Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94765
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳郁蕙zh_TW
dc.contributor.advisorYu-Hui Chenen
dc.contributor.author林彥齊zh_TW
dc.contributor.authorYan-Qi Linen
dc.date.accessioned2024-08-19T16:12:05Z-
dc.date.available2024-08-20-
dc.date.copyright2024-08-19-
dc.date.issued2024-
dc.date.submitted2024-07-31-
dc.identifier.citation丁介郁,邱貿凱,官俊榮,(2014) 氣候條件對於臺灣蔬菜批發價格之影響,台灣農學會報,15(4),422-448。
方漢強,(2017) 溫度及光質對花椰菜花球創始的影響,碩士論文,國立台灣大學園藝暨景觀學系。
王建斌,(2012) 氣溫和雨量對蔬菜交易之影響--以西螺果菜市場大白菜為例,碩士論文,台灣大學農業經濟學研究所。
王鎬杰,(2007) 歷年重大農業天然災害蔬菜批發價格變動分析,農政與農情,186,https://www.moa.gov.tw/ws.php?id=13513。
行政院主計總處,(2023) 中華民國統計資訊網,總體統計資料庫,https://nstatdb.dgbas.gov.tw/dgbasAll/webMain.aspx?k=dgmain&mode=8&kw=%E8%BA%89%E5%94%AE。
李皇照,(2007)改善國內果菜批發業務管理制度之研究,台灣農村經濟學會。
李香誼,(2014)春化作用影響花椰菜夏季產量之研究,碩士論文,國立台灣大學園藝暨景觀學系。
李伯年,(1982) 蔬菜育種與採種,茂昌圖書有限公司,頁68-77。
辛昱辰、侯藹玲、江志民,(2013) 應用 CRISP-DM 建立農產價量預測模型 -以甘藍為例,數據分析,8,頁109-138。
吳明桂,(2016) 季節氣候變異對臺北市進口蔬菜批發價格變化的影響-以蘿蔔、萵苣、青花菜、西芹為例,碩士論文,臺灣大學農業經濟學研究所。
余奕奎,(2020) 氣候因子與交易量對批發市場甘藍菜交易價格影響之分析,碩士論文,台灣大學農業經濟學研究所。
林怡均,(2022) 高麗菜價直直落,遇暖冬品質降買氣差,部分田區任人採失衡戲碼何時完結,上下游,https://www.newsmarket.com.tw/blog/178779/
林楨祐,(2019) 國產農漁畜產品教材,農業部,頁1-2。
柯竣議,(2021) 台灣花椰菜產業經濟效益分析,碩士論文,台灣大學農業經濟學研究所。
陳欣宜,(2017) 以線性模型與時間序列分析建立雲林縣落花生產量預測模型,碩士論文,臺灣大學農藝學研究所。
陳洪毅、楊亞欣、葉信富,(2020) 以 SARIMA 模型預測濁水溪沖積扇地下水補注地質敏感區之地下水水位變化,農業工程學報,67(4),頁91-103。
陳瑞仁、張簡鴻年、顏宏旗、張雁翔,(2022) 卷積神經網路技術輔助診斷失智症腦部灌注影像,北市醫學雜誌,頁1-28。
陳瑋筠,(2016) 用於預測價格波動之時間序列分析,碩士論文,臺灣大學資訊管理學研究所。
陳添來、蔡敏嘉、鄭卿蓮,(1999) 臺灣花椰菜栽培面積與價格之變動分析,桃園區農業改良場研究報告,36,頁43-50。
曾明性、林沂臻,(2017) 應用希爾伯特-黃轉換法於菜價預測探討 ,台灣網際網路研討會,頁950-955。
農業部,(2002) 農政與農情,大宗蔬菜產業策略聯盟之組成及運作情形, https://www.moa.gov.tw/ws.php?id=4199
農業部,(2010) 花椰菜主題館,品種分類, https://kmweb.moa.gov.tw/subject/subject.php?id=30123。
農業部,(2022) 臺灣地區農產品批發市場年報, https://amis.afa.gov.tw/doc/111%E5%B9%B4%E5%A0%B1.pdf
農業部,(2023) 農業統計資料,動態查詢, https://agrstat.moa.gov.tw/sdweb/public/book/Book.aspx
農業部,(2023) 農業花椰菜主題館, https://kmweb.moa.gov.tw/subject/index.php?id=108
農業試驗所,(2018) 花椰菜鳳山2號,農業部農業試驗所,https://www.tari.gov.tw/tour1/index-1.asp?Parser=99,6,37,,,,214
農傳媒,(2017) 耐熱、收穫期短,台灣民間花椰菜育種受國際矚目,農傳媒,https://www.agriharvest.tw/archives/27539
楊壹婷,(2016) 臺灣水果價量關係之研究,碩士論文,台灣大學農業經濟學研究所。
楊奕農、周恆志、巫春洲,(2008) 農產品期貨價格波動性的到期效應與交易量效應,農業經濟叢刊,14(1),頁83-110。
董師師、黃哲學,(2013) 隨機森林理論淺析,集成技術,2(1),頁1-7。
衛生福利部,(2020) 「嚴重特殊傳染性肺炎」列為臺灣第五類法定傳染病,COVID-19防疫關鍵決策時間軸,https://covid19.mohw.gov.tw/ch/cp-4822-53437-205.html
賴文龍、郭孚燿,(2010) 花椰菜合理化施肥管理技術,台中區農業專訊,69,頁4-8。
廖啟翔,(2021) 以深度學習方式探討台灣結球白菜之價格,碩士論文,台灣大學農業經濟學研究所。
廖勝澤,(2020) 產地氣候變化對於蔬菜價量之影響-以青江菜為例,碩士論文,台灣大學農業經濟學研究所。
廖公益,(1993) 台灣之花菜類蔬菜之(貳)台灣之花椰菜,台灣蔬菜產業演進四十年專集,頁202-216。
蔡佾廷,(2006) KPSS檢定用於非線性轉換之分數性整合數列之研究,國立台北大學經濟學研究所。
劉奕洋、萬絢,(2021) 基於整體學習演算法於航攝正射影像之物件分類探索-以海岸廢棄物為例,航測及遙測學刊,26(3),頁181-192。
蔡俊雄、郭忠吉,(1981) 十字花科蔬菜生長發育的生態生理,十字花科蔬菜生產與病蟲防治研討會專刊,頁194-207。
謝明憲等人,(2009) 花椰菜栽培要點及預防生理障礙措施,農友月刊。
謝明憲等人,(2008) 十字花科蔬菜耐熱育種及採種,農業生技產業應用研討會。
謝明憲等人,(2011)甘藍及晚生種花椰菜幼苗大量春化處理技術,台南區農業改良場研究會報,58,頁21-30。
聶建中,(2005) 非對稱平滑移轉誤差修正模型分析期貨價格與標的股價間之長短期動態關係,行政院國家科學委員會專題研究計畫。
Acharya, M. S., Armaan, A., & Antony, A. S. (2019). A comparison of regression models for prediction of graduate admissions. In 2019 international conference on computational intelligence in data science (ICCIDS) , 1-5.
Anthony, R. G., James, P. E., & Jordan, B. R. (1996). Cauliflower (Brassica oleracea var. botrytis L.) curd development: the expression of meristem identity genes. Journal of Experimental Botany, 47(2), 181-188.
Alpaydin, E. (2020). Introduction to machine learning. MIT press.
Bayona-Oré, S., Cerna, R., & Tirado Hinojoza, E. (2021). Machine learning for price prediction for agricultural products.
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
Chaudhary, S., Bajaj, S. B., & Mongia, S. (2022, May). Analysis of a Novel Integrated Machine Learning Model for Yield and Weather Prediction: Punjab Versus Maharashtra. In The International Conference on Recent Innovations in Computing, 83-93.
Chmielewski, F. M., Müller, A., & Bruns, E. (2004). Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agricultural and Forest Meteorology, 121(1-2), 69-78.
De'ath, G., & Fabricius, K. E. (2000). Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology, 81(11), 3178-3192.
Ganesh, S., (2010). Multivariate Linear Regression. International Encyclopedia of Education, 3, 324-331.
Gooljar, S., Manohar, K., & Hosein, P. (2023). Performance evaluation and comparison of a new regression algorithm. arXiv preprint arXiv:2306.09105.
Gowda, S., & Reddy, S. (2020). Design and implementation of crop yield prediction model in agriculture. International Journal of Scientific & Technology Research, 8(1), 544-549.
Hansen, J. W., Jones, J. W., Kiker, C. F., & Hodges, A. W. (1999). El Niño–Southern Oscillation impacts on winter vegetable production in Florida. Journal of Climate, 12(1), 92-102.
Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd international conference on document analysis and recognition, 1, 278-282.
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.
Jha, G. K., & Sinha, K. (2013). Agricultural price forecasting using neural network model: An innovative information delivery system. Agricultural Economics Research Review, 26(2), 229-239.
Khan, H., & Ghosh, S. M. (2020). Crop yield prediction from meteorological data using efficient machine learning model. In Proceedings of International Conference on Wireless Communication: ICWiCOM 2019 (pp. 565-574). Springer Singapore.
Kontopoulou, V. I., Panagopoulos, A. D., Kakkos, I., & Matsopoulos, G. K. (2023). A review of ARIMA vs. machine learning approaches for time series forecasting in data driven networks. Future Internet, 15(8), 255.
Kuchar, L. (1994). Yield prediction of vegetable plants using exponential polynomial model [EPM] and forecasts of total rainfall and mean air temperature. International agrophysics, 8(3).
Kumar, P., Sonnad, J., Yeledhalli, R. & Patil, S. (2024). A study on price forecasts of pearl millet in major markets of Karnataka. International Journal of Statistics and Applied Mathematics, 9, 76-79.
Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?. Journal of econometrics, 54(1-3), 159-178.
Liu, X., (2024). Comparison of different machine learning models: Linear model, forest, and SVM. International Conference on Signal Processing and Machine Learning, 51, 225-230.
Liu, Y., Wang, Y., & Zhang, J., (2012). New Machine Learning Algorithm: Random Forest, ICICA, 7473,246-252.
Lobell, D. B., & Burke, M. B. (2010). On the use of statistical models to predict crop yield responses to climate change. Agricultural and forest meteorology, 150(11), 1443-1452.
Lyu, Y., Wang, Y., Jiang, C., Ding, C., Zhai, M., Xu, K., ... & Wang, J. (2023). Random forest regression on joint role of meteorological variables, demographic factors, and policy response measures in COVID-19 daily cases: global analysis in different climate zones. Environmental Science and Pollution Research, 30(32), 79512-79524.
Maharjan, K. L., Joshi, N. P., Maharjan, K. L., & Joshi, N. P. (2013). Effect of climate variables on yield of major food-crops in Nepal: A time-series analysis. Climate change, agriculture and rural livelihoods in developing countries, 127-137.
Mao, L., Huang, Y., Zhang, X., Li, S., & Huang, X. (2022). ARIMA model forecasting analysis of the prices of multiple vegetables under the impact of the COVID-19. Plos one, 17(7), e0271594.
Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and Machine Learning forecasting methods: Concerns and ways forward. PloS one, 13(3), e0194889.
Ohyver, M., & Pudjihastuti, H. (2018). Arima model for forecasting the price of medium quality rice to anticipate price fluctuations. Procedia Computer Science, 135, 707-711.
Parmar, A., Katariya, R., & Patel, V. (2019). A review on random forest: An ensemble classifier. In International conference on intelligent data communication technologies and internet of things (ICICI) 2018 (pp. 758-763). Springer International Publishing.
Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Taieb, S. B., ... & Ziel, F. (2022). Forecasting: theory and practice. International Journal of Forecasting, 38(3), 705-871.
Rajpoot, K., Singla, S., Singh, A., & Shekhar, S. (2022). Impact of COVID-19 lockdown on prices of potato and onion in metropolitan cities of India. Journal of Agribusiness in Developing and Emerging Economies, 12(3), 386-399.
Sarker, M. A. R., Alam, K., & Gow, J. (2012). Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data. Agricultural Systems, 112, 11-16.
Scikit learn (2024). RandomForestRegressor, https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor.estimators_samples_.
Sharma, C., Misra, R., Bhatia, M., & Manani, P. (2023). Price prediction model of fruits, vegetables and pulses according to weather. In 2023 13th International Conference on Cloud Computing, Data Science & Engineering (Confluence), 347-351.
Shimoda, S., Kanno, H., & Hirota, T. (2018). Time series analysis of temperature and rainfall-based weather aggregation reveals significant correlations between climate turning points and potato (Solanum tuberosum L) yield trends in Japan. Agricultural and forest meteorology, 263, 147-155.
Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and Machine Learning forecasting methods: Concerns and ways forward. PloS one, 13(3), e0194889.
Vikram, R., Divij, R., Hishore, N., Naveen, G., & Rudhramoorthy, D. (2021). Crop price prediction using machine learning naive Bayes algorithms. In International Conference on Ubiquitous Computing and Intelligent Information Systems (pp. 27-34). Singapore: Springer Nature Singapore.
Yamak, P. T., Yujian, L., & Gadosey, P. K. (2019). A comparison between arima, lstm, and gru for time series forecasting. In Proceedings of the 2019 2nd international conference on algorithms, computing and artificial intelligence, 49-55.
Yanli, L., Wang, Y., & Zhang, J., 2012. New Machine Learning Algorithm: Random Forest, ICICA, Page 246-252.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94765-
dc.description.abstract大宗蔬菜在批發市場中交易量最大,其價格會影響批發市場的平均價格行情,故分析大宗蔬菜價格有其重要性。在三種大宗蔬菜(甘藍、包心白菜及花椰菜)中,國內價格相關研究對前兩者著墨較多,反觀花椰菜的價格分析是較少被討論到的,過去與花椰菜相關的研究主要聚焦在生長或品種改良、研發上,極少分析花椰菜批發市場價格及影響價格因素的研究。因此本研究目的在於瞭解我國花椰菜的生產背景與在果菜批發市場價格及交易情況,並分析影響花椰菜價格的可能因素。本文以國內已公開的十七處果菜批發市場資料為基礎,彙整分析 2012 - 2022 年的樣本期間全部市場、產地市場及消費地市場的交易量及價格資料,利用時間序列的 ARIMA 模型及隨機森林模型作估計,分析影響花椰菜價格之因素與其影響力高低。研究發現花椰菜價格具季節性,在十一月至四月之間價格較低,但五月到十月的價格較高;在研究期間因產量、產值、種植面積呈衰退情況,使得花椰菜價格有上漲的趨勢。在影響價格因素部分,值花椰菜價格受到前 1 - 2 旬價格及交易量的影響最大;另外兩種大宗蔬菜(甘藍與包心白菜)的前一期交易價格及交易量也會影響到花椰菜當期價格,而甘藍的影響力明顯高過於包心白菜;不過 COVID-19 疫情與四大節慶則對花椰菜價格無顯著影響。zh_TW
dc.description.abstractMajor vegetables account for the highest transaction volume in the wholesale market, and their prices influence the average market price trends. Therefore, analyzing the prices of major vegetables is of significant importance. Among the three major vegetables (Taiwanese cabbage, napa cabbage, and cauliflower), domestic price-related research has focused more on the former two, while price analysis of cauliflower has been less discussed. Previous studies related to cauliflower mainly focused on growth, variety improvement, and R&D, with very few studies analyzing wholesale market prices and the factors influencing cauliflower prices. Therefore, the purpose of this study is to understand the production background of cauliflower in Taiwan, its price and trading situation in the fruit and vegetable wholesale market, and to analyze the potential factors influencing cauliflower prices.This paper is based on publicly available data from seventeen fruit and vegetable wholesale markets in Taiwan, consolidating and analyzing transaction volume and price data from all markets, production markets, and consumption markets during the sample period from 2012 to 2022. Using time series ARIMA models and Random Forest models for estimation, it analyzes the factors influencing cauliflower prices and their impact levels. The study finds that cauliflower prices exhibit seasonality, with lower prices from November to April and higher prices from May to October. During the study period, the decline in production volume, production value, and planting area has led to an upward trend in cauliflower prices.Regarding the factors influencing prices, cauliflower prices are most significantly affected by the prices and transaction volumes of the previous 1-2 ten-day periods. Additionally, the previous transaction prices and volumes of the other two major vegetables (Taiwanese cabbage and napa cabbage) also influence the current price of cauliflower, with the influence of Taiwanese cabbage being significantly greater than that of napa cabbage. However, the COVID-19 pandemic and the four major festivals did not have a significant impact on cauliflower prices.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T16:12:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-19T16:12:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝 辭 i
摘 要 ii
Abstract iii
目 次 iv
圖 次 vi
表 次 viii
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究步驟與論文架構 3
第二章 國產花椰菜產業概況及價格 5
第一節 國內花椰菜生產概況 5
第二節 國內花椰菜交易概況 22
第三節 小結 41
第三章 文獻回顧 42
第一節 農產品價量分析文獻 42
第二節 預測模型比較相關研究 52
第三節 小結 55
第四章 研究方法 56
第一節 AIRMA模型 56
第二節 隨機森林模型 60
第五章 實證分析 64
第一節 資料來源 64
第二節 實證分析結果 69
第六章 結論與建議 99
第一節 結論 99
第二節 建議 101
參考文獻 102
-
dc.language.isozh_TW-
dc.title國產花椰菜價格分析:時間序列與機器學習模型之應用zh_TW
dc.titlePrice Analysis of Domestic Produced Cauliflower : Time Series and Machine Learning Models Approachen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee詹滿色;鄭佳宜zh_TW
dc.contributor.oralexamcommitteeMan-ser Jan;Chia-Yi Chengen
dc.subject.keyword花椰菜,價格分析,ARIMA模型,隨機森林模型,zh_TW
dc.subject.keywordcauliflower,price analysis,ARIMA model,Random Forest model,en
dc.relation.page108-
dc.identifier.doi10.6342/NTU202402940-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-02-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農業經濟學系-
dc.date.embargo-lift2025-07-31-
顯示於系所單位:農業經濟學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
4.46 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved