Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94773
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈弘俊zh_TW
dc.contributor.advisorHorn-Jiunn Sheenen
dc.contributor.author劉尚儒zh_TW
dc.contributor.authorShang-Ru Liuen
dc.date.accessioned2024-08-19T16:16:13Z-
dc.date.available2024-08-20-
dc.date.copyright2024-08-19-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citation[1] Leung, C. M., De Haan, P., Ronaldson-Bouchard, K., Kim, G. A., Ko, J., Rho., "A guide to the organ-on-a-chip," Nature Reviews Methods Primers, vol. 2, no. 1, p. 33, 2022/05/12.
[2] Estrada, R., Giridharan, G. A., Nguyen, M. D., Roussel, T. J., Shakeri, M., Parichehreh,, "Endothelial Cell Culture Model for Replication of Physiological Profiles of Pressure, Flow, Stretch, and Shear Stress in Vitro," (in English), Anal. Chem., Article vol. 83, no. 8, pp. 3170-3177, Apr 2011.
[3] D. Huh, B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, and D. E. Ingber, "Reconstituting Organ-Level Lung Functions on a Chip," Science, vol. 328, no. 5986, pp. 1662-1668, 2010.
[4] L. N. Diebel, J. V. Martin, and D. M. Liberati, "Microfluidics: A high-throughput system for the assessment of the endotheliopathy of trauma and the effect of timing of plasma administration on ameliorating shock-associated endothelial dysfunction," Journal of Trauma and Acute Care Surgery, vol. 84, no. 4, 2018.
[5] M. I. Mohammed, M. N. H. Z. Alam, A. Kouzani, and I. Gibson, "Fabrication of microfluidic devices: Improvement of surface quality of CO2 laser machined poly (methylmethacrylate) polymer," Journal of Micromechanics and Microengineering, vol. 27, no. 1, p. 015021, 2016.
[6] J. C. McDonald and G. M. Whitesides, "Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices," Accounts of Chemical Research, vol. 35, no. 7, pp. 491-499, 2002/07/01.
[7] Nawaz, M., Heydarkhan‐Hagvall, S., Tangruksa, B., González‐King Garibotti, H., Jing, Y., Maugeri ., "Lipid Nanoparticles Deliver the Therapeutic VEGFA mRNA In Vitro and In Vivo and Transform Extracellular Vesicles for Their Functional Extensions," Advanced Science, vol. 10, no. 12, p. 2206187, 2023.
[8] F. Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, "The third dimension bridges the gap between cell culture and live tissue," Nature Reviews Molecular Cell Biology, vol. 8, no. 10, pp. 839-845, 2007/10/01 2007.
[9] D. B. Weibel, W. R. DiLuzio, and G. M. Whitesides, "Microfabrication meets microbiology," Nature Reviews Microbiology, vol. 5, no. 3, pp. 209-218, 2007/03/01 2007.
[10] A. Folch and M. Toner, "Microengineering of Cellular Interactions," Annual Review of Biomedical Engineering, vol. 2, no. 1, pp. 227-256, 2000.
[11] A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, "Microscale technologies for tissue engineering and biology," Proceedings of the National Academy of Sciences, vol. 103, no. 8, pp. 2480-2487, 2006.
[12] G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, "Soft Lithography in Biology and Biochemistry," Annual Review of Biomedical Engineering, vol. 3, no. 1, pp. 335-373, 2001.
[13] D. Huh, G. A. Hamilton, and D. E. Ingber, "From 3D cell culture to organs-on-chips," Trends in Cell Biology, vol. 21, no. 12, pp. 745-754, 2011/12/01/ 2011.
[14] T. Shirota, H. Yasui, and T. Matsuda, "Intralumenal Tissue-Engineered Therapeutic Stent Using Endothelial Progenitor Cell-Inoculated Hybrid Tissue and in Vitro Performance," Tissue Engineering, vol. 9, no. 3, pp. 473-485, 2003/06/01 .
[15] "Tissue-Engineered Vascular Grafts as In Vitro Blood Vessel Mimics for the Evaluation of Endothelialization of Intravascular Devices," Tissue Engineering, vol. 12, no. 12, pp. 3431-3438, 2006, doi: 10.1089/ten.2006.12.3431.
[16] D. Huh et al., "Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems," Proceedings of the National Academy of Sciences, vol. 104, no. 48, pp. 18886-18891, 2007/11/27.
[17] Y. Zheng et al., "Liquid plug propagation in flexible microchannels: A small airway model," Physics of Fluids, vol. 21, no. 7, p. 071903, 2009/07/01.
[18] J. W. Song, W. Gu, N. Futai, K. A. Warner, J. E. Nor, and S. Takayama, "Computer-controlled microcirculatory support system for endothelial cell culture and shearing," (in English), ANALYTICAL CHEMISTRY, vol. 77, no. 13, pp. 3993-3999, JUL 1 2005.
[19] E. Westein, A. D. van der Meer, M. J. E. Kuijpers, J. P. Frimat, A. van den Berg, and J. W. M. Heemskerk, "Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner," (in English), PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 110, no. 4, pp. 1357-1362, JAN 22 2013.
[20] M. Mehrabadi, L. D. C. Casa, C. K. Aidun, and D. N. Ku, "A Predictive Model of High Shear Thrombus Growth," Annals of Biomedical Engineering, vol. 44, no. 8, pp. 2339-2350, 2016/08/01 2016, doi: 10.1007/s10439-016-1550-5.
[21] G. H. Yang et al., "Advances in the development of tubular structures using extrusion-based 3D cell-printing technology for vascular tissue regenerative applications," Biomaterials Research, vol. 26, no. 1, p. 73, 2022/12/05 2022.
[22] K. Matsushima, D. Yang, and J. J. Oppenheim, "Interleukin-8: An evolving chemokine," (in English), Cytokine, Article vol. 153, p. 7, May 2022, Art no. 155828.
[23] P. Uciechowski and W. C. M. Dempke, "Interleukin-6: A Masterplayer in the Cytokine Network," (in English), Oncology, Review vol. 98, no. 3, pp. 131-137, Feb 2020.
[24] C. Y. Liu et al., "TNF Receptor 1 Promotes Early-Life Immunity and Protects against Colitis in Mice," (in eng), Cell Rep, vol. 33, no. 3, p. 108275, Oct 20 2020.
[25] J.-l. Lai et al., "Indirubin Inhibits LPS-Induced Inflammation via TLR4 Abrogation Mediated by the NF-kB and MAPK Signaling Pathways," Inflammation, vol. 40, no. 1, pp. 1-12, 2017/02/01 2017.
[26] A. Jain et al., "Primary Human Lung Alveolus-on-a-chip Model of Intravascular Thrombosis for Assessment of Therapeutics," Clinical Pharmacology & Therapeutics, vol. 103, no. 2, pp. 332-340, 2018.
[27] B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, "Induction of reproducible brain infarction by photochemically initiated thrombosis," Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, vol. 17, no. 5, pp. 497-504, 1985.
[28] H. Lamine, "Contribution to the development of an experimental device based on a robotic platform for gait rehabilitation," 2016.
[29] S. K. Feske, "Ischemic Stroke," The American Journal of Medicine, vol. 134, no. 12, pp. 1457-1464, 2021/12/01/ 2021.
[30] U. Dirnagl, C. Iadecola, and M. A. Moskowitz, "Pathobiology of ischaemic stroke: an integrated view," Trends in Neurosciences, vol. 22, no. 9, pp. 391-397, 1999/09/01.
[31] E. E. Gardiner et al., "GPIbα-selective activation of platelets induces platelet signaling events comparable to GPVI activation events," Platelets, vol. 21, no. 4, pp. 244-252, 2010/01/01 2010.
[32] S. P. Jackson, "The growing complexity of platelet aggregation," Blood, vol. 109, no. 12, pp. 5087-5095, 2007, doi: 10.1182/blood-2006-12-027698.
[33] J. W. Yau, H. Teoh, and S. Verma, "Endothelial cell control of thrombosis," (in English), BMC CARDIOVASCULAR DISORDERS, vol. 15, OCT 19 2015, Art no. 130.
[34] J. J. Chiu and S. Chien, "Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives," (in eng), Physiol Rev, vol. 91, no. 1, pp. 327-87, Jan 2011.
[35] J. W. Weisel and R. I. Litvinov, "Mechanisms of fibrin polymerization and clinical implications," Blood, vol. 121, no. 10, pp. 1712-1719, 2013.
[36] H. Owaynat, I. S. Yermolenko, R. Turaga, V. K. Lishko, M. R. Sheller, and T. P. Ugarova, "Deposition of fibrinogen on the surface of in vitro thrombi prevents platelet adhesion," Thrombosis Research, vol. 136, no. 6, pp. 1231-1239, 2015/12/01/ 2015.
[37] I. N. Chernysh et al., "The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli," Scientific Reports, vol. 10, no. 1, p. 5112, 2020/03/20 2020.
[38] R. Zhang et al., "Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation," Journal of Biological Chemistry, vol. 277, no. 48, pp. 46116-46122, 2002.
[39] H. Cai and D. G. Harrison, "Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress," Circulation research, vol. 87, no. 10, pp. 840-844, 2000.
[40] S. J. Forrester, D. S. Kikuchi, M. S. Hernandes, Q. Xu, and K. K. Griendling, "Reactive oxygen species in metabolic and inflammatory signaling," Circulation research, vol. 122, no. 6, pp. 877-902, 2018.
[41] S.-J. Ha and W. Kim, "Mechanism of ischemia and reperfusion injury to the heart: from the viewpoint of nitric oxide and mitochondria," Chonnam Medical Journal, vol. 46, no. 3, pp. 129-139, 2010.
[42] T. G. Papaioannou and C. Stefanadis, "Vascular wall shear stress: basic principles and methods," Hellenic J Cardiol, vol. 46, no. 1, pp. 9-15, 2005.
[43] Y. S. Chatzizisis, A. U. Coskun, M. Jonas, E. R. Edelman, C. L. Feldman, and P. H. Stone, "Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior," Journal of the American College of Cardiology, vol. 49, no. 25, pp. 2379-2393, 2007.
[44] J.-J. Chiu and S. Chien, "Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives," Physiological reviews, vol. 91, no. 1, pp. 327-387, 2011.
[45] L.-M. Lin et al., "Classification of cavernous internal carotid artery tortuosity: a predictor of procedural complexity in Pipeline embolization," Journal of neurointerventional surgery, vol. 7, no. 9, pp. 628-633, 2015.
[46] R. G. Mannino et al., ""Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions"," (in eng), Sci Rep, vol. 5, p. 12401, Jul 23 2015, doi: 10.1038/srep12401.
[47] E. Lauga and H. A. Stone, "Effective slip in pressure-driven Stokes flow," Journal of Fluid Mechanics, vol. 489, pp. 55-77, 2003.
[48] R. El Sayed et al., "Subjects with carotid webs demonstrate pro-thrombotic hemodynamics compared to subjects with carotid atherosclerosis," Scientific Reports, vol. 14, no. 1, p. 10092, 2024.
[49] H.-M. Hsiao, C.-H. Lin, Y.-C. Liao, H.-Y. Chen, and T.-W. Wang, "Hemodynamic behavior of coronary stents in straight and curved arteries," Current Nanoscience, vol. 10, no. 2, pp. 205-211, 2014.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94773-
dc.description.abstract近年社會變遷,人們生活壓力、型態、飲食均增加且改變,直接提高中風、高血壓、心肌梗塞等疾病風險。中風源於血栓形成,導致血管栓塞,引起腦部缺血及死亡症狀,因此預防和消除血栓的研究至為重要。目前,血栓藥物篩檢和評估仍使用動物實驗方法,傷害動物且由於數據再現性及複雜的生理交互作用,導致研究結果難與臨床數據整合。因此,發展替代動物實驗方法對於血栓研究極為重要。
本研究的宗旨是於體外模擬不同彎曲角度的血管晶片,並在其彎曲處觀察血栓形成的差異。研究方法整合了微流體系統和內皮細胞模型培養技術,利用微流道覆蓋內皮細胞來模擬血管內環境,並觀察晶片於不同角度之彎曲處血栓的形成和溶栓過程。除此之外,本實驗亦利用ROS螢光染劑搭配注射幫浦將培養液 (M199)注入內皮細胞覆蓋之血管晶片中,即時檢測血管晶片中內皮細胞受到剪切力之影響。連續的剪切力將會造成晶片內局部內皮細胞受到損傷,再利用注射幫浦將新鮮血液注入細胞損傷的血管晶片中,同時對血小板(platelet)與纖維蛋白(Fibrin)進行染色,以觀察血栓形成,並比較不同彎曲角度晶片血栓的形成變化與給予藥物後血栓的消融情形。
在本研究中,我們選擇使用雷射雕刻機在薄膜上製作微流道模具,隨後利用(Polydimethylsiloxane, PDMS)進行翻模。PDMS具有優越的光學透明性、通透性、彈性以及生物相容性等特性,因此成為微流道翻模的主要材料。接下來,透過氧電漿機對PDMS和玻璃進行改質處理,再將其接合固定,完成封閉的微流道晶片。這個製程具有低成本、方便且高效的優勢,有效提升了微流道晶片的製作效率和製程良率。
總結研究成果,我們成功建立了一個可控制的系統,能夠在欲觀察的位置產生血栓。透過微流道的不同彎曲角度,我們在晶片上實現了多種不同程度的血栓形成。未來,我們期望這種方法可以替代或補充動物實驗,提供一個更可靠、更準確的血栓模型。這有望為血栓研究提供更進一步的洞見,促使相關領域的發展。
zh_TW
dc.description.abstractIn recent years, societal changes have led to increased life stress, altered lifestyles, and dietary modifications, directly raising the risks of diseases such as stroke, hypertension, and myocardial infarction. Stroke, resulting from thrombus formation causing vascular occlusion, leads to symptoms of cerebral ischemia and death. Therefore, research on the prevention and elimination of thrombosis becomes crucial. Currently, screening and evaluation of thrombolytic drugs still rely on animal experiments, causing harm to animals, and the reproducibility of data along with complex physiological interactions make it challenging to integrate research results with clinical data. Hence, the development of alternative methods to animal experiments is of utmost importance for thrombosis research.
The aim of this study is to establish a controllable system for generating blood clots at specific locations. The research methodology involves integrating microfluidic systems and endothelial cell culture techniques to simulate the vascular environment, observing clot formation and dissolution in the curved regions of the chip. Using an injection pump to introduce culture medium (M199) into endothelial cell-seeded chips, the impact of shear forces on endothelial cells is monitored over time using a ROS dye. By introducing blood into the damaged chips and staining platelets and fibrin, clot formation is observed. The study then compares the clot formation and dissolution states on chips with different bending angles to assess the degree of occlusion.
In this study, we opted to use a laser engraving machine to create microchannel molds on thin films, followed by replication using Polydimethylsiloxane (PDMS). PDMS, with excellent optical transparency, permeability, elasticity, and biocompatibility, serves as the primary material for microchannel replication. Subsequently, PDMS and glass are modified using oxygen plasma treatment, and the two are bonded and fixed, completing the enclosed microfluidic chip. This process offers advantages such as low cost, convenience, and efficiency, effectively improving the production efficiency and process yield of microfluidic chips.
In conclusion, we have successfully established a controllable system capable of generating blood clots at specific locations. Through varying the bending angles of microchannels, we achieved different degrees of clot formation on the chip. In the future, we hope that this method can serve as an alternative or complement to animal experiments, providing a more reliable and accurate thrombosis model. This is expected to contribute to gaining deeper insights into thrombosis research, fostering advancements in related fields.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T16:16:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-19T16:16:13Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
摘要 II
ABSTRACT IV
目錄 VI
圖目錄 IX
表目錄 XIV
符號目錄 XV
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 電腦模擬 2
1.4 研究方法 2
1.5 論文架構 3
第二章 文獻回顧 4
2.1 器官晶片 (Organ-on-a-chip, OoC) 4
2.2 3D細胞培養技術 7
2.3 人工血管(Artificial Blood Vessel) 9
2.4 內皮細胞 (Endothelial cells, ECs) 11
2.5 腦中風 (Brain stroke) 13
2.6 血栓 (Thrombus) 14
2.7 靜動脈栓塞與肺栓塞之差異 19
2.8 活性氧物種(Reactive Oxygen Species) 21
2.9 剪切應力對於動脈粥樣硬化之影響 24
2.10 微流道內流體剪切應力模擬 27
第三章 研究方法與系統架設 29
3.1 實驗流程 29
3.2 微流道晶片設計 30
3.2.1 微流道設計 30
3.2.2 微流道製程 33
3.3 細胞培養 37
3.4 細胞染色 43
3.5 血液檢體製備 45
3.6 實驗系統架設 46
3.7 模擬系統架設 51
3.7.1 微流道模擬系統建模步驟 51
3.7.2 微流道模擬系統幾何 52
3.7.3 微流道區域參數設定 53
3.7.4 Governing Equations 53
3.7.5 Boundary Condition Equation 54
3.7.6 Initial Conditions 55
3.7.7 Boundary Condition 55
3.7.8 Meshing 57
第四章 結果與討論 58
4.1 微流道流場模擬 58
4.2 變流量對於內皮細胞之影響 64
4.3 螢光粒子計算流體剪切應力 66
4.4 內皮細胞之連接完整性驗證 78
4.5 微流道內皮細胞活性氧物種檢測 79
4.6 建立不同栓塞程度的血栓晶片 87
第五章 結論及未來展望 102
5.1 結論 102
5.2 未來展望 104
參考文獻 105
-
dc.language.isozh_TW-
dc.subject模擬血管zh_TW
dc.subject替代動物實驗zh_TW
dc.subject微流體系統zh_TW
dc.subject內皮細胞zh_TW
dc.subject血栓zh_TW
dc.subjectMicrofluidic systemen
dc.subjectEndothelial cellen
dc.subjectSimulated blood vesselsen
dc.subjectAlternative to animal experimentationen
dc.subjectThrombosisen
dc.title內皮細胞施以剪切應力於不同幾何形狀晶片模擬缺血性腦中風模型zh_TW
dc.titleApplying Shear Stress to Endothelial Cells on Microfluidic Chips with Various Geometries to Simulate Ischemic Stroke Modelsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee范育睿;謝函芸;李丞釩zh_TW
dc.contributor.oralexamcommitteeYu-Jui Fan;Han-Yun Hsieh;Cheng-Fan Leeen
dc.subject.keyword血栓,微流體系統,內皮細胞,模擬血管,替代動物實驗,zh_TW
dc.subject.keywordThrombosis,Microfluidic system,Endothelial cell,Simulated blood vessels,Alternative to animal experimentation,en
dc.relation.page108-
dc.identifier.doi10.6342/NTU202403754-
dc.rights.note未授權-
dc.date.accepted2024-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
7.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved