Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94862
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉光勝zh_TW
dc.contributor.advisorKuang-Sheng Yehen
dc.contributor.author林書嫺zh_TW
dc.contributor.authorShu-Xian Linen
dc.date.accessioned2024-08-20T16:13:48Z-
dc.date.available2024-08-21-
dc.date.copyright2024-08-20-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citation1. Johnson JR, Russo TA. Molecular epidemiology of extraintestinal pathogenic (uropathogenic) Escherichia coli. Int J Med Microbiol. 2005;295(6-7):383-404; doi: 10.1016/j.ijmm.2005.07.005.
2. Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, et al. Antimicrobial resistance in Escherichia coli. Microbiol Spectr. 2018;6(4); doi: 10.1128/microbiolspec.ARBA-0026-2017.
3. Sora VM, Meroni G, Martino PA, Soggiu A, Bonizzi L, Zecconi A. Extraintestinal pathogenic Escherichia coli: virulence factors and antibiotic resistance. Pathog. 2021;10(11); doi: 10.3390/pathogens10111355.
4. Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JDD. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin Microbiol Rev. 2019;32(3); doi: 10.1128/cmr.00135-18.
5. Foxman B. The epidemiology of urinary tract infection. Nat Rev Urol. 2010;7(12):653-60; doi: 10.1038/nrurol.2010.190.
6. Blanc V, Leflon-Guibout V, Blanco J, Haenni M, Madec JY, Rafignon G, et al. Prevalence of day-care centre children (France) with faecal CTX-M-producing Escherichia coli comprising O25b:H4 and O16:H5 ST131 strains. J Antimicrob Chemother. 2014;69(5):1231-7; doi: 10.1093/jac/dkt519.
7. Nicolas-Chanoine MH, Bertrand X, Madec JY. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev. 2014;27(3):543-74; doi: 10.1128/cmr.00125-13.
8. Al-Guranie DR, Al-Mayahie SM. Prevalence of E. coli ST131 among uropathogenic E. coli Isolates from Iraqi patients in Wasit province, Iraq. Int J Microbiol. 2020;2020:8840561; doi: 10.1155/2020/8840561.
9. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269-84; doi: 10.1038/nrmicro3432.
10. Russo TA, Johnson JR. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect. 2003;5(5):449-56; doi: 10.1016/s1286-4579(03)00049-2.
11. Johnson JR, Clermont O, Johnston B, Clabots C, Tchesnokova V, Sokurenko E, et al. Rapid and specific detection, molecular epidemiology, and experimental virulence of the O16 subgroup within Escherichia coli sequence type 131. J Clin Microbiol. 2014;52(5):1358-65; doi: 10.1128/jcm.03502-13.
12. Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP, Caniça MM, et al. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother. 2008;61(2):273-81; doi: 10.1093/jac/dkm464.
13. Lindblom A, Kiszakiewicz C, Kristiansson E, Yazdanshenas S, Kamenska N, Karami N, et al. The impact of the ST131 clone on recurrent ESBL-producing E. coli urinary tract infection: a prospective comparative study. Sci Rep. 2022;12(1):10048; doi: 10.1038/s41598-022-14177-y.
14. Yokota S, Sato T, Okubo T, Ohkoshi Y, Okabayashi T, Kuwahara O, et al. Prevalence of fluoroquinolone-resistant Escherichia coli O25:H4-ST131 (CTX-M-15-nonproducing) strains isolated in Japan. Chemo. 2012;58(1):52-9; doi: 10.1159/000336129.
15. Johnson JR, Tchesnokova V, Johnston B, Clabots C, Roberts PL, Billig M, et al. Abrupt emergence of a single dominant multidrug-resistant strain of Escherichia coli. J Infect Dis. 2013;207(6):919-28; doi: 10.1093/infdis/jis933.
16. Price LB, Johnson JR, Aziz M, Clabots C, Johnston B, Tchesnokova V, et al. The epidemic of extended-spectrum-β-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. mBio. 2013;4(6):e00377-13; doi: 10.1128/mBio.00377-13.
17. Mohamed M, Clabots C, Porter SB, Bender T, Thuras P, Johnson JR. Large fecal reservoir of Escherichia coli sequence type 131-H30 subclone strains that are shared within households and resemble clinical ST131-H30 isolates. J Infect Dis. 2020;221(10):1659-68; doi: 10.1093/infdis/jiz669.
18. Burgess MJ, Johnson JR, Porter SB, Johnston B, Clabots C, Lahr BD, et al. Long-term care facilities are reservoirs for antimicrobial-resistant sequence type 131 Escherichia coli. Open Forum Infect Dis. 2015;2(1):ofv011; doi: 10.1093/ofid/ofv011.
19. Leflon-Guibout V, Blanco J, Amaqdouf K, Mora A, Guize L, Nicolas-Chanoine MH. Absence of CTX-M enzymes but high prevalence of clones, including clone ST131, among fecal Escherichia coli isolates from healthy subjects living in the area of Paris, France. J Clin Microbiol. 2008;46(12):3900-5; doi: 10.1128/jcm.00734-08.
20. Han JH, Johnston B, Nachamkin I, Tolomeo P, Bilker WB, Mao X, et al. Clinical and molecular epidemiology of Escherichia coli sequence type 131 among hospitalized patients colonized intestinally with fluoroquinolone-resistant E. coli. Antimicrob Agents Chemother. 2014;58(11):7003-6; doi: 10.1128/aac.03256-14.
21. Han JH, Garrigan C, Johnston B, Nachamkin I, Clabots C, Bilker WB, et al. Epidemiology and characteristics of Escherichia coli sequence type 131 (ST131) from long-term care facility residents colonized intestinally with fluoroquinolone-resistant Escherichia coli. Diagn Microbiol Infect Dis. 2017;87(3):275-80; doi: 10.1016/j.diagmicrobio.2016.11.016.
22. Ludden C, Cormican M, Vellinga A, Johnson JR, Austin B, Morris D. Colonisation with ESBL-producing and carbapenemase-producing Enterobacteriaceae, vancomycin-resistant enterococci, and meticillin-resistant Staphylococcus aureus in a long-term care facility over one year. BMC Infect Dis. 2015;15:168; doi: 10.1186/s12879-015-0880-5.
23. Hilty M, Betsch BY, Bögli-Stuber K, Heiniger N, Stadler M, Küffer M, et al. Transmission dynamics of extended-spectrum β-lactamase-producing Enterobacteriaceae in the tertiary care hospital and the household setting. Clin Infect Dis. 2012;55(7):967-75; doi: 10.1093/cid/cis581.
24. Overdevest I, Haverkate M, Veenemans J, Hendriks Y, Verhulst C, Mulders A, et al. Prolonged colonisation with Escherichia coli O25:ST131 versus other extended-spectrum beta-lactamase-producing E. coli in a long-term care facility with high endemic level of rectal colonisation, the Netherlands, 2013 to 2014. Euro Surveill. 2016;21(42); doi: 10.2807/1560-7917.Es.2016.21.42.30376.
25. Ismail MD, Luo T, McNamara S, Lansing B, Koo E, Mody L, et al. Long-term carriage of ciprofloxacin-resistant Escherichia coli isolates in high-risk nursing home residents. Infect Control Hosp Epidemiol. 2016;37(4):440-7; doi: 10.1017/ice.2015.326.
26. Aarestrup FM, Jensen VF, Emborg HD, Jacobsen E, Wegener HC. Changes in the use of antimicrobials and the effects on productivity of swine farms in Denmark. Am J Vet Res. 2010;71(7):726-33; doi: DOI 10.2460/ajvr.71.7.726.
27. Kim B, Kim JH, Lee Y. Virulence factors associated with Escherichia coli bacteremia and urinary tract infection. Ann Lab Med. 2022;42(2):203-12; doi: 10.3343/alm.2022.42.2.203.
28. Sharma AK, Dhasmana N, Dubey N, Kumar N, Gangwal A, Gupta M, et al. Bacterial virulence factors: secreted for survival. Indian J Microbiol. 2017;57(1):1-10; doi: 10.1007/s12088-016-0625-1.
29. Melican K, Sandoval RM, Kader A, Josefsson L, Tanner GA, Molitoris BA, et al. Uropathogenic Escherichia coli P and type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. PLoS Pathog. 2011;7(2):e1001298; doi: 10.1371/journal.ppat.1001298.
30. Stenutz R, Weintraub A, Widmalm G. The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol Rev. 2006;30(3):382-403; doi: 10.1111/j.1574-6976.2006.00016.x.
31. Jacobson SH, Hammarlind M, Lidefeldt KJ, Osterberg E, Tullus K, Brauner A. Incidence of aerobactin-positive Escherichia coli strains in patients with symptomatic urinary tract infection. Eur J Clin Microbiol Infect Dis. 1988;7(5):630-4; doi: 10.1007/bf01964240.
32. Colonna B, Nicoletti M, Visca P, Casalino M, Valenti P, Maimone F. Composite IS1 elements encoding hydroxamate-mediated iron uptake in FIme plasmids from epidemic Salmonella spp. J Bacteriol. 1985;162(1):307-16; doi: 10.1128/jb.162.1.307-316.1985.
33. Guyer DM, Henderson IR, Nataro JP, Mobley HL. Identification of sat, an autotransporter toxin produced by uropathogenic Escherichia coli. Mol Microbiol. 2000;38(1):53-66; doi: 10.1046/j.1365-2958.2000.02110.x.
34. Guyer DM, Radulovic S, Jones FE, Mobley HL. Sat, the secreted autotransporter toxin of uropathogenic Escherichia coli, is a vacuolating cytotoxin for bladder and kidney epithelial cells. Infect Immun. 2002;70(8):4539-46; doi: 10.1128/iai.70.8.4539-4546.2002.
35. Hancock V, Ferrières L, Klemm P. The ferric yersiniabactin uptake receptor FyuA is required for efficient biofilm formation by urinary tract infectious Escherichia coli in human urine. Microbiol (Reading, UK). 2008;154(Pt 1):167-75; doi: 10.1099/mic.0.2007/011981-0.
36. Schubert S, Picard B, Gouriou S, Heesemann J, Denamur E. Yersinia high-pathogenicity island contributes to virulence in Escherichia coli causing extraintestinal infections. Infect Immun. 2002;70(9):5335-7; doi: 10.1128/iai.70.9.5335-5337.2002.
37. Khasheii B, Mahmoodi P, Mohammadzadeh A. Siderophores: importance in bacterial pathogenesis and applications in medicine and industry. Microbiol Res. 2021;250:126790; doi: https://doi.org/10.1016/j.micres.2021.126790.
38. Aldawood E, Roberts IS. Regulation of Escherichia coli group 2 capsule gene expression: a mini review and update. Front Microbiol. 2022;13:858767; doi: 10.3389/fmicb.2022.858767.
39. Johnson JR, O'Bryan TT. Detection of the Escherichia coli group 2 polysaccharide capsule synthesis gene kpsM by a rapid and specific PCR-based assay. J Clin Microbiol. 2004;42(4):1773-6; doi: 10.1128/jcm.42.4.1773-1776.2004.
40. Zaw MT, Yamasaki E, Yamamoto S, Nair GB, Kawamoto K, Kurazono H. Uropathogenic specific protein gene, highly distributed in extraintestinal uropathogenic Escherichia coli, encodes a new member of H-N-H nuclease superfamily. Gut Pathog. 2013;5(1):13; doi: 10.1186/1757-4749-5-13.
41. Yamamoto S, Nakano M, Terai A, Yuri K, Nakata K, Nair GB, et al. The presence of the virulence island containing the usp gene in uropathogenic Escherichia coli is associated with urinary tract infection in an experimental mouse model. J Urol. 2001;165(4):1347-51.
42. Reidl J, Boos W. The malX malY operon of Escherichia coli encodes a novel enzyme II of the phosphotransferase system recognizing glucose and maltose and an enzyme abolishing the endogenous induction of the maltose system. J Bacteriol. 1991;173(15):4862-76; doi: 10.1128/jb.173.15.4862-4876.1991.
43. Ostblom A, Adlerberth I, Wold AE, Nowrouzian FL. Pathogenicity island markers, virulence determinants malX and usp, and the capacity of Escherichia coli to persist in infants' commensal microbiotas. Appl Environ Microbiol. 2011;77(7):2303-8; doi: 10.1128/aem.02405-10.
44. Johnson JR, Oswald E, O'Bryan TT, Kuskowski MA, Spanjaard L. Phylogenetic distribution of virulence-associated genes among Escherichia coli isolates associated with neonatal bacterial meningitis in the Netherlands. J Infect Dis. 2002;185(6):774-84; doi: 10.1086/339343.
45. Tarr PI, Bilge SS, Vary JC, Jr., Jelacic S, Habeeb RL, Ward TR, et al. Iha: a novel Escherichia coli O157:H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infect Immun. 2000;68(3):1400-7; doi: 10.1128/iai.68.3.1400-1407.2000.
46. Léveillé S, Caza M, Johnson JR, Clabots C, Sabri M, Dozois CM. Iha from an Escherichia coli urinary tract infection outbreak clonal group A strain is expressed in vivo in the mouse urinary tract and functions as a catecholate siderophore receptor. Infect Immun. 2006;74(6):3427-36; doi: 10.1128/iai.00107-06.
47. Stumpe S, Schmid R, Stephens DL, Georgiou G, Bakker EP. Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli. J Bacteriol. 1998;180(15):4002-6; doi: 10.1128/jb.180.15.4002-4006.1998.
48. Vandeputte-Rutten L, Kramer RA, Kroon J, Dekker N, Egmond MR, Gros P. Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic site. Embo j. 2001;20(18):5033-9; doi: 10.1093/emboj/20.18.5033.
49. Herrero M, de Lorenzo V, Neilands JB. Nucleotide sequence of the iucD gene of the pColV-K30 aerobactin operon and topology of its product studied with phoA and lacZ gene fusions. J Bacteriol. 1988;170(1):56-64; doi: 10.1128/jb.170.1.56-64.1988.
50. Ling J, Pan H, Gao Q, Xiong L, Zhou Y, Zhang D, et al. Aerobactin synthesis genes iucA and iucC contribute to the pathogenicity of avian pathogenic Escherichia coli O2 strain E058. PLoS One. 2013;8(2):e57794; doi: 10.1371/journal.pone.0057794.
51. Sukupolvi S, O'Connor CD. TraT lipoprotein, a plasmid-specified mediator of interactions between gram-negative bacteria and their environment. Microbiol Rev. 1990;54(4):331-41; doi: 10.1128/mr.54.4.331-341.1990.
52. Montenegro MA, Bitter-Suermann D, Timmis JK, Agüero ME, Cabello FC, Sanyal SC, et al. traT gene sequences, serum resistance and pathogenicity-related factors in clinical isolates of Escherichia coli and other gram-negative bacteria. J Gen Microbiol. 1985;131(6):1511-21; doi: 10.1099/00221287-131-6-1511.
53. Williams BJ, Morlin G, Valentine N, Smith AL. Serum resistance in an invasive, nontypeable Haemophilus influenzae strain. Infect Immun. 2001;69(2):695-705; doi: 10.1128/iai.69.2.695-705.2001.
54. Blanco J, Mora A, Mamani R, López C, Blanco M, Dahbi G, et al. National survey of Escherichia coli causing extraintestinal infections reveals the spread of drug-resistant clonal groups O25b:H4-B2-ST131, O15:H1-D-ST393 and CGA-D-ST69 with high virulence gene content in Spain. J Antimicrob Chemother. 2011;66(9):2011-21; doi: 10.1093/jac/dkr235.
55. Cha MK, Kang CI, Kim SH, Cho SY, Ha YE, Wi YM, et al. Comparison of the microbiological characteristics and virulence factors of ST131 and non-ST131 clones among extended-spectrum β-lactamase-producing Escherichia coli causing bacteremia. Diagn Microbiol Infect Dis. 2016;84(2):102-4; doi: 10.1016/j.diagmicrobio.2015.10.015.
56. Hacker J, Blum-Oehler G, Mühldorfer I, Tschäpe H. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol. 1997;23(6):1089-97; doi: 10.1046/j.1365-2958.1997.3101672.x.
57. Yun KW, Lee MK, Kim W, Lim IS. Uropathogenic Escherichia coli ST131 in urinary tract infections in children. Korean J Pediatr. 2017;60(7):221-6; doi: 10.3345/kjp.2017.60.7.221.
58. Zhong YM, Liu WE, Meng Q, Li Y. Escherichia coli O25b-ST131 and O16-ST131 causing urinary tract infection in women in Changsha, China: molecular epidemiology and clinical characteristics. Infect Drug Resist. 2019;12:2693-702; doi: 10.2147/idr.S212658.
59. Nagaoka H, Hirai S, Morinushi H, Mizumoto S, Suzuki K, Shigemura H, et al. Coinfection with human norovirus and Escherichia coli O25:H4 harboring two chromosomal blaCTX-M-14 genes in a foodborne norovirus outbreak in Shizuoka prefecture, Japan. J Food Prot. 2020;83(9):1584-91; doi: 10.4315/jfp-20-042.
60. Matsumura Y, Pitout JD, Gomi R, Matsuda T, Noguchi T, Yamamoto M, et al. Global Escherichia coli sequence type 131 clade with bla(CTX-M-27) gene. Emerg Infect Dis. 2016;22(11):1900-7; doi: 10.3201/eid2211.160519.
61. Hamamoto K, Ueda S, Toyosato T, Yamamoto Y, Hirai I. High prevalence of chromosomal blaCTX-M-14 in Escherichia coli isolates possessing blaCTX-M-14. Antimicrob Agents Chemother. 2016;60(4):2582-4; doi: 10.1128/aac.00108-16.
62. Brisse S, Diancourt L, Laouénan C, Vigan M, Caro V, Arlet G, et al. Phylogenetic distribution of CTX-M- and non-extended-spectrum-β-lactamase-producing Escherichia coli isolates: group B2 isolates, except clone ST131, rarely produce CTX-M enzymes. J Clin Microbiol. 2012;50(9):2974-81; doi: 10.1128/jcm.00919-12.
63. Rawat D, Nair D. Extended-spectrum β-lactamases in gram negative bacteria. J Glob Infect Dis. 2010;2(3):263-74; doi: 10.4103/0974-777x.68531.
64. Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC Antimicrob Resist. 2021;3(3):dlab092; doi: 10.1093/jacamr/dlab092.
65. Bauernfeind A, Grimm H, Schweighart S. A new plasmidic cefotaximase in a clinical isolate of Escherichia coli. Infection. 1990;18(5):294-8; doi: 10.1007/bf01647010.
66. Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004;48(1):1-14; doi: 10.1128/aac.48.1.1-14.2004.
67. Livermore DM, Canton R, Gniadkowski M, Nordmann P, Rossolini GM, Arlet G, et al. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother. 2007;59(2):165-74; doi: 10.1093/jac/dkl483.
68. Clermont O, Lavollay M, Vimont S, Deschamps C, Forestier C, Branger C, et al. The CTX-M-15-producing Escherichia coli diffusing clone belongs to a highly virulent B2 phylogenetic subgroup. J Antimicrob Chemother. 2008;61(5):1024-8; doi: 10.1093/jac/dkn084.
69. Ambler RP, Coulson AF, Frère JM, Ghuysen JM, Joris B, Forsman M, et al. A standard numbering scheme for the class A beta-lactamases. Biochem J. 1991;276 ( Pt 1)(Pt 1):269-70; doi: 10.1042/bj2760269.
70. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39(6):1211-33; doi: 10.1128/aac.39.6.1211.
71. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005;18(4):657-86; doi: 10.1128/cmr.18.4.657-686.2005.
72. Matsumura Y, Yamamoto M, Higuchi T, Komori T, Tsuboi F, Hayashi A, et al. Prevalence of plasmid-mediated AmpC β-lactamase-producing Escherichia coli and spread of the ST131 clone among extended-spectrum β-lactamase-producing E. coli in Japan. Int J Antimicrob Agents. 2012;40(2):158-62; doi: 10.1016/j.ijantimicag.2012.04.013.
73. Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev. 2009;22(1):161-82; doi: 10.1128/cmr.00036-08.
74. Honoré N, Nicolas MH, Cole ST. Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. EMBO J. 1986;5(13):3709-14; doi: 10.1002/j.1460-2075.1986.tb04704.x.
75. Mammeri H, Guillon H, Eb F, Nordmann P. Phenotypic and biochemical comparison of the carbapenem-hydrolyzing activities of five plasmid-borne AmpC β-lactamases. Antimicrob Agents Chemother. 2010;54(11):4556-60; doi: 10.1128/aac.01762-09.
76. El-Hady SA, Adel LA. Occurrence and detection of AmpC β-lactamases among Enterobacteriaceae isolates from patients at Ain Shams University Hospital. Egypt J Med Hum Genet. 2015;16(3):239-44; doi: https://doi.org/10.1016/j.ejmhg.2015.03.001.
77. Tekele SG, Teklu DS, Tullu KD, Birru SK, Legese MH. Extended-spectrum beta-lactamase and AmpC beta-lactamases producing gram negative bacilli isolated from clinical specimens at International Clinical Laboratories, Addis Ababa, Ethiopia. PLoS One. 2020;15(11):e0241984; doi: 10.1371/journal.pone.0241984.
78. Tamma PD, Doi Y, Bonomo RA, Johnson JK, Simner PJ, Antibacterial Resistance Leadership G. A primer on AmpC β-lactamases: necessary knowledge for an increasingly multidrug-resistant world. Clin Infect Dis. 2019;69(8):1446-55; doi: 10.1093/cid/ciz173.
79. Hyle EP, Lipworth AD, Zaoutis TE, Nachamkin I, Fishman NO, Bilker WB, et al. Risk factors for increasing multidrug resistance among extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species. Clin Infect Dis. 2005;40(9):1317-24; doi: 10.1086/429239.
80. Lagacé-Wiens PR, Nichol KA, Nicolle LE, Decorby MR, McCracken M, Alfa MJ, et al. ESBL genotypes in fluoroquinolone-resistant and fluoroquinolone-susceptible ESBL-producing Escherichia coli urinary isolates in Manitoba. Can J Infect Dis Med Microbiol. 2007;18(2):133-7; doi: 10.1155/2007/848194.
81. Peirano G, Schreckenberger PC, Pitout JD. Characteristics of NDM-1-producing Escherichia coli isolates that belong to the successful and virulent clone ST131. Antimicrob Agents Chemother. 2011;55(6):2986-8; doi: 10.1128/aac.01763-10.
82. Morris D, McGarry E, Cotter M, Passet V, Lynch M, Ludden C, et al. Detection of OXA-48 carbapenemase in the pandemic clone Escherichia coli O25b:H4-ST131 in the course of investigation of an outbreak of OXA-48-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2012;56(7):4030-1; doi: 10.1128/aac.00638-12.
83. Redgrave LS, Sutton SB, Webber MA, Piddock LJ. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014;22(8):438-45; doi: 10.1016/j.tim.2014.04.007.
84. Banerjee R, Johnson JR. A new clone sweeps clean: the enigmatic emergence of Escherichia coli sequence type 131. Antimicrob Agents Chemother. 2014;58(9):4997-5004; doi: 10.1128/aac.02824-14.
85. Drlica K, Hiasa H, Kerns R, Malik M, Mustaev A, Zhao X. Quinolones: action and resistance updated. Curr Top Med Chem. 2009;9(11):981-98; doi: 10.2174/156802609789630947.
86. Martínez-Martínez L, Pascual A, Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet. 1998;351(9105):797-9; doi: 10.1016/s0140-6736(97)07322-4.
87. Xiong X, Bromley EH, Oelschlaeger P, Woolfson DN, Spencer J. Structural insights into quinolone antibiotic resistance mediated by pentapeptide repeat proteins: conserved surface loops direct the activity of a Qnr protein from a gram-negative bacterium. Nucleic Acids Res. 2011;39(9):3917-27; doi: 10.1093/nar/gkq1296.
88. Chenia HY, Pillay B, Pillay D. Analysis of the mechanisms of fluoroquinolone resistance in urinary tract pathogens. J Antimicrob Chemother. 2006;58(6):1274-8; doi: 10.1093/jac/dkl404.
89. Atac N, Kurt-Azap O, Dolapci I, Yesilkaya A, Ergonul O, Gonen M, et al. The role of AcrAB-TolC efflux pumps on quinolone resistance of E. coli ST131. Curr Microbiol. 2018;75(12):1661-6; doi: 10.1007/s00284-018-1577-y.
90. Cantón R, González-Alba JM, Galán JC. CTX-M enzymes: origin and diffusion. Front Microbiol. 2012;3:110; doi: 10.3389/fmicb.2012.00110.
91. Johnston BD, Gordon DM, Burn S, Johnson TJ, Weber BP, Miller EA, et al. Novel multiplex PCR method and genome sequence-based analog for high-resolution subclonal assignment and characterization of Escherichia coli sequence type 131 isolates. Microbiol Spectr. 2022;10(3):e0106422; doi: 10.1128/spectrum.01064-22.
92. Sokurenko EV, Chesnokova V, Doyle RJ, Hasty DL. Diversity of the Escherichia coli type 1 fimbrial lectin. Differential binding to mannosides and uroepithelial cells. J Biol Chem. 1997;272(28):17880-6; doi: 10.1074/jbc.272.28.17880.
93. Wright KJ, Seed PC, Hultgren SJ. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol. 2007;9(9):2230-41; doi: 10.1111/j.1462-5822.2007.00952.x.
94. Sarkar S, Hutton ML, Vagenas D, Ruter R, Schüller S, Lyras D, et al. Intestinal colonization traits of pandemic multidrug-resistant Escherichia coli ST131. J Infect Dis. 2018;218(6):979-90; doi: 10.1093/infdis/jiy031.
95. Eris D, Preston RC, Scharenberg M, Hulliger F, Abgottspon D, Pang L, et al. The conformational variability of FimH: which conformation represents the therapeutic target? Chembiochem. 2016;17(11):1012-20; doi: 10.1002/cbic.201600066.
96. Paul S, Linardopoulou EV, Billig M, Tchesnokova V, Price LB, Johnson JR, et al. Role of homologous recombination in adaptive diversification of extraintestinal Escherichia coli. J Bacteriol. 2013;195(2):231-42; doi: 10.1128/jb.01524-12.
97. Dreux N, Denizot J, Martinez-Medina M, Mellmann A, Billig M, Kisiela D, et al. Point mutations in FimH adhesin of Crohn's disease-associated adherent-invasive Escherichia coli enhance intestinal inflammatory response. PLoS Pathog. 2013;9(1):e1003141; doi: 10.1371/journal.ppat.1003141.
98. Chen SL, Hung CS, Pinkner JS, Walker JN, Cusumano CK, Li Z, et al. Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding. PNAS. 2009;106(52):22439-44; doi: 10.1073/pnas.0902179106.
99. Weissman SJ, Johnson JR, Tchesnokova V, Billig M, Dykhuizen D, Riddell K, et al. High-resolution two-locus clonal typing of extraintestinal pathogenic Escherichia coli. Appl Environ Microbiol. 2012;78(5):1353-60; doi: 10.1128/aem.06663-11.
100. Spaulding CN, Schreiber HLt, Zheng W, Dodson KW, Hazen JE, Conover MS, et al. Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions. Elife. 2018;7; doi: 10.7554/eLife.31662.
101. Schwartz DJ, Kalas V, Pinkner JS, Chen SL, Spaulding CN, Dodson KW, et al. Positively selected FimH residues enhance virulence during urinary tract infection by altering FimH conformation. PNAS. 2013;110(39):15530-7; doi: 10.1073/pnas.1315203110.
102. Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev. 2015;28(3):565-91; doi: 10.1128/cmr.00116-14.
103. Qin J, Wilson KA, Sarkar S, Heras B, O'Mara ML, Totsika M. Conserved FimH mutations in the global Escherichia coli ST131 multi-drug resistant lineage weaken interdomain interactions and alter adhesin function. Comput Struct Biotechnol J. 2022;20:4532-41; doi: 10.1016/j.csbj.2022.08.040.
104. Wang L, Reeves PR. Organization of Escherichia coli O157 O antigen gene cluster and identification of its specific genes. Infect Immun. 1998;66(8):3545-51; doi: 10.1128/iai.66.8.3545-3551.1998.
105. Liu B, Furevi A, Perepelov AV, Guo X, Cao H, Wang Q, et al. Structure and genetics of Escherichia coli O antigens. FEMS Microbiol Rev. 2020;44(6):655-83; doi: 10.1093/femsre/fuz028.
106. Stoesser N, Sheppard Anna E, Pankhurst L, De Maio N, Moore Catrin E, Sebra R, et al. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. mBio. 2016;7(2):10.1128/mbio.02162-15; doi: 10.1128/mbio.02162-15.
107. Chang SM, Chen JW, Tsai CS, Ko WC, Scaria J, Wang JL. Antimicrobial-resistant Escherichia coli distribution and whole-genome analysis of sequence type 131 Escherichia coli isolates in public restrooms in Taiwan. Front Microbiol. 2022;13:864209; doi: 10.3389/fmicb.2022.864209.
108. Matsumura Y, Johnson JR, Yamamoto M, Nagao M, Tanaka M, Takakura S, et al. CTX-M-27- and CTX-M-14-producing, ciprofloxacin-resistant Escherichia coli of the H30 subclonal group within ST131 drive a Japanese regional ESBL epidemic. J Antimicrob Chemother. 2015;70(6):1639-49; doi: 10.1093/jac/dkv017.
109. Li B, Lu Y, Lan F, He Q, Li C, Cao Y. Prevalence and characteristics of ST131 clone among unselected clinical Escherichia coli in a Chinese university hospital. Antimicrob Resist Infect Control. 2017;6(1):118; doi: 10.1186/s13756-017-0274-0.
110. Chen SL, Ding Y, Apisarnthanarak A, Kalimuddin S, Archuleta S, Omar SFS, et al. The higher prevalence of extended spectrum beta-lactamases among Escherichia coli ST131 in Southeast Asia is driven by expansion of a single, locally prevalent subclone. Sci Rep. 2019;9(1):13245; doi: 10.1038/s41598-019-49467-5.
111. Merino I, Hernández-García M, Turrientes M-C, Pérez-Viso B, López-Fresneña N, Diaz-Agero C, et al. Emergence of ESBL-producing Escherichia coli ST131-C1-M27 clade colonizing patients in Europe. J Antimicrob Chemother. 2018;73(11):2973-80; doi: 10.1093/jac/dky296.
112. Sekizuka T, Tanaka R, Hashino M, Yatsu K, Kuroda M. Comprehensive genome and plasmidome analysis of antimicrobial resistant bacteria in wastewater treatment plant effluent of Tokyo. Antibiotics (Basel). 2022;11(10); doi: 10.3390/antibiotics11101283.
113. Balbuena-Alonso MG, Camps M, Cortés-Cortés G, Carreón-León EA, Lozano-Zarain P, Rocha-Gracia RDC. Strain belonging to an emerging, virulent sublineage of ST131 Escherichia coli isolated in fresh spinach, suggesting that ST131 may be transmissible through agricultural products. Front Cell Infect Microbiol. 2023;13:1237725; doi: 10.3389/fcimb.2023.1237725.
114. Johnson JR, Miller S, Johnston B, Clabots C, Debroy C. Sharing of Escherichia coli sequence type ST131 and other multidrug-resistant and urovirulent E. coli strains among dogs and cats within a household. J Clin Microbiol. 2009;47(11):3721-5; doi: 10.1128/jcm.01581-09.
115. Li D, Wyrsch ER, Elankumaran P, Dolejska M, Marenda MS, Browning GF, et al. Genomic comparisons of Escherichia coli ST131 from Australia. Microb Genom. 2021;7(12); doi: 10.1099/mgen.0.000721.
116. McNally A, Oren Y, Kelly D, Pascoe B, Dunn S, Sreecharan T, et al. Combined analysis of variation in core, accessory and regulatory genome regions provides a super-resolution view into the evolution of bacterial populations. PLoS Genet. 2016;12(9):e1006280; doi: 10.1371/journal.pgen.1006280.
117. Pitout JD, DeVinney R. Escherichia coli ST131: a multidrug-resistant clone primed for global domination. F1000Res. 2017;6; doi: 10.12688/f1000research.10609.1.
118. Chen JW, Huang HH, Chang SM, Scaria J, Chiu YL, Chen CM, et al. Antibiotic-resistant Escherichia coli and sequence type 131 in fecal colonization in dogs in Taiwan. Microorganisms. 2020;8(9); doi: 10.3390/microorganisms8091439.
119. Kidsley AK, White RT, Beatson SA, Saputra S, Schembri MA, Gordon D, et al. Companion animals are spillover hosts of the multidrug-resistant human extraintestinal Escherichia coli pandemic clones ST131 and ST1193. Front Microbiol. 2020;11:1968; doi: 10.3389/fmicb.2020.01968.
120. Liu FL, Kuan NL, Yeh KS. Presence of the extended-spectrum-β-lactamase and plasmid-mediated AmpC-encoding genes in Escherichia coli from companion animals-a Study from a university-based veterinary hospital in Taipei, Taiwan. Antibiotics (Basel). 2021;10(12); doi: 10.3390/antibiotics10121536.
121. Huang YH, Kuan NL, Yeh KS. Characteristics of extended-spectrum β-lactamase-producing Escherichia coli from dogs and cats admitted to a veterinary teaching hospital in Taipei, Taiwan from 2014 to 2017. Front Vet Sci. 2020;7:395; doi: 10.3389/fvets.2020.00395.
122. Pomba C, da Fonseca JD, Baptista BC, Correia JD, Martínez-Martínez L. Detection of the pandemic O25-ST131 human virulent Escherichia coli CTX-M-15-producing clone harboring the qnrB2 and aac(6')-Ib-cr genes in a dog. Antimicrob Agents Chemother. 2009;53(1):327-8; doi: 10.1128/aac.00896-08.
123. Ewers C, Grobbel M, Stamm I, Kopp PA, Diehl I, Semmler T, et al. Emergence of human pandemic O25:H4-ST131 CTX-M-15 extended-spectrum-beta-lactamase-producing Escherichia coli among companion animals. J Antimicrob Chemother. 2010;65(4):651-60; doi: 10.1093/jac/dkq004.
124. Platell JL, Cobbold RN, Johnson JR, Trott DJ. Clonal group distribution of fluoroquinolone-resistant Escherichia coli among humans and companion animals in Australia. J Antimicrob Chemother. 2010;65(9):1936-8; doi: 10.1093/jac/dkq236.
125. Platell J, Cobbold R, Menard M, Clabots C, Kuskowski M, Trott D, et al.: Molecular analysis of fluoroquinolone-resistant (FQr) extra-intestinal Escherichia coli isolates from dogs and humans in Australia. In: 20th ECCMID, Vienna, Austria, April. 2010: 10-3.
126. Platell JL, Johnson JR, Cobbold RN, Trott DJ. Multidrug-resistant extraintestinal pathogenic Escherichia coli of sequence type ST131 in animals and foods. Vet Microbiol. 2011;153(1):99-108; doi: https://doi.org/10.1016/j.vetmic.2011.05.007.
127. Shaheen BW, Oyarzabal OA, Boothe DM. The role of class 1 and 2 integrons in mediating antimicrobial resistance among canine and feline clinical E. coli isolates from the US. Vet Microbiol. 2010;144(3-4):363-70; doi: 10.1016/j.vetmic.2010.01.018.
128. Clermont O, Christenson JK, Denamur E, Gordon DM. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep. 2013;5(1):58-65; doi: 10.1111/1758-2229.12019.
129. Johnson JR, Menard M, Johnston B, Kuskowski MA, Nichol K, Zhanel GG. Epidemic clonal groups of Escherichia coli as a cause of antimicrobial-resistant urinary tract infections in Canada, 2002 to 2004. Antimicrob Agents Chemother. 2009;53(7):2733-9; doi: 10.1128/aac.00297-09.
130. Johnson JR, Stell AL. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis. 2000;181(1):261-72; doi: 10.1086/315217.
131. Johnson TJ, Wannemuehler YM, Johnson SJ, Logue CM, White DG, Doetkott C, et al. Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. Appl Environ Microbiol. 2007;73(6):1976-83; doi: 10.1128/aem.02171-06.
132. Flament-Simon SC, García V, Duprilot M, Mayer N, Alonso MP, García-Meniño I, et al. High prevalence of ST131 subclades C2-H30Rx and C1-M27 among extended-spectrum β-lactamase-producing Escherichia coli causing human extraintestinal infections in patients from two hospitals of Spain and France during 2015. Front Cell Infect Microbiol. 2020;10:125; doi: 10.3389/fcimb.2020.00125.
133. Aurich S, Wolf SA, Prenger-Berninghoff E, Thrukonda L, Semmler T, Ewers C. Genotypic characterization of uropathogenic Escherichia coli from companion animals: predominance of ST372 in dogs and human-related ST73 in cats. Antibiotics. 2024. doi: 10.3390/antibiotics13010038.
134. Chakraborty A, Saralaya V, Adhikari P, Shenoy S, Baliga S, Hegde A. Characterization of Escherichia coli phylogenetic groups associated with extraintestinal infections in South Indian population. Ann Med Health Sci Res. 2015;5(4):241-6; doi: 10.4103/2141-9248.160192.
135. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000;66(10):4555-8; doi: 10.1128/aem.66.10.4555-4558.2000.
136. Duriez P, Clermont O, Bonacorsi S, Bingen E, Chaventré A, Elion J, et al. Commensal Escherichia coli isolates are phylogenetically distributed among geographically distinct human populations. Microbiol (Reading). 2001;147(Pt 6):1671-6; doi: 10.1099/00221287-147-6-1671.
137. Manges AR, Johnson JR, Foxman B, O'Bryan TT, Fullerton KE, Riley LW. Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N Engl J Med. 2001;345(14):1007-13; doi: 10.1056/NEJMoa011265.
138. Matta R, Hallit S, Hallit R, Bawab W, Rogues AM, Salameh P. Epidemiology and microbiological profile comparison between community and hospital acquired infections: A multicenter retrospective study in Lebanon. J Infect Public Health. 2018;11(3):405-11; doi: 10.1016/j.jiph.2017.09.005.
139. Norouzian H, Katouli M, Shahrokhi N, Sabeti S, Pooya M, Bouzari S. The relationship between phylogenetic groups and antibiotic susceptibility patterns of Escherichia coli strains isolated from feces and urine of patients with acute or recurrent urinary tract infection. Iran J Microbiol. 2019;11(6):478-87.
140. Habibi M, Asadi Karam MR, Bouzari S. Evaluation of prevalence, immunogenicity and efficacy of FyuA iron receptor in uropathogenic Escherichia coli isolates as a vaccine target against urinary tract infection. Microb Pathog. 2017;110:477-83; doi: 10.1016/j.micpath.2017.07.037.
141. Whelan S, Lucey B, Finn K. Uropathogenic Escherichia coli (UPEC)-associated urinary tract infections: the molecular basis for challenges to effective treatment. Microorganisms. 2023. doi: 10.3390/microorganisms11092169.
142. Hojabri Z, Darabi N, Arab M, Saffari F, Pajand O. Clonal diversity, virulence genes content and subclone status of Escherichia coli sequence type 131: comparative analysis of E. coli ST131 and non-ST131 isolates from Iran. BMC Microbiol. 2019;19(1):117; doi: 10.1186/s12866-019-1493-8.
143. Spaulding CN, Hultgren SJ. Adhesive pili in UTI pathogenesis and drug development. Pathogens. 2016;5(1); doi: 10.3390/pathogens5010030.
144. Riegman N, Kusters R, Van Veggel H, Bergmans H, Van Bergen en Henegouwen P, Hacker J, et al. F1C fimbriae of a uropathogenic Escherichia coli strain: genetic and functional organization of the foc gene cluster and identification of minor subunits. J Bacteriol. 1990;172(2):1114-20; doi: 10.1128/jb.172.2.1114-1120.1990.
145. Ott M, Hoschützky H, Jann K, Van Die I, Hacker J. Gene clusters for S fimbrial adhesin (sfa) and F1C fimbriae (foc) of Escherichia coli: comparative aspects of structure and function. J Bacteriol. 1988;170(9):3983-90; doi: 10.1128/jb.170.9.3983-3990.1988.
146. Hung W-T, Cheng M-F, Tseng F-C, Chen Y-S, Shin-Jung Lee S, Chang T-H, et al. Bloodstream infection with extended-spectrum beta-lactamase–producing Escherichia coli: The role of virulence genes. J Microbiol Immunol Infect. 2019;52(6):947-55; doi: https://doi.org/10.1016/j.jmii.2019.03.005.
147. Lee WC, Yeh KS. Characteristics of extended-spectrum β-lactamase-producing Escherichia coli isolated from fecal samples of piglets with diarrhea in central and southern Taiwan in 2015. BMC Vet Res. 2017;13(1):66; doi: 10.1186/s12917-017-0986-7.
148. Ewers C, Bethe A, Semmler T, Guenther S, Wieler LH. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin Microbiol Infect. 2012;18(7):646-55; doi: 10.1111/j.1469-0691.2012.03850.x.
149. Kiratisin P, Apisarnthanarak A, Saifon P, Laesripa C, Kitphati R, Mundy LM. The emergence of a novel ceftazidime-resistant CTX-M extended-spectrum beta-lactamase, CTX-M-55, in both community-onset and hospital-acquired infections in Thailand. Diagn Microbiol Infect Dis. 2007;58(3):349-55; doi: 10.1016/j.diagmicrobio.2007.02.005.
150. Zhang J, Zheng B, Zhao L, Wei Z, Ji J, Li L, et al. Nationwide high prevalence of CTX-M and an increase of CTX-M-55 in Escherichia coli isolated from patients with community-onset infections in Chinese county hospitals. BMC Infect Dis. 2014;14:659; doi: 10.1186/s12879-014-0659-0.
151. Kawamura K, Sugawara T, Matsuo N, Hayashi K, Norizuki C, Tamai K, et al. Spread of CTX-type extended-spectrum β-Lactamase-producing Escherichia coli isolates of epidemic clone B2-O25-ST131 among dogs and cats in Japan. Microb Drug Resist. 2017;23(8):1059-66; doi: 10.1089/mdr.2016.0246.
152. Norizuki C, Kawamura K, Wachino JI, Suzuki M, Nagano N, Kondo T, et al. Detection of Escherichia coli producing CTX-M-1-group extended-spectrum β-lactamases from pigs in Aichi prefecture, Japan, between 2015 and 2016. Jpn J Infect Dis. 2018;71(1):33-8; doi: 10.7883/yoken.JJID.2017.206.
153. Bortolami A, Zendri F, Maciuca EI, Wattret A, Ellis C, Schmidt V, et al. Diversity, virulence, and clinical significance of extended-spectrum β-lactamase- and pAmpC-producing Escherichia coli from companion animals. Front Microbiol. 2019;10:1260; doi: 10.3389/fmicb.2019.01260.
154. Joo EJ, Kim SJ, Baek M, Choi Y, Seo J, Yeom JS, et al. Fecal carriage of antimicrobial-resistant Enterobacteriaceae in healthy Korean adults. J Microbiol Biotechnol. 2018;28(7):1178-84; doi: 10.4014/jmb.1801.12060.
155. Furlan JPR, Lopes R, Stehling EG. Multidrug resistance IncC plasmid carrying bla(CMY-97) in Shiga toxin-producing Escherichia coli ST215-H54 of ovine origin. Infect Genet Evol. 2021;93:104989; doi: 10.1016/j.meegid.2021.104989.
156. Carattoli A, Villa L, Fortini D, García-Fernández A. Contemporary IncI1 plasmids involved in the transmission and spread of antimicrobial resistance in Enterobacteriaceae. Plasmid. 2021;118:102392; doi: 10.1016/j.plasmid.2018.12.001.
157. Zhou J, Wang W, Liang M, Yu Q, Cai S, Lei T, et al. A novel CMY variant confers transferable high-level resistance to ceftazidime-avibactam in multidrug-resistant Escherichia coli. Microbiol Spectr. 2023;11(2):e0334922; doi: 10.1128/spectrum.03349-22.
158. Yasugi M, Hatoya S, Motooka D, Matsumoto Y, Shimamura S, Tani H, et al. Whole-genome analyses of extended-spectrum or AmpC β-lactamase-producing Escherichia coli isolates from companion dogs in Japan. PLoS One. 2021;16(2):e0246482; doi: 10.1371/journal.pone.0246482.
159. Diestra K, Juan C, Curiao T, Moyá B, Miró E, Oteo J, et al. Characterization of plasmids encoding blaESBL and surrounding genes in Spanish clinical isolates of Escherichia coli and Klebsiella pneumoniae. J Antimicrob Chemother. 2009;63(1):60-6; doi: 10.1093/jac/dkn453.
160. Valverde A, Cantón R, Garcillán-Barcia MP, Novais A, Galán JC, Alvarado A, et al. Spread of bla(CTX-M-14) is driven mainly by IncK plasmids disseminated among Escherichia coli phylogroups A, B1, and D in Spain. Antimicrob Agents Chemother. 2009;53(12):5204-12; doi: 10.1128/aac.01706-08.
161. Gama JA, Kloos J, Johnsen PJ, Samuelsen Ø. Host dependent maintenance of a blaNDM-1-encoding plasmid in clinical Escherichia coli isolates. Sci Rep. 2020;10(1):9332; doi: 10.1038/s41598-020-66239-8.
162. Mwakyoma AA, Kidenya BR, Minja CA, Mushi MF, Sandeman A, Sabiti W, et al. Comparison of horizontal bla(CTX-M) gene transfer via conjugation among extended spectrum β-lactamases producing Escherichia coli isolates from patients with urinary tract infection, their animals, and environment. Arch Mol Biol Genet. 2023;2(1):1-8; doi: 10.33696/genetics.2.011.
163. Harrison E, Brockhurst MA. Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends in Microbiology. 2012;20(6):262-7; doi: https://doi.org/10.1016/j.tim.2012.04.003.
164. Fernandez-Lopez R, Redondo S, Garcillan-Barcia MP, de la Cruz F. Towards a taxonomy of conjugative plasmids. Current Opinion in Microbiology. 2017;38:106-13; doi: https://doi.org/10.1016/j.mib.2017.05.005.
165. Yang QE, Sun J, Li L, Deng H, Liu BT, Fang LX, et al. IncF plasmid diversity in multi-drug resistant Escherichia coli strains from animals in China. Front Microbiol. 2015;6:964; doi: 10.3389/fmicb.2015.00964.
166. Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B, Guerra B, et al. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother. 2018;73(5):1121-37; doi: 10.1093/jac/dkx488.
167. Kondratyeva K, Salmon-Divon M, Navon-Venezia S. Meta-analysis of pandemic Escherichia coli ST131 plasmidome proves restricted plasmid-clade associations. Sci Rep. 2020;10(1):36; doi: 10.1038/s41598-019-56763-7.
168. Garcillán-Barcia MP, Francia MV, de La Cruz F. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev. 2009;33(3):657-87; doi: 10.1111/j.1574-6976.2009.00168.x.
169. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol. 2006;60(5):1136-51; doi: 10.1111/j.1365-2958.2006.05172.x.
170. Liu FL, Kuan NL, Yeh KS. Presence of the extended-spectrum β-lactamase and plasmid-mediated AmpC-encoding genes in Escherichia coli from companion animals-a study from a university-based veterinary hospital in Taipei, Taiwan. Antibiotics (Basel). 2021;10(12); doi: 10.3390/antibiotics10121536.
171. Woodford N, Fagan EJ, Ellington MJ. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J Antimicrob Chemother. 2006;57(1):154-5; doi: 10.1093/jac/dki412.
172. Aryal SC, Upreti MK, Sah AK, Ansari M, Nepal K, Dhungel B, et al. Plasmid-mediated AmpC β-lactamase CITM and DHAM genes among gram-negative clinical isolates. Infect Drug Resist. 2020;13:4249-61; doi: 10.2147/idr.S284751.
173. Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002;40(6):2153-62; doi: 10.1128/JCM.40.6.2153-2162.2002.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94862-
dc.description.abstractST131型大腸桿菌是在2008年,透過多重基因座定序分型法,被鑑定出來的大腸桿菌序列型別,這是一種在全球造成流行的新興多重耐藥性菌株。在人醫中,ST131型大腸桿菌是社區與醫院內的泌尿道感染以及敗血症的主要病原體。近年來,在健康人類、病患以及伴侶動物的排泄物以及感染部位中,都有檢測到此菌株的存在。此型別的大腸桿菌之所以能夠快速傳播的原因,是由於其抗生素耐藥性以及攜帶大量毒力因子的特性所導致。由回顧性研究中發現,ST131型大腸桿菌對於臨床治療中經常使用的氟喹諾酮類以及第三代頭孢子菌素等多種抗生素都具有耐藥性,這使得臨床治療上抗生素藥物的選擇受到限制。除此之外,該細菌也會攜帶許多與泌尿道致病性大腸桿菌相關的毒力因子。其抗生素耐藥性以及高致病性的特性,造成全世界廣泛地傳播,對公共衛生構成嚴重的隱憂。除此之外,飼養伴侶動物為現代人生活的一種趨勢,人類與伴侶動物之間的互動緊密,也可能成為重要傳播途徑之一。因此從公共衛生的觀點上,鑑定從伴侶動物中分離出的ST131型大腸桿菌,針對其檢出率、對藥物的感受性、攜帶的抗藥性基因型以及毒力基因等的分子特性及相關研究,顯得十分重要。本研究的對象是從2011年至2019年間,至國立臺灣大學生物資源暨農學院附設動物醫院就診,患有泌尿道感染的貓與狗,從其尿液檢體中所分離出的400株大腸桿菌。所有大腸桿菌分離株使用大腸桿菌系統發育群分類方法,鑑定出192株屬於B2組別 (192/ 400, 48.0%),該組別是與ST131型大腸桿菌以及腸外致病性大腸桿菌最有相關的系統發育組別。所有B2組分離株透過鑑定是否在mdh 基因以及gyrB基因上產生相關的特異性單核苷酸多態性,共篩選出26株 (26/192, 13.5%) 的ST131型大腸桿菌分離株,而這些分離株也再經過多重基因座定序分型方法確認過。本研究針對篩選出來的所有ST131型大腸桿菌,進行一系列特性分析。利用多重聚合酶鏈鎖反應偵測包含黏附素、毒素、鐵離子獲取系統以及莢膜這五種不同類型的12種毒力基因,結果顯示最常檢測到的毒力基因是 fyuA (100.0%),其次是 traT (92.3%)、kpsMT II (88.5%) 以及iutA (84.6%)。為了瞭解分離株對臨床治療藥物的感受性是如何,以最小抑菌濃度的方法,測試藥物敏感性試驗。在檢測的15種抗生素中,分離株都對美洛培南呈現敏感性,並且對阿莫西林和氨芐西林皆呈現耐藥性。針對會產生超廣譜乙內醯氨酶與AmpC乙內醯氨酶之ST131型大腸桿菌的表現型篩選以及基因型鑑定的結果顯示,一半的分離株會產生超廣譜乙內醯氨酶和/或AmpC乙內醯氨酶。在前者,鑑定出bla CTX-M-1、bla CTX-M-2、bla CTX-M-8以及bla CTX-M-9這4種bla基因組。而bla CIT組則是唯一檢測到的AmpC乙內醯氨酶bla基因組。以ST131型大腸桿菌分離株為提供者,對疊氮化鈉具有抵抗性的大腸桿菌J53菌株 (ATCC BAA-2730TM) 做為接受者,進行接合試驗,測試超廣譜乙內醯氨酶與AmpC乙內醯氨酶抗藥性基因在不同菌株之間的水平轉移能力。結果顯示,雖然大部分的bla基因可轉移至大腸桿菌J53菌株,但bla TEM-102、bla TEM-12、bla CTX-M-55、bla CTX-M-124 以及bla CTX-M-214基因型並沒有被成功轉移。本研究也利用質體複製子分型方法分析分離株所攜帶的Inc質體類型,發現最常見的質體類型是 IncF (100%) 以及IncB/O (69%)。FimH和O 抗原中廣泛存在的等位基因變異,在宿主與病原體之間的相互作用中,扮演重要的作用。因此,本研究也利用多重聚合酶鏈鎖反應,進行分離株O抗原與FimH譜系的分類。結果顯示,O25b-H30 (n=11, 42.3%) 以及O16-H41 (n=11, 42.3%) 為ST131型大腸桿菌分離株中最常見的譜系。總結來說,希望藉由這項研究,提供從狗與貓所分離出的ST131型大腸桿菌的重要資訊,以做為後續可能在公共衛生學上的比較依據。zh_TW
dc.description.abstractEscherichia coli sequence type (ST) 131 is a globally distributed, emerging multidrug-resistant clone that was first identified in 2008 by multi-locus sequence typing (MLST). In medicine, E. coli ST131 is a major causative pathogen of urinary tract infections and sepsis in both outpatient and hospital settings. Recently, this strain has been detected in the feces and infection sites of healthy individuals, patients, and companion animals. The rapid spread of this E. coli type is attributed to its resistance to antibiotics and the possession of numerous virulence factors. Retrospective studies have shown that E. coli ST131 is resistant to many antibiotics such as fluoroquinolones (FQs) and 3rd generation cephalosporins (TGCs), which are commonly used in clinical treatment, limiting treatment options. In addition, E. coli ST131 contains a number of virulence factors associated with uropathogenic E. coli. The combination of antibiotic resistance and high pathogenicity has led to widespread dissemination and represents a serious public health problem. Moreover, the trend of keeping companion animals in modern life and the close interaction between humans and their pets could be a significant route of transmission. Therefore, from a public health perspective, identifying E. coli ST131isolated from companion animals and researching its prevalence, drug susceptibility, resistance genotypes, and virulence genes is of great importance. This study focuses on 400 E. coli strains isolated from the urine samples of cats and dogs with urinary tract infections, treated at the National Taiwan University Veterinary Hospital between 2011 and 2019. Using phylogenetic grouping methods, 192 strains (192/400, 48.0%) were identified as belonging to group B2, the phylogenetic group most closely associated with E. coli ST131 and extraintestinal pathogenic E. coli. Among these, 26 strains (26/192, 13.5%) were identified as E. coli ST131 by specific single nucleotide polymorphisms in the mdh and gyrB genes and further confirmed by multilocus sequence typing. The identified E. coli ST131 strains underwent a series of characterization analyses. Multiplex polymerase chain reaction was used to detect 12 virulence genes in five categories (adhesins, toxins, iron uptake systems, and capsules). The most frequently detected virulence gene was fyuA (100.0%), followed by traT (92.3%), kpsMT II (88.5%), and iutA (84.6%). Antimicrobial susceptibility was tested using the minimum inhibitory concentration method for 15 antibiotics, revealing that all isolates were sensitive to meropenem and resistant to amoxicillin and ampicillin. Phenotypic screening and genotypic identification of extended-spectrum β-lactamase (ESBL) and AmpC β-lactamase production showed that half of the isolates produced ESBL and/or AmpC β-lactamases. Four bla gene groups—blaCTX-M-1, blaCTX-M-2, blaCTX-M-8, and blaCTX-M-9—were identified among ESBL producers, while blaCIT was the only AmpC β-lactamase gene group detected. Conjugation experiments tested the horizontal transferability of ESBL and AmpC β-lactamase resistance genes from E. coli ST131 donors to azide-resistant E. coli J53 (ATCC BAA-2730TM) recipients. The results showed that while most bla genes could be transferred to E. coli J53, the blaTEM-102, blaTEM-12, blaCTX-M-55, blaCTX-M-124, and blaCTX-M-214 genotypes were not successfully transferred. Plasmid replicon typing revealed that the most common plasmid types were IncF (100%) and IncB/O (69%). The extensive allelic variation of the FimH and O antigens plays an important role in host–pathogen interactions. Therefore, the sublineages of E. coli ST131 isolates were determined by multiplex PCR-based O antigen typing and FimH subtyping. The present study found that the most common lineages of E. coli ST131 isolates were O25b-H30 (n=11, 42.3%) and O16-H41 (n=11, 42.3%). In summary, this study aims to provide crucial information about E. coli ST131 isolated from dogs and cats, serving as a basis for future public health comparisons.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-20T16:13:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-20T16:13:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 v
第一章 文獻回顧 1
1.1 大腸桿菌與腸外致病性大腸桿菌 1
1.2 E. coli ST131 2
1.3 E. coli ST131的毒力因子 3
1.4 E. coli ST131 的抗藥性 6
1.4.1 ESBL 6
1.4.2 AmpC 7
1.4.3 fluoroquinolone resistance (FQ-R) 7
1.5 E. coli ST131的譜系 (sublineage) 8
1.5.1 fimH 亞型 8
1.5.2 O antigen 血清型 9
1.5.3 ST131的演化史 9
1.6 E. coli ST131 在人類中的流行概況 10
1.7 E. coli ST131 在寵物中的流行概況 13
第二章 材料與方法 15
2.1 樣本菌株的收集與保存 15
2.2 菌株核酸萃取 15
2.3 2% 瓊脂凝膠製備 15
2.4 瓊脂凝膠電泳 (agarose gel electrophoresis) 15
2.5 大腸桿菌系統發育群分類 16
2.6 ST131特異性單核苷酸多態性之篩選 17
2.7 多重基因座定序分型 (multilocus sequence typing, MLST) 17
2.8 毒力因子分析 18
2.9 藥物敏感性試驗 19
2.10 產生extended-spectrum-β-lactamase (ESBL)之ST131表現型確認 21
2.10.1 CHROM agar 初步篩選 21
2.10.2 雙紙錠協同測試法 21
2.11 產生AmpC β-lactamase 之ST131表現型確認 22
2.12 ESBL與AmpC的基因型鑑定 23
2.13 接合試驗 24
2.14 O抗原血清分型 25
2.15 FimH 亞型分析 25
2.16 Plasmid replicon typing 26
第三章 研究結果 28
3.1 大腸桿菌系統發育群分類 28
3.2 ST131特異性單核苷酸多態性之篩選 28
3.3 多重基因座定序分型 (Multi-locus sequence typing, MLST) 28
3.4 毒力基因在ST131之盛行率 29
3.5 ST131之藥物敏感性試驗 29
3.6 產生extended-spectrum-β-lactamase (ESBL) 之ST131表現型確認 30
3.6.1 CHROM agar ESBL初步篩選 30
3.6.2 雙紙錠協同測試法 30
3.7 產生AmpC β-lactamase 之ST131表現型確認 30
3.8 ST131之ESBL與AmpC基因型鑑定 31
3.9 接合試驗 31
3.10 ST131之譜系分類 31
3.11 Plasmid replicon typing 32
第四章 討論 33
參考文獻 39
附錄 94
-
dc.language.isozh_TW-
dc.title從患有尿道感染的狗與貓尿液檢體分離之ST131型大腸桿菌的特性分析zh_TW
dc.titleCharacteristics of Escherichia coli ST131 isolated from urine samples of dogs and cats with urinary tract infectionsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊翠青;張惠雯zh_TW
dc.contributor.oralexamcommitteeTsuey-Ching Yang;Hui-Wen Changen
dc.subject.keywordST131型大腸桿菌,腸外致病性大腸桿菌,伴侶動物,泌尿道感染,抗生素耐藥性,毒力因子,zh_TW
dc.subject.keywordEscherichia coli ST131,extraintestinal E. coli,companion animals,urinary tract infections,antimicrobial resistance,virulence factor,en
dc.relation.page106-
dc.identifier.doi10.6342/NTU202402136-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-06-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept獸醫學系-
dc.date.embargo-lift2026-07-23-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2026-07-23
2.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved