Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94768
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成zh_TW
dc.contributor.advisorLi-Chen Fuen
dc.contributor.author施品竹zh_TW
dc.contributor.authorPin-Chu Shihen
dc.date.accessioned2024-08-19T16:13:19Z-
dc.date.available2024-08-20-
dc.date.copyright2024-08-19-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citationI. Velodyne Lidar. (2023) Velodyne lidar: Envision the future. [Online]. Available:https://velodynelidar.com/
L.LivoxTechnologyCompanyLimitedCo.(2024)Livoxavia.[Online].Available: https://www.livoxtech.com/avia
T. Cieslewski, E. Kaufmann, and D. Scaramuzza, “Rapid exploration with multi- rotors: A frontier selection method for high speed flight,” in 2017 IEEE/RSJ Inter- national Conference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 2135–2142.
C. Papachristos, S. Khattak, and K. Alexis, “Uncertainty-aware receding horizon exploration and mapping using aerial robots,” in 2017 IEEE international conference on robotics and automation (ICRA). IEEE, 2017, pp. 4568–4575.
T. Dang, M. Tranzatto, S. Khattak, F. Mascarich, K. Alexis, and M. Hutter, “Graph- based subterranean exploration path planning using aerial and legged robots,” Jour- nal of Field Robotics, vol. 37, no. 8, pp. 1363–1388, 2020.
Z. Chen, Y. Xu, S. Yuan, and L. Xie, “ig-lio: An incremental gicp-based tightly- coupled lidar-inertial odometry,” IEEE Robotics and Automation Letters, pp. 1–8, 2024.
D. Duberg and P. Jensfelt, “UFOMap: An efficient probabilistic 3D mapping frame- work that embraces the unknown,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6411–6418, 2020.
B. Yamauchi, “A frontier-based approach for autonomous exploration,” in Proceed- ings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA’97.’Towards New Computational Principles for Robotics and Automation’. IEEE, 1997, pp. 146–151.
A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart, “Receding hori- zon” next-best-view” planner for 3d exploration,” in 2016 IEEE international con- ference on robotics and automation (ICRA). IEEE, 2016, pp. 1462–1468.
M.Keller,D.Lefloch,M.Lambers,S.Izadi,T.Weyrich,andA.Kolb,“Real-time3d reconstruction in dynamic scenes using point-based fusion,” in 2013 International Conference on 3D Vision - 3DV 2013, 2013, pp. 1–8.
R. Maier, K. Kim, D. Cremers, J. Kautz, and M. Nießner, “Intrinsic3d: High-quality 3d reconstruction by joint appearance and geometry optimization with spatially- varying lighting,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 3114–3122.
Y. Li, J. Wang, H. Chen, X. Jiang, and Y. Liu, “Object-aware view planning for au- tonomous 3d model reconstruction of buildings using a mobile robot,” IEEE Trans- actions on Instrumentation and Measurement, 2023.
H. Zhu, C. Cao, Y. Xia, S. Scherer, J. Zhang, and W. Wang, “Dsvp: Dual-stage viewpoint planner for rapid exploration by dynamic expansion,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2021, pp. 7623–7630.
B. Zhou, Y. Zhang, X. Chen, and S. Shen, “Fuel: Fast uav exploration using incre- mental frontier structure and hierarchical planning,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 779–786, 2021.
J. Huang, B. Zhou, Z. Fan, Y. Zhu, Y. Jie, L. Li, and H. Cheng, “Fael: fast autonomous exploration for large-scale environments with a mobile robot,” IEEE Robotics and Automation Letters, vol. 8, no. 3, pp. 1667–1674, 2023.
J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-time.” in Robotics: Science and systems, vol. 2, no. 9. Berkeley, CA, 2014, pp. 1–9.
G. C. Sharp, S. W. Lee, and D. K. Wehe, “Icp registration using invariant features,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 1, pp. 90–102, 2002.
K.-L. Low, “Linear least-squares optimization for point-to-plane icp surface regis- tration,” Chapel Hill, University of North Carolina, vol. 4, no. 10, pp. 1–3, 2004.
T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized lidar odom- etry and mapping on variable terrain,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 4758–4765.
T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “Lio-sam: Tightly- coupled lidar inertial odometry via smoothing and mapping,” in 2020 IEEE/RSJ in- ternational conference on intelligent robots and systems (IROS). IEEE, 2020, pp. 5135–5142.
K. Li, M. Li, and U. D. Hanebeck, “Towards high-performance solid-state-lidar- inertial odometry and mapping,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5167–5174, 2021.
C. Qin, H. Ye, C. E. Pranata, J. Han, S. Zhang, and M. Liu, “Lins: A lidar-inertial state estimator for robust and efficient navigation,” in 2020 IEEE international con- ference on robotics and automation (ICRA). IEEE, 2020, pp. 8899–8906.
W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct lidar-inertial odometry,” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2053–2073, 2022.
Y. Cai, W. Xu, and F. Zhang, “ikd-tree: An incremental kd tree for robotic applica- tions,” arXiv preprint arXiv:2102.10808, 2021.
C. Bai, T. Xiao, Y. Chen, H. Wang, F. Zhang, and X. Gao, “Faster-lio: Lightweight tightly coupled lidar-inertial odometry using parallel sparse incremental voxels,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4861–4868, 2022.
X. Ji, S. Yuan, P. Yin, and L. Xie, “Lio-gvm: an accurate, tightly-coupled lidar- inertial odometry with gaussian voxel map,” IEEE Robotics and Automation Letters, 2024.
A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp.” in Robotics: science and systems, vol. 2, no. 4. Seattle, WA, 2009, p. 435.
K. Koide, M. Yokozuka, S. Oishi, and A. Banno, “Voxelized gicp for fast and accu- rate 3d point cloud registration,” in 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021, pp. 11 054–11 059.
D. Holz, N. Basilico, F. Amigoni, and S. Behnke, “Evaluating the efficiency of frontier-based exploration strategies,” in ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics). VDE, 2010, pp. 1–8.
A. Dai, S. Papatheodorou, N. Funk, D. Tzoumanikas, and S. Leutenegger, “Fast frontier-based information-driven autonomous exploration with an mav,” in 2020 IEEE international conference on robotics and automation (ICRA). IEEE, 2020, pp. 9570–9576.
T. Dang, C. Papachristos, and K. Alexis, “Visual saliency-aware receding horizon autonomous exploration with application to aerial robotics,” in 2018 IEEE interna- tional conference on robotics and automation (ICRA). IEEE, 2018, pp. 2526–2533.
C. Witting, M. Fehr, R. Bähnemann, H. Oleynikova, and R. Siegwart, “History- aware autonomous exploration in confined environments using mavs,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 1–9.
T. Chen, S. Gupta, and A. Gupta, “Learning exploration policies for navigation,” arXiv preprint arXiv:1903.01959, 2019.
R.Reinhart,T.Dang,E.Hand,C.Papachristos,andK.Alexis,“Learning-basedpath planning for autonomous exploration of subterranean environments,” in 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020, pp. 1215–1221.
G. Georgakis, B. Bucher, A. Arapin, K. Schmeckpeper, N. Matni, and K. Daniilidis, “Uncertainty-driven planner for exploration and navigation,” in 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022, pp. 11 295–11 302.
M. Dharmadhikari, T. Dang, L. Solanka, J. Loje, H. Nguyen, N. Khedekar, and K. Alexis, “Motion primitives-based path planning for fast and agile exploration using aerial robots,” in 2020 IEEE International Conference on Robotics and Au- tomation (ICRA). IEEE, 2020, pp. 179–185.
C. Connolly, “The determination of next best views,” in Proceedings. 1985 IEEE international conference on robotics and automation, vol. 2. IEEE, 1985, pp. 432– 435.
S. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” Re- search Report 9811, 1998.
S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion plan- ning,” The international journal of robotics research, vol. 30, no. 7, pp. 846–894, 2011.
R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE In- ternational Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13 2011.
Y. Roth-Tabak and R. Jain, “Building an environment model using depth informa- tion,” Computer, vol. 22, no. 6, pp. 85–90, 1989.
A.Hornung,K.M.Wurm,M.Bennewitz,C.Stachniss,andW.Burgard,“OctoMap: An efficient probabilistic 3D mapping framework based on octrees,” Autonomous Robots, 2013, software available at https://octomap.github.io. [Online]. Available: https://octomap.github.io
G. M. Morton, “A computer oriented geodetic data base and a new technique in file sequencing,” 1966.
F. Kong, X. Liu, B. Tang, J. Lin, Y. Ren, Y. Cai, F. Zhu, N. Chen, and F. Zhang, “Marsim: A light-weight point-realistic simulator for lidar-based uavs,” IEEE Robotics and Automation Letters, vol. 8, no. 5, pp. 2954–2961, 2023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94768-
dc.description.abstract自動化移動機器人在搜索救援、工業檢查和場景重建中扮演重要的角色,通過運用探索規劃演算法在未知環境中導航和收集資訊。高質量的3D重建對於自動駕駛、AR/VR 和智慧城市等應用至關重要。傳統的方法以手持感測器掃描往往會導致重建模型不完整和對齊錯誤。儘管自動化探索可以改善這些結果,但通常會犧牲品質換取速度。完整性和 RMSE 這樣的指標常用於重建品質檢測,但很難用於自動化探索中實時檢測,因此可能會導致重要細節的丟失。
機械式光達因其在範圍和不受光照影響方面的優勢,時常被廣泛採用於自動化探索,但其成本高且點雲數據稀疏。另一方面,固態光達提供了更精細的細節,但覆蓋範圍有限。另外,在大型環境中生成邊界、視點和路徑可能會超出計算資源的承受能力,導致降低規劃頻率和響應速度。因此,在大規模環境中進行自主探索期間的實時品質評估仍然是一個重要挑戰。
為了解決上述問題,我們提出的系統通過自動化探索,利用配備二自由度旋轉平台的固態激光雷達的移動機器人,進行大規模室內環境的高質量三維重建。此系統不僅控制移動機器人探索未知地點和重建質量不足的區域,還具備高頻率、實時的探索路徑規劃。最後本文包括各種模擬和真實世界實驗,以驗證我們系統的有效性。
zh_TW
dc.description.abstractAutonomous mobile robots play a vital role in search and rescue, industrial inspection, and scene reconstruction by using exploration planning algorithms to navigate and gather information in unknown environments. High-quality 3D reconstruction is essential for applications such as autonomous driving, AR/VR, and smart cities. Traditional methods using handheld sensors often result in incomplete and misaligned models. While autonomous exploration can improve these results, it often sacrifices quality for speed. Metrics like completeness and RMSE are often used for quality evaluation; however, they are inadequate for real-time assessment of high-quality 3D reconstruction, risking the loss of important details. LiDAR sensors, especially mechanical LiDARs, are often used for autonomous exploration because of their range and independence from lighting conditions, despite their cost and data sparsity. On the other hand, solid-state LiDARs offer finer detail but have limited coverage. Besides, generating frontiers, viewpoints, and paths in large environments can overwhelm computational resources, reducing planning frequency and responsiveness. Consequently, real-time quality evaluation during autonomous exploration in large-scale environments remains a significant challenge.
To address the aforementioned issues, we propose a system for high-quality 3D reconstruction of large-scale indoor environments through autonomous exploration using a mobile robot equipped with a solid-state LiDAR on a 2-degree-of-freedom gimbal. This system not only controls the mobile robot to visit unknown places and areas with insufficient reconstruction quality but also facilitates high-frequency, real-time exploration path planning. This thesis concludes with various simulations and real-world experiments to validate the effectiveness of our system.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T16:13:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-19T16:13:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
Contents vi
List of Figures ix
List of Tables xii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Related Works 3
1.2.1 3D LiDAR SLAM 4
1.2.2 Autonomous Exploration 5
1.3 Research Objectives 8
1.4 Contributions 9
1.5 Thesis Overview 9
Chapter 2 Preliminary 10
2.1 Octree and Kd-tree 10
2.1.1 Octree 10
2.1.2 Kd-tree 11
2.2 Clustering Point Clouds 12
2.3 A* Algorithm 13
2.4 Asymmetric Traveling Salesman Problem 14
2.4.1 Brute-Force Method 15
2.4.2 Branch and Bound Method 15
2.4.3 Held-Karp Method 16
Chapter 3 Methodology 17
3.1 System Overview 17
3.2 Simultaneous Localization and Mapping (SLAM) 19
3.3 Perception 20
3.3.1 Point Cloud Frame Process 20
3.3.2 Build Voxel-Map 21
3.3.3 Build 2D Grid-Map 22
3.4 Preprocessing 23
3.4.1 Frontier Update 24
3.4.2 Quality Check 25
3.4.3 Generate Viewpoint and Guard-point 25
3.4.4 Build Topological Graph 30
3.5 Perception and Preprocessing Algorithm 31
3.6 Planning 32
3.6.1 Global Path Planning 34
3.6.2 Local Trajectory Planning 36
3.6.3 Gimbal Trajectory Planning 37
Chapter 4 Experiments 43
4.1 Experiment Preliminary 43
4.1.1 Evaluation Metrics for Reconstruction Quality 43
4.1.2 Quality Check Threshold Experiment 44
4.2 Simulation 45
4.2.1 Experiment Setup 46
4.2.2 Benchmark Comparison 49
4.2.3 Computation Time 54
4.2.4 The Influence of Quality Check Module 57
4.3 Real World Experiment 59
4.3.1 Experiment Setup 59
4.3.2 Experiment Result 61
Chapter 5 Conclusion and Future Works 66
References 68
-
dc.language.isoen-
dc.subject移動機器人zh_TW
dc.subject路徑規劃zh_TW
dc.subject三維光達zh_TW
dc.subject自動化重建zh_TW
dc.subject自動化探索zh_TW
dc.subjectAutonomous reconstructionen
dc.subjectAutonomous explorationen
dc.subjectPath planningen
dc.subject3D LiDARen
dc.subjectMobile roboten
dc.title搭載光達之移動機器人的自主探索以利於大規模室內環境高品質重建zh_TW
dc.titleAutonomous Exploration of Mobile Robot Equipped with LiDAR for High-Quality Reconstruction in Large-Scale Indoor Environmentsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉彥辰;張文中;簡忠漢;楊谷洋zh_TW
dc.contributor.oralexamcommitteeYen-Chen Liu;Wen-Chung Chang;Jong-Hann Jean;Kuu-Young Youngen
dc.subject.keyword自動化重建,自動化探索,路徑規劃,三維光達,移動機器人,zh_TW
dc.subject.keywordAutonomous reconstruction,Autonomous exploration,Path planning,3D LiDAR,Mobile robot,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU202402577-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-07-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-lift2027-08-01-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
56.09 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved