bricard機構ISA35 與ISA36 位置 101 4.7 求出Bricard機構ISA46G1 103 4.8 利用三軸定理驗證Bricard機構ISA46 位置 111 4.9 小結 112 第五章 求解Franke機構瞬心軸及軸線面 113 5.1 求出Franke機構ISA13G1、ISA14G1、ISA15G1 114 5.2 利用三軸定理驗證Franke機構ISA13 、ISA14 、ISA15 位置 131 5.3 求出Franke機構ISA24G1、ISA25G1、ISA26G1 134 5.4 利用三軸定理驗證Franke機構ISA24 、ISA25 、ISA26 位置 152 5.5 求出Franke機構ISA35G1、ISA36G1 155 5.6 利用三軸定理驗證Franke機構ISA35 與ISA36 位置 167 5.7 求出Franke機構ISA46G1 169 5.8 利用三軸定理驗證Franke機構ISA46 位置 176 5.9 小結 177 第六章 求解Wohlhart機構瞬心軸及軸線面 178 6.1 求出Wohlhart機構ISA13G1、ISA14G1、ISA15G1 179 6.2 利用三軸定理驗證Wohlhart機構ISA13 、ISA14 、ISA15 位置 197 6.3 求出Wohlhart機構ISA24G1、ISA25G1、ISA26G1 201 6.4 利用三軸定理驗證Wohlhart機構ISA24 、ISA25 、ISA26 位置 217 6.5 求出Wohlhart機構ISA35G1、ISA36G1 220 6.6 利用三軸定理驗證Wohlhart機構ISA35 與ISA36 位置 231 6.7 求出Wohlhart機構ISA46G1 233 6.8 利用三軸定理驗證Wohlhart機構ISA46 位置 240 6.9 小結 241 第七章 軸線面之直紋曲面特性探討 242 7.1 雙三次Hermite 方程式擬合空間曲面 242 7.1.1 雙三次Hermite 曲面16點形式 245 7.1.2 雙三次 Hermite 曲面運用於軸線面擬合 246 7.2 Bennett軸線面特徵探討 250 7.2.1 Bennett機構軸線面之擬合結果 251 7.2.2 Bennett機構軸線面之直紋曲面特性 254 第八章 結論與未來展望 258 參考文獻 260 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 瞬心軸 | zh_TW |
| dc.subject | 空間過拘束機構 | zh_TW |
| dc.subject | 瞬時螺距速度矩陣 | zh_TW |
| dc.subject | 直紋曲面 | zh_TW |
| dc.subject | 軸線面 | zh_TW |
| dc.subject | axode | en |
| dc.subject | ruled suface | en |
| dc.subject | velocity matrix of instant pitch | en |
| dc.subject | instant screw | en |
| dc.subject | patial overconstrained mechanism | en |
| dc.title | 探討過拘束機構之瞬心軸與軸線面特性 | zh_TW |
| dc.title | Investigation of Instant Screw Axes and Axodes of Spatial Over- Constrained Mechanisms | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李志中;林柏廷;詹魁元 | zh_TW |
| dc.contributor.oralexamcommittee | Jyh-Jone Lee;Po-Ting Lin;Kuei-Yuan Chan | en |
| dc.subject.keyword | 空間過拘束機構,瞬心軸,軸線面,直紋曲面,瞬時螺距速度矩陣, | zh_TW |
| dc.subject.keyword | patial overconstrained mechanism,instant screw,axode,ruled suface,velocity matrix of instant pitch, | en |
| dc.relation.page | 262 | - |
| dc.identifier.doi | 10.6342/NTU202403292 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 14.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
