Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94801
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 李財坤 | zh_TW |
dc.contributor.advisor | Tsai-Kun Li | en |
dc.contributor.author | 陳宏恩 | zh_TW |
dc.contributor.author | HONG-EN CHEN | en |
dc.date.accessioned | 2024-08-19T16:35:14Z | - |
dc.date.available | 2024-08-20 | - |
dc.date.copyright | 2024-08-19 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-01 | - |
dc.identifier.citation | Abdallah, M., Feroz, S., Alani, S., Sayed, E., & Shanableh, A. (2019). Continuous and scalable applications of microbial fuel cells: a critical review. Reviews in Environmental Science and Bio/Technology, 18. https://doi.org/10.1007/s11157-019-09508-x
ACUMEN RESEARCH AND CONSULTING. (2023). Microbial fuel cell market size, share | Industry analysis 2032. Acumen Research and Consulting | Latest Market Research Reports and Trends. https://www.acumenresearchandconsulting.com/microbial-fuel-cell-market Animah, I., & Shafiee, M. (2018). A framework for assessment of Technological Readiness Level (TRL) and Commercial Readiness Index (CRI) of asset end-of-life strategies. In (pp. 1767-1773). CRC Press. https://doi.org/10.1201/9781351174664-221 ARENA. (2014). Commercial Readiness Index for Renewable Energy Sectors. https://arena.gov.au/assets/2014/02/Commercial-Readiness-Index.pdf Arnulf Grübler a, Nebojša Nakićenović a, & b, D. G. V. (1999). Dynamics of energy technologies and global change. Energy Policy, 247-280. https://doi.org/10.1016/S0301-4215(98)00067-6 Babanova, S., Jones, J., Phadke, S., Lu, M., Angulo, C., Garcia, J., Carpenter, K., Cortese, R., Chen, S., & Phan, T. (2020). Continuous flow, large‐scale, microbial fuel cell system for the sustained treatment of swine waste. Water Environment Research, 92(1), 60-72. Babanova, S. (2022). Realities of microbial fuel cells in wastewater treatment. AQUACYCL. Retrieved May 10 from https://blog.aquacycl.com/realities-of-microbial-fuel-cells-in-wastewater-treatment Bajracharya, S. (2020). 14 - Microbial fuel cell coupled with anaerobic treatment processes for wastewater treatment. https://www.sciencedirect.com/science/article/abs/pii/B978012817493700014X Bento, N., & Wilson, C. (2016). Measuring the duration of formative phases for energy technologies. Environmental Innovation and Societal Transitions, 21, 95-112. https://doi.org/10.1016/j.eist.2016.04.004 Bhaduri, A., Bogardi, J., Siddiqi, A., Voigt, H., Vörösmarty, C., Pahl-Wostl, C., Bunn, S. E., Shrivastava, P., Lawford, R., Foster, S., Kremer, H., Renaud, F. G., Bruns, A., & Osuna, V. R. (2016). Achieving Sustainable Development Goals from a Water Perspective. Frontiers in Environmental Science, 4. https://doi.org/10.3389/fenvs.2016.00064 Biffinger, J., & Ringeisen, B. (2008). Engineering Microbial Fuels Cells: Recent Patents and New Directions. Recent Patents on Biotechnology, 2(3), 150-155. https://doi.org/10.2174/187220808786240962 Boas, J. V., Oliveira, V. B., Simões, M., & Pinto, A. M. F. R. (2022). Review on microbial fuel cells applications, developments and costs. Journal of Environmental Management, 307, 114525. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.114525 Bolzonella, D., Papa, M., Da Ros, C., Anga Muthukumar, L., & Rosso, D. (2019). Winery wastewater treatment: a critical overview of advanced biological processes. Critical Reviews in Biotechnology, 39(4), 489-507. https://doi.org/10.1080/07388551.2019.1573799 Byungun Yoon, S. L. (2008). Patent analysis for technology forecasting: Sector-specific applications IEEE, https://ieeexplore.ieee.org/abstract/document/4617997/ Commission, E. 2050 long-term strategy. Retrieved April 8, 2024 from https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en Communications, N. C. (2017). NRL Issued Patent for Solar Microbial Fuel Cell https://www.nrl.navy.mil/Media/News/Article/2510322/nrl-issued-patent-for-solar-microbial-fuel-cell/ Das, I., Ghangrekar, M., Satyakam, R., Srivastava, P., Khan, S., & Pandey, H. (2020). On-site sanitary wastewater treatment system using 720-L stacked microbial fuel cell: case study. Journal of Hazardous, Toxic, and Radioactive Waste, 24(3), 04020025. Dhanjai, Sinha, A., Zhao, H., Chen, J., & Mugo, S. M. (2019). Water Analysis | Determination of Chemical Oxygen Demand☆. In P. Worsfold, C. Poole, A. Townshend, & M. Miró (Eds.), Encyclopedia of Analytical Science (Third Edition) (pp. 258-270). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-409547-2.14517-2 Duncan, B. Case Study: How Aquacycl Exceeded Wastewater KPIS For PepsiCo. AQUACYCL. Retrieved April 8, 2024 from https://aquacycl.com/resources/case-studies/case-study-how-aquacycl-exceeded-wastewater-kpis-for-pepsico/ Estrada-Arriaga, E. B., Hernández-Romano, J., García-Sánchez, L., Garcés, R. A. G., Bahena-Bahena, E. O., Guadarrama-Pérez, O., & Chavez, G. E. M. (2018). Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell: Effect of series and parallel configuration. Journal of Environmental Management, 214, 232-241. F.J. Hernández-Fernández a, A. P. d. l. R. b., M.J. Salar-García a, V.M. Ortiz-Martínez a, L.J. Lozano-Blanco a, C. Godínez a, F. Tomás-Alonso b, J. Quesada-Medina b. (2015). Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment. Fuel Processing Technology, 138, 284-297. https://doi.org/https://doi.org/10.1016/j.fuproc.2015.05.022 Gao, L. (2013). Technology life cycle analysis method based on patent documents. Technological forecasting & social change. https://doi.org/10.1016/j.techfore.2012.10.003 Ge, Z., & He, Z. (2016). Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost. Environmental Science: Water Research & Technology, 2(2), 274-281. Gordon, J. (2019, October 8). How red wine is made. . Wine Enthusiast. Retrieved 2024/05/01 from https://www.wineenthusiast.com/basics/how-red-wine-is-made/ Group, T. J. S. I. M. W. (2022). Manufacturing Readiness Level (MRL) Deskbook https://www.dodmrl.com/MRL_Deskbook_2022__20221001_Final.pdf He, W., Dong, Y., Li, C., Han, X., Liu, G., Liu, J., & Feng, Y. (2019). Field tests of cubic-meter scale microbial electrochemical system in a municipal wastewater treatment plant. Water research, 155, 372-380. Hiegemann, H., Herzer, D., Nettmann, E., Lübken, M., Schulte, P., Schmelz, K.-G., Gredigk-Hoffmann, S., & Wichern, M. (2016). An integrated 45 L pilot microbial fuel cell system at a full-scale wastewater treatment plant. Bioresource Technology, 218, 115-122. Hiegemann, H., Littfinski, T., Krimmler, S., Lübken, M., Klein, D., Schmelz, K.-G., Ooms, K., Pant, D., & Wichern, M. (2019). Performance and inorganic fouling of a submergible 255 L prototype microbial fuel cell module during continuous long-term operation with real municipal wastewater under practical conditions. Bioresource Technology, 294, 122227. Jadhav, D. A., Chendake, A. D., Vinayak, V., Atabani, A., Abdelkareem, M. A., & Chae, K.-J. (2022). Scale-up of the bioelectrochemical system: Strategic perspectives and normalization of performance indices. Bioresource Technology, 363, 127935. Jorge, N., Teixeira, A. R., Gomes, A., Peres, J. A., & Lucas, M. S. (2023). Winery Wastewater: Challenges and Perspectives. Liang, P., Duan, R., Jiang, Y., Zhang, X., Qiu, Y., & Huang, X. (2018). One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water research, 141, 1-8. Lu, M., Chen, S., Babanova, S., Phadke, S., Salvacion, M., Mirhosseini, A., Chan, S., Carpenter, K., Cortese, R., & Bretschger, O. (2017). Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater. Journal of Power Sources, 356, 274-287. M.H. Do a, H. H. N. a. b., W.S. Guo a b, Y. Liu a, S.W. Chang c, D.D. Nguyen c d, L.D. Nghiem a, B.J. Ni a. (2018). Challenges in the application of microbial fuel cells to wastewater treatment and energy production: A mini review. Science of The Total Environment, 639, 910-920. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.05.136 Olechowski, A., Eppinger, S. D., & Joglekar, N. (2015). Technology readiness levels at 40: A study of state-of-the-art use, challenges, and opportunities. Petrovic, S., & Hossain, E. (2020). Development of a Novel Technological Readiness Assessment Tool for Fuel Cell Technology. IEEE Access, 8, 132237-132252. https://doi.org/10.1109/access.2020.3009193 Potter, M. C. (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 84(571), 260-276. https://doi.org/10.1098/rspb.1911.0073 Precedence Research. (2024). Water and wastewater treatment market (By Equipment: Membrane Separation, Biological, Disinfection, Sludge Treatment, Others; By Process: Primary, Secondary, Tertiary; By Application: Municipal, Industrial) - Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2024-2032. Precedence Research. https://www.precedenceresearch.com/water-and-wastewater-treatment-market Rani, A., Snyder, S. W., Kim, H., Lei, Z., & Pan, S.-Y. (2022). Pathways to a net-zero-carbon water sector through energy-extracting wastewater technologies. npj Clean Water, 5(1). https://doi.org/10.1038/s41545-022-00197-8 Robert Gross, Richard Hanna, Ajay Gambhir, Philip Heptonstall, & Speirs, J. (2018). How long does innovation and commercialisation in the energy sectors take? Historical case studies of the timescale from invention to widespread commercialisation in energy supply and end use technology. Energy Policy, 123, 682-699. https://www.sciencedirect.com/science/article/pii/S0301421518305901#t0010 Roca, P. (2023). State of the world vine and wine sector. https://www.oiv.int/sites/default/files/documents/2023-04_Press_Conf.pdf Rogers, E. (1962). Diffusion of Innovations https://teddykw2.wordpress.com/wp-content/uploads/2012/07/everett-m-rogers-diffusion-of-innovations.pdf Scott, K., & Yu, E. (2015). Microbial Electrochemical and Fuel Cells: Fundamentals and Applications. https://www.researchgate.net/publication/303431015_Microbial_Electrochemical_and_Fuel_Cells_Fundamentals_and_Applications SEYSSES, D. S. (2021). Domaine Dujac – Trapping Carbon Dioxide from Alcoholic Fermentation: Laying the Groundwork. th PORTO PROTOCOL. Retrieved May 12 from https://www.portoprotocol.com/solution/domaine-dujac-trapping-carbon-dioxide-from-alcoholic-fermentation-laying-the-groundwork-2/ Song, H. Matt Silver ’01 on “Cambrian Innovation: Biology for a Cleaner Planet”. Retrieved May 9 from https://ces.williams.edu/log/matt-silver-01-on-cambrian-innovation-biology-for-a-cleaner-planet/ Tan, W. H., Chong, S., Fang, H.-W., Pan, K.-L., Mohamad, M., Lim, J. W., Tiong, T. J., Chan, Y. J., Huang, C.-M., & Yang, T. C.-K. (2021). Microbial fuel cell technology—a critical review on scale-up issues. Processes, 9(6), 985. UNEP. GOAL 7: Affordable and clean energy. Retrieved May 10 from https://www.unep.org/explore-topics/sustainable-development-goals/why-do-sustainable-development-goals-matter/goal-7 Valo, M. (2023). Le Monde.fr. . Retrieved 2024/05/01 from https://www.lemonde.fr/en/environment/article/2023/06/17/french-cities-prepare-to-harness-and-reuse-wastewater_6033089_114.html Wappsys. (2021, April 26). Common problems in wastewater treatment plants | WaPpsys a full service water company. https://www.wappsys.com/common-problems-in-wastewater-treatment-plants/ WIne, I. O. o. V. a. (2022). State of the world vine and wine sector 2021. https://www.oiv.int/sites/default/files/documents/eng-state-of-the-world-vine-and-wine-sector-april-2022-v6_0.pdf Xin, X., Ma, Y., & Liu, Y. (2018). Electric energy production from food waste: Microbial fuel cells versus anaerobic digestion. Bioresource Technology, 255, 281-287. https://doi.org/10.1016/j.biortech.2018.01.099 Zhang, Y., Hsu, H. H., Wheeler, J. J., Tang, S., & Jiang, X. (2020). Emerging investigator series: emerging biotechnologies in wastewater treatment: from biomolecular engineering to multiscale integration. Environmental Science: Water Research & Technology, 6(8), 1967-1985. 和仁, 橋. (2019). 「橋本光エネルギー変換システム」 プロジェクト (2007.2~2013.3) https://www.jst.go.jp/erato/evaluation/follow/follow2006_hashimoto_shiryo.pdf 環境部, 国. 新. 産. (2016). 「グリーン・サステイナブルケミカルプロセス基盤技術開発/ 資源生産性を向上できる革新的プロセス及び化学品の開発/ 微生物触媒による創電型廃水処理基盤技術開発」 https://www.nedo.go.jp/content/100805415.pdf | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94801 | - |
dc.description.abstract | 本研究評估了微生物燃料電池 (MFCs) 用於廢水處理和能源生產的商業可行性,符合多項永續發展目標(SDG)。MFCs通過生物電化學過程將有機物質轉換為電能,在可再生能源和廢棄物管理方面具有重大前景。然而,可擴展性、成本效益和技術成熟度等挑戰妨礙了其廣泛應用。研究方法包括使用第一手和第二手資料來源進行全面的市場分析,以及使用全球專利檢索系統 (GPSS) 進行專利趨勢分析。市場分析可找出成長動力、機會和限制,而專利分析則可揭示技術發展趨勢、技術差距和競爭態勢。本次研究結果顯示,在全球 MFCs 專利領域中,中國擁有超過 50% 的專利,其次是美國和日本。儘管進行了大量的研究和試點項目,MFCs 的全面商業化預計還需 10-15 年的時間,其中試點項目扮演關鍵作用。本研究亦提供可行的商業化方案。建議將 MFCs 與現有技術(如太陽能板和藻類培養)相結合,以提高其商品利用性與價值。在具體應用方面,可以著重農業部門,特別是法國的釀酒廠,提供了一個可行的市場。釀酒廠產生大量廢水和二氧化碳,使得現場 MFCs 系統有利於水的再利用和碳捕集,符合歐盟的氣候目標。本研究建議開發結合 MFCs、藻類生物反應器和太陽能電池板的微生物碳捕集電池(MCCs),以有效滿足這些需求。總的而言,雖然 MFCs 面臨重大障礙,但在高影響力和未充分開發的領域進行重點研發投資,以及與現有技術進行策略性整合,可加速其商業可行性,為可持續能源解決方案和環境改善做出貢獻。 | zh_TW |
dc.description.abstract | This study evaluates the commercial feasibility of Microbial Fuel Cells (MFCs) for wastewater treatment and energy production, aligning with several Sustainable Development Goals (SDGs). MFCs, which convert organic matter into electricity through bio-electrochemical processes, hold significant promise for renewable energy and waste management. However, challenges such as scalability, cost-effectiveness, and technological maturity hinder widespread adoption. The methodology involves a comprehensive market analysis using primary and secondary data sources, and a patent landscape analysis employing the Global Patent Search System (GPSS). The market analysis identifies growth drivers, opportunities, and constraints, while the patent analysis reveals trends, technological gaps, and competitive landscapes. Results indicate that China dominates the global MFCs patent landscape with over 50% of patents, followed by the United States and Japan. Despite significant research and pilot projects, full commercialization of MFCs is expected to take an additional 10-15 years, with pilot projects playing a crucial role. The integration of MFCs with existing technologies like solar panels and algae cultivation is suggested to enhance their feasibility. For specific applications, the agricultural sector, particularly wineries in France, presents a viable market. Wineries produce large volumes of wastewater and CO2, making on-site MFC systems beneficial for water reuse and carbon capture, aligning with EU climate targets. The study recommends developing Microbial Carbon Capture Cells (MCCs) combining MFCs, algae bioreactors, and solar panels to address these needs efficiently. In conclusion, while MFCs face significant hurdles, targeted R&D investments in high-impact and underexplored areas, along with strategic integration with existing technologies, can accelerate their commercial viability, contributing to sustainable energy solutions and environmental improvements. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T16:35:14Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-19T16:35:14Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝誌 I
中文摘要 II Abstract III Contents V Figure Contents VII Table Contents IX Chapter 1. Background 1 Chapter 2. Research Objectives: 4 Chapter 3. Methodology: 4 3.1. Global Market Overview: 4 3.2. Patent Landscape Analysis: 4 3.3. Expected Outcomes 5 Chapter 4. Results & Discussion 6 4.1. MFCs market analysis 6 4.2. Patent Analysis and Strategy 7 4.3. Trends in Patent Applications of MFCs 7 4.4. Historical Context of MFCs 8 4.5. Regional Patent Applications Analysis 9 4.6. Trends in Patent Applications 10 4.7. Patentee Analysis of MFCs 12 4.7.1. Global Top Thirty Patentees 12 4.7.2. Global Top Ten Patentees 13 4.7.3.Top Ten Patentees in the Respective Region 14 4.8. International Patent Classification Number (IPC) Analysis 17 4.9. Technology Life Cycle Assessment 20 4.10. Research and Development Competitiveness 21 Chapter 5. Commercialization of the MFCs 25 5.1 Are MFCs ready for Commercialization? 25 5.2. Commercialization timeline of the MFCs in respective regions 28 5.3 Strategic R&D Investment in MFCs 34 5.4 Strategy for Taiwan to Develop MFCs based on Japanese NEDO Case 36 5.5 Regulatory Compliance Strategy for Developing MFCs 37 Chapter 6. Conclusion and a way forward 38 References 44 Appendix 52 | - |
dc.language.iso | en | - |
dc.title | 微生物燃料電池商業化可行性分析 | zh_TW |
dc.title | Analyzing the Feasibility of Commercializing Microbial Fuel Cells | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 大庭良介;張朝欽 | zh_TW |
dc.contributor.oralexamcommittee | Ryosuke OHNIWA;Chao-Chin Chang | en |
dc.subject.keyword | 微生物燃料電池 (MFCs),廢水處理,可再生能源,專利分析,永續發展目標 (SDGs), | zh_TW |
dc.subject.keyword | Microbial Fuel Cells (MFCs),Wastewater Treatment,Renewable Energy,Patent Analysis,Sustainable Development Goals (SDGs), | en |
dc.relation.page | 54 | - |
dc.identifier.doi | 10.6342/NTU202402967 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-02 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 國際三校農業生技與健康醫療碩士學位學程 | - |
Appears in Collections: | 國際三校農業生技與健康醫療碩士學位學程 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-112-2.pdf Restricted Access | 2.77 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.