Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94803
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余忠仁zh_TW
dc.contributor.advisorChong-Jen Yuen
dc.contributor.author陳詩宇zh_TW
dc.contributor.authorShih-Yu Chenen
dc.date.accessioned2024-08-19T16:37:39Z-
dc.date.available2024-08-20-
dc.date.copyright2024-08-19-
dc.date.issued2024-
dc.date.submitted2024-07-15-
dc.identifier.citation1. Agusti A, Celli BR, Criner G, Halpin D, Varela MVL, Oca MMd, Ozoh O, Salvi S, Vogelmeier C, Zheng J. Global Initiative for Chronic Obstructive Lung Disease 2024 Report- Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. 2024.
2. Terry PD, Dhand R. Inhalation Therapy for Stable COPD: 20 Years of GOLD Reports. Adv Ther. 2020;37(5):1812-28.
3. (Taiwan) MoHaW. The Top 10 Leading Cause of Death in Taiwan 2023 [updated 12th June 2023; cited 2024 1st May]. Available from: https://www.mohw.gov.tw/cp-16-74869-1.html.
4. Chronic obstructive pulmonary disease (COPD): World Health Organization (WHO); 2023 [updated 16 March 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd).
5. Divo M, Cote C, de Torres JP, Casanova C, Marin JM, Pinto-Plata V, Zulueta J, Cabrera C, Zagaceta J, Hunninghake G, Celli B, Group BC. Comorbidities and risk of mortality in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186(2):155-61.
6. Shen E, Lee JS, Mularski RA, Crawford P, Go AS, Sung SH, Tabada GH, Gould MK, Nguyen HQ. COPD Comorbidity Profiles and 2-Year Trajectory of Acute and Postacute Care Use. Chest. 2021;159(6):2233-43.
7. Beijers R, Steiner MC, Schols A. The role of diet and nutrition in the management of COPD. Eur Respir Rev. 2023;32(168).
8. Cavailles A, Brinchault-Rabin G, Dixmier A, Goupil F, Gut-Gobert C, Marchand-Adam S, Meurice JC, Morel H, Person-Tacnet C, Leroyer C, Diot P. Comorbidities of COPD. Eur Respir Rev. 2013;22(130):454-75.
9. Jaitovich A, Barreiro E. Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. What We Know and Can Do for Our Patients. Am J Respir Crit Care Med. 2018;198(2):175-86.
10. Celli BR, Cote CG, Marin JM, Casanova C, Montes de Oca M, Mendez RA, Pinto Plata V, Cabral HJ. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(10):1005-12.
11. Gattermann Pereira T, Lima J, Silva FM. Undernutrition is associated with mortality, exacerbation, and poorer quality of life in patients with chronic obstructive pulmonary disease: A systematic review with meta-analysis of observational studies. JPEN J Parenter Enteral Nutr. 2022;46(5):977-96.
12. Ng WL, Collins PF, Hickling DF, Bell JJ. Evaluating the concurrent validity of body mass index (BMI) in the identification of malnutrition in older hospital inpatients. Clin Nutr. 2019;38(5):2417-22.
13. Rozenberg D, Maddocks M. Looking Beyond BMI Classifications With Complementary Assessment of Body Composition in COPD. Chest. 2023;163(5):1003-4.
14. Schols AM, Broekhuizen R, Weling-Scheepers CA, Wouters EF. Body composition and mortality in chronic obstructive pulmonary disease. Am J Clin Nutr. 2005;82(1):53-9.
15. Machado FVC, Vogelmeier CF, Jorres RA, Watz H, Bals R, Welte T, Spruit MA, Alter P, Franssen FME. Differential Impact of Low Fat-Free Mass in People With COPD Based on BMI Classifications: Results From the COPD and Systemic Consequences-Comorbidities Network. Chest. 2023;163(5):1071-83.
16. Mason SE, Moreta-Martinez R, Labaki WW, Strand MJ, Regan EA, Bon J, San Jose Estepar R, Casaburi R, McDonald ML, Rossiter HB, Make B, Dransfield MT, Han MK, Young K, Curtis JL, Stringer K, Kinney G, Hokanson JE, San Jose Estepar R, Washko GR, Investigators CO. Longitudinal Association Between Muscle Loss and Mortality in Ever Smokers. Chest. 2022;161(4):960-70.
17. Martinez CH, Diaz AA, Meldrum CA, McDonald MN, Murray S, Kinney GL, Hokanson JE, Curtis JL, Bowler RP, Han MK, Washko GR, Regan EA, Investigators CO. Handgrip Strength in Chronic Obstructive Pulmonary Disease. Associations with Acute Exacerbations and Body Composition. Ann Am Thorac Soc. 2017;14(11):1638-45.
18. Lopez-Bueno R, Andersen LL, Koyanagi A, Nunez-Cortes R, Calatayud J, Casana J, Del Pozo Cruz B. Thresholds of handgrip strength for all-cause, cancer, and cardiovascular mortality: A systematic review with dose-response meta-analysis. Ageing Res Rev. 2022;82:101778.
19. Clark BC, Manini TM. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci. 2008;63(8):829-34.
20. Clark BC, Manini TM. What is dynapenia? Nutrition. 2012;28(5):495-503.
21. Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, Jang HC, Kang L, Kim M, Kim S, Kojima T, Kuzuya M, Lee JSW, Lee SY, Lee WJ, Lee Y, Liang CK, Lim JY, Lim WS, Peng LN, Sugimoto K, Tanaka T, Won CW, Yamada M, Zhang T, Akishita M, Arai H. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020;21(3):300-7 e2.
22. Choi YA, Lee JS, Kim YH. Association between physical activity and dynapenia in older adults with COPD: a nationwide survey. Sci Rep. 2022;12(1):7480.
23. Bellido D, Garcia-Garcia C, Talluri A, Lukaski HC, Garcia-Almeida JM. Future lines of research on phase angle: Strengths and limitations. Rev Endocr Metab Disord. 2023;24(3):563-83.
24. Ward LC, Brantlov S. Bioimpedance basics and phase angle fundamentals. Rev Endocr Metab Disord. 2023;24(3):381-91.
25. Nescolarde L, Talluri A, Yanguas J, Lukaski H. Phase angle in localized bioimpedance measurements to assess and monitor muscle injury. Rev Endocr Metab Disord. 2023;24(3):415-28.
26. Lukaski HC, Talluri A. Phase angle as an index of physiological status: validating bioelectrical assessments of hydration and cell mass in health and disease. Rev Endocr Metab Disord. 2023;24(3):371-9.
27. da Silva BR, Orsso CE, Gonzalez MC, Sicchieri JMF, Mialich MS, Jordao AA, Prado CM. Phase angle and cellular health: inflammation and oxidative damage. Rev Endocr Metab Disord. 2023;24(3):543-62.
28. Duarte Martins A, Paulo Brito J, Batalha N, Oliveira R, Parraca JA, Fernandes O. Phase angle as a key marker of muscular and bone quality in community-dwelling independent older adults: A cross-sectional exploratory pilot study. Heliyon. 2023;9(7):e17593.
29. De Benedetto F, Marinari S, De Blasio F. Phase angle in assessment and monitoring treatment of individuals with respiratory disease. Rev Endocr Metab Disord. 2023;24(3):491-502.
30. Akamatsu Y, Kusakabe T, Arai H, Yamamoto Y, Nakao K, Ikeue K, Ishihara Y, Tagami T, Yasoda A, Ishii K, Satoh-Asahara N. Phase angle from bioelectrical impedance analysis is a useful indicator of muscle quality. J Cachexia Sarcopenia Muscle. 2022;13(1):180-9.
31. Maddocks M, Kon SS, Jones SE, Canavan JL, Nolan CM, Higginson IJ, Gao W, Polkey MI, Man WD. Bioelectrical impedance phase angle relates to function, disease severity and prognosis in stable chronic obstructive pulmonary disease. Clin Nutr. 2015;34(6):1245-50.
32. de Blasio F, Scalfi L, Di Gregorio A, Alicante P, Bianco A, Tantucci C, Bellofiore B, de Blasio F. Raw Bioelectrical Impedance Analysis Variables Are Independent Predictors of Early All-Cause Mortality in Patients With COPD. Chest. 2019;155(6):1148-57.
33. Cheng SL, Li YR, Huang N, Yu CJ, Wang HC, Lin MC, Chiu KC, Hsu WH, Chen CZ, Sheu CC, Perng DW, Lin SH, Yang TM, Lin CB, Kor CT, Lin CH. Effectiveness of Nationwide COPD Pay-for-Performance Program on COPD Exacerbations in Taiwan. Int J Chron Obstruct Pulmon Dis. 2021;16:2869-81.
34. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111-7.
35. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85-94.
36. Volpato S, Cavalieri M, Sioulis F, Guerra G, Maraldi C, Zuliani G, Fellin R, Guralnik JM. Predictive value of the Short Physical Performance Battery following hospitalization in older patients. J Gerontol A Biol Sci Med Sci. 2011;66(1):89-96.
37. Lee SH, Gong HS. Measurement and Interpretation of Handgrip Strength for Research on Sarcopenia and Osteoporosis. J Bone Metab. 2020;27(2):85-96.
38. Sepúlveda-Loyola W, Osadnik C, Phu S, Morita AA, Duque G, Probst VS. Diagnosis, prevalence, and clinical impact of sarcopenia in COPD: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2020;11(5):1164-76.
39. Kao TW, Peng TC, Chen WL, Han DS, Chen CL, Yang WS. Impact of adiposity on muscle function and clinical events among elders with dynapenia, presarcopenia and sarcopenia: a community-based cross-sectional study. Aging (Albany NY). 2021;13(5):7247-58.
40. Yang M, Ding X, Luo L, Hao Q, Dong B. Disability associated with obesity, dynapenia and dynapenic-obesity in Chinese older adults. J Am Med Dir Assoc. 2014;15(2):150 e11-6.
41. Brightling CE. Biomarkers that predict and guide therapy for exacerbations of chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2013;10 Suppl:S214-9.
42. Sadatsafavi M, McCormack J, Petkau J, Lynd LD, Lee TY, Sin DD. Should the number of acute exacerbations in the previous year be used to guide treatments in COPD? Eur Respir J. 2021;57(2).
43. Adibi A, Sin DD, Safari A, Johnson KM, Aaron SD, FitzGerald JM, Sadatsafavi M. The Acute COPD Exacerbation Prediction Tool (ACCEPT): a modelling study. Lancet Respir Med. 2020;8(10):1013-21.
44. Puhan MA, Siebeling L, Zoller M, Muggensturm P, ter Riet G. Simple functional performance tests and mortality in COPD. Eur Respir J. 2013;42(4):956-63.
45. Wang X, Liang Q, Li Z, Li F. Body Composition and COPD: A New Perspective. Int J Chron Obstruct Pulmon Dis. 2023;18:79-97.
46. Batsis JA, Villareal DT. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol. 2018;14(9):513-37.
47. Deutz NE, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy-Westphal A, Cederholm T, Cruz-Jentoft A, Krznariç Z, Nair KS, Singer P, Teta D, Tipton K, Calder PC. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr. 2014;33(6):929-36.
48. Schols AM, Ferreira IM, Franssen FM, Gosker HR, Janssens W, Muscaritoli M, Pison C, Rutten-van Molken M, Slinde F, Steiner MC, Tkacova R, Singh SJ. Nutritional assessment and therapy in COPD: a European Respiratory Society statement. Eur Respir J. 2014;44(6):1504-20.
49. Bosy-Westphal A, Danielzik S, Dörhöfer RP, Later W, Wiese S, Müller MJ. Phase angle from bioelectrical impedance analysis: population reference values by age, sex, and body mass index. JPEN J Parenter Enteral Nutr. 2006;30(4):309-16.
50. Mattiello R, Amaral MA, Mundstock E, Ziegelmann PK. Reference values for the phase angle of the electrical bioimpedance: Systematic review and meta-analysis involving more than 250,000 subjects. Clin Nutr. 2020;39(5):1411-7.
51. A healthy lifestyle - WHO recommendations 2021 [updated 6 May 2010. Available from: https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations.
52. Cheng SL, Chan MC, Wang CC, Lin CH, Wang HC, Hsu JY, Hang LW, Chang CJ, Perng DW, Yu CJ. COPD in Taiwan: a National Epidemiology Survey. Int J Chron Obstruct Pulmon Dis. 2015;10:2459-67.
53. Manini TM, Clark BC. Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci. 2012;67(1):28-40.
54. Dodds RM, Syddall HE, Cooper R, Kuh D, Cooper C, Sayer AA. Global variation in grip strength: a systematic review and meta-analysis of normative data. Age Ageing. 2016;45(2):209-16.
55. Jones SE, Maddocks M, Kon SS, Canavan JL, Nolan CM, Clark AL, Polkey MI, Man WD. Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax. 2015;70(3):213-8.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94803-
dc.description.abstract研究背景
肌少症是肺阻塞的常見共病症之一。肌少症的病人肌肉力量及肌肉的質量都同時下降,目前被證實與不良的臨床預後相關。然而,力弱症,即病人肌肉力量下降但肌肉質量維持正常,以及前肌少症,即病人肌肉質量下降但肌肉力量維持正常,皆鮮少被提及,對肺阻塞病患的臨床預後的影響也未知。而除了身體質量指數、肌肉量、肌力…等指標外,全身相位角在許多疾病發現與身體組成的變化及臨床預後相關。這個新興非侵入性的生物指標在肺阻塞很少提及,目前也沒有分界點提供臨床運用。因此本研究將研究力弱症、前肌少症、肌少症對臨床的影響以及全身相位角的臨床運用。
研究假說
此研究將探討力弱症、前肌少症是否與肌少症同樣與肺阻塞病患不良的預後相關。此外,研究將尋找全身相位角評估肌少症的臨床切點,並探討全身相位角在肺阻塞病患照護的臨床運用。
研究方法
這個前瞻性的研究在台大醫院進行收案。力弱症定義為肌肉量維持(男≥ 7.0 kg/m2;女≥ 5.7 kg/m2)但握力下降(男< 28 kg;女< 18 kg);前肌少症則定義為握力維持(男≥ 28 kg;女≥ 18 kg)但肌肉量下降(男< 7.0 kg/m2;女< 5.7 kg/m2);肌少症則定義為肌肉量及握力皆下降。全身相位角的臨床切點則以預測肌少症的ROC曲線來進行評估。本研究以6分鐘步行和簡易身體功能評估(Short Physical Performance Battery, SPPB)來衡量受試者的身體功能。
研究結果
本研究共招募了494位的受試者。對照組有211位、前肌少症組有59位、力弱症組有111位及肌少症組有113位。前肌少症以及肌少症兩組相較對照組的身體質量指數較低,腰圍則較小。肌少症組相較其他三組在症狀上較嚴重、肺功能也較差,然而前肌少症以及力弱症組則與對照組相仿。前肌少症、力弱症組和肌少症組6分鐘步行距離皆較對照組短(381.1公尺、348.7公尺, 304.4公尺, 420公尺, p<0.001)。而前肌少症組以及肌少症組有較多病人有嚴重的運動引起的低血氧。此外,力弱症組相較於對照組有較多的功能下降。肌少症組相較前肌少症組、力弱症組及對照組有較高的死亡率(對照組:6.2% vs.前肌少症組: 10.2% vs. 力弱組:9.0% vs. 肌少症組: 25.7%, p<0.05)。經校正年齡、肺功能及Charlson共病指標後,僅肌少症是死亡率的顯著危險因子(危險比: 2.11; 95% CI 1.04-4.28)。
研究利用預測肌少症的ROC曲線找到全身相位角的臨床切點。在男性分別是4.8而女性是4.1。全身相位角數值低於切點的病人相對高於切點的病人有較嚴重的臨床症狀、較差的身體功能表現以及較高的嚴重急性惡化以及死亡率。經校正年紀、性別、身體質量指數、Charlson’s共病指標以及第一秒用力呼氣量,全身相位角在嚴重急性惡化及死亡率上是重要的預測因子。而與身體質量指數、無脂肪質量指數及握力相比,全身相位角在死亡率上能當作良好的預測指標。
研究結論
在肺阻塞的病人中,除了肌少症組,前肌少症組及力弱組無論在肺功能、症狀或臨床預後上皆與對照組相仿。然而,前肌少症組有較多的運動引起的嚴重低血氧狀況。此外,力弱症組相較對照組有較嚴重的身體功能上的下降。全身相位角是一個新穎的肺阻塞指標,在預後的評估上優於身體質量指數及無脂肪肌肉量。低全身相位角的病患不論在臨床症狀、功能以及預後上都較正常的全身相位角來得嚴重。未來進一步的縱貫研究將更能了解此生物指標的臨床運用。
zh_TW
dc.description.abstractBackground
Changes in body composition are common in patients with chronic obstructive pulmonary disease (COPD). Sarcopenia, the presence of muscle weakness, and muscle loss has been shown to be a poor prognostic factor. However, little is known about the impact of pre-sarcopenia, the presence of muscle loss but preserved muscle strength, and dynapenia, the presence of muscle weakness, and preserved muscle mass. Besides, whole-body phase angle, a novel biomarker proven to be closely related to body composition change and prognosis had rarely been explored in COPD.
Hypothesis
Pre-sarcopenia, dynapenia, similar to sarcopenia, may be associated with poor clinical outcomes. A cut-off value for the whole-body phase angle may exist, and a low whole-body phase angle may be associated with poor clinical outcomes.
Methods
This prospective study enrolled patients with spirometry-confirmed COPD at National Taiwan University Hospital. Pre-sarcopenia was defined as decreased fat-free mass (M: < 7.0 kg/m2, F: < 5.7 kg/m2) but preserved handgrip strength (M: ≥ 28 kg, F: ≥18 kg); dynapenia was defined as preserved fat-free mass (M: ≥ 7.0 kg/m2, F: ≥ 5.7 kg/m2) but decreased handgrip strength (M: < 28 kg, F: < 18 kg); whereas sarcopenia was defined as a decrease in both dimensions. The cut-off value of the whole-body phase angle was determined using the receiver operating characteristic curve (ROC) to predict the presence of sarcopenia stratified by sex. Physical function was evaluated using a 6-minute walk test and the Short Physical Performance Battery (SPPB).
Results
A total of 494 patients were enrolled: 211 in the control group, 59 in the pre-sarcopenia group, 111 in the dynapenia group, and 113 in the sarcopenia group. The dynapenia group, similar to the sarcopenia group, had shorter 6-minute walk distances and worse SPPB scores than the control group. Patients with pre-sarcopenia, similar to those with sarcopenia, were prone to severe exercise-induced desaturation. The two-year mortality was similar in the control, pre-sarcopenia, and dynapenia groups but considerably lower than that in the sarcopenia group (6.2% vs. 10.2% vs. 9.0% vs. 25.7%, p<0.05). Univariable and multivariable analysis showed that only sarcopenia was associated with an increased risk of mortality (odds ratio: 2.11; 95% CI 1.04-4.28).
The cutoff value of the whole-body phase angle to predict sarcopenia was 4.8 for men and 4.1 for women. Patients with a whole-body phase angle lower than the cutoff value presented with more severe symptoms, worse functional performance, and a significantly higher risk of severe acute exacerbation and mortality than those with a whole-body phase angle higher than the cutoff value. After adjusting for age, sex, BMI, Charlson’s comorbidity index, and FEV1, the whole-body phase angle remained an independent risk factor for severe acute exacerbation and mortality. Furthermore, whole-body phase angle is the only anthropometric parameter suitable as a biomarker for acute exacerbation and mortality compared to BMI, fat-free mass index, and handgrip strength.
Conclusion & Future Work
Among patients with COPD, aside from the sarcopenic group, the pre-sarcopenia and dynapenia groups had clinical outcomes similar to the control group. However, patients with dynapenia experience significant functional deterioration, whereas patients with pre-sarcopenia present with more severe exercise-induced desaturation. The whole-body phase angle is a potential biomarker for acute exacerbation and mortality in COPD. The longitudinal evaluation of this novel biomarker may provide further information on its utility in clinical practice.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T16:37:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-19T16:37:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsACKNOWLEDGEMENT I
ABSTRACT & KEYWORDS (CHINESE) II
ABSTRACT & KEYWORDS (ENGLISH) V
TABLE OF CONTENTS VIII
LIST OF TABLES X
LIST OF FIGURES XI
CHAPTER I: INTRODUCTION 1
A. BODY COMPOSITION CHANGE AND ITS CLINICAL SIGNIFICANCE IN COPD 2
B. PHASE ANGLE AS A NOVEL BIOMARKER FOR CLINICAL PREDICTION 3
CHAPTER II: MATERIALS AND METHODS 7
A. STUDY DESIGN 7
B. METHODS OF MEASUREMENT 7
C. DEFINITION 9
D. DATA COLLECTION AND FOLLOW-UP 10
E. STATISTICAL ANALYSIS 11
CHAPTER III: BODY COMPOSITION CHANGE IN COPD 13
A. DATA ANALYSIS 13
B. SUMMARY 15
CHAPTER IV: WHOLE BODY PHASE ANGLE IN COPD 17
A. DATA ANALYSIS 17
B. SUMMARY 20
CHAPTER V: DISCUSSION & FUTURE PERSPECTIVES 21
A. PRE-SARCOPENIA, DYNAPENIA AND SARCOPENIA 21
B. WHOLE-BODY PHASE ANGLE 26
C. LIMITATIONS 28
REFERENCES 59
-
dc.language.isoen-
dc.subject肌少症zh_TW
dc.subject肺阻塞zh_TW
dc.subject全身相位角zh_TW
dc.subject身體組成zh_TW
dc.subject力弱症zh_TW
dc.subjectChronic obstructive pulmonary diseaseen
dc.subjectSarcopeniaen
dc.subjectWhole-body phase angleen
dc.subjectBody compositionen
dc.subjectDynapeniaen
dc.title探討身體組成及阻抗相位角在肺阻塞病人的臨床重要性zh_TW
dc.titleInvestigating the Clinical Significance of Body Composition and Whole-Body Phase Angle in Patients with COPDen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor簡榮彥zh_TW
dc.contributor.coadvisorJung-Yien Chienen
dc.contributor.oralexamcommittee陳珮蓉;藍冑進zh_TW
dc.contributor.oralexamcommitteePey-Rong Chen;Chou-Chin Lanen
dc.subject.keyword肺阻塞,肌少症,力弱症,身體組成,全身相位角,zh_TW
dc.subject.keywordChronic obstructive pulmonary disease,Sarcopenia,Dynapenia,Body composition,Whole-body phase angle,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU202401710-
dc.rights.note未授權-
dc.date.accepted2024-07-15-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床醫學研究所-
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
3.02 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved