Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94763
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何銘洋zh_TW
dc.contributor.advisorMing-Yang Hoen
dc.contributor.author李映漾zh_TW
dc.contributor.authorYing-Yang Lien
dc.date.accessioned2024-08-19T16:11:22Z-
dc.date.available2024-08-20-
dc.date.copyright2024-08-19-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citationAlcorta, J., Vergara-Barros, P., Antonaru, L. A., Alcamán-Arias, M. E., Nürnberg, D. J., & Díez, B. (2019). Fischerella thermalis: a model organism to study thermophilic diazotrophy, photosynthesis and multicellularity in cyanobacteria. Extremophiles, 23, 635-647.
Antonaru, L. A., Cardona, T., Larkum, A. W., & Nürnberg, D. J. (2020). Global distribution of a chlorophyll f cyanobacterial marker. The ISME Journal, 14(9), 2275-2287.
Behrendt, L., Trampe, E. L., Nord, N. B., Nguyen, J., Kühl, M., Lonco, D., Nyarko, A., Dhinojwala, A., Hershey, O. S., & Barton, H. (2020). Life in the dark: far‐red absorbing cyanobacteria extend photic zones deep into terrestrial caves. Environmental microbiology, 22(3), 952-963.
Bennett, A. C., Murugapiran, S. K., & Hamilton, T. L. (2020). Temperature impacts community structure and function of phototrophic Chloroflexi and Cyanobacteria in two alkaline hot springs in Yellowstone National Park. Environmental microbiology reports, 12(5), 503-513.
Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., Huttley, G. A., & Gregory Caporaso, J. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 6, 1-17.
Boomer, S. M., Lodge, D. P., Dutton, B. E., & Pierson, B. (2002). Molecular characterization of novel red green nonsulfur bacteria from five distinct hot spring communities in Yellowstone National Park. Applied and environmental microbiology, 68(1), 346-355.
Boyd, E. S., Hamilton, T. L., Spear, J. R., Lavin, M., & Peters, J. W. (2010). [FeFe]-hydrogenase in Yellowstone National Park: evidence for dispersal limitation and phylogenetic niche conservatism. The ISME Journal, 4(12), 1485-1495.
Brock, T. D. (1973). Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. Science, 179(4072), 480-483.
Bryanskaya, A., Namsaraev, Z., Kalashnikova, O., Barkhutova, D., Namsaraev, B., & Gorlenko, V. (2006). Biogeochemical processes in the algal-bacterial mats of the Urinskii alkaline hot spring. Microbiology, 75, 611-620.
Burford, M., Carey, C., Hamilton, D., Huisman, J., Paerl, H., Wood, S., & Wulff, A. (2020). Perspective: Advancing the research agenda for improving understanding of cyanobacteria in a future of global change. Harmful Algae, 91, 101601.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature methods, 13(7), 581-583.
Chan, C., Chan, K., Ee, R., Hong, K., & Urbieta, M. (2017). Effects of physiochemical factors on prokaryotic biodiversity in Malaysian circumneutral hot springs. Frontiers in Microbiology, 8: 1–14.
Chan, C. S., Chan, K.-G., Ee, R., Hong, K.-W., Urbieta, M. S., Donati, E. R., Shamsir, M. S., & Goh, K. M. (2017). Effects of physiochemical factors on prokaryotic biodiversity in Malaysian circumneutral hot springs. Frontiers in Microbiology, 8, 275979.
Chen, J.-S., Hussain, B., Tsai, H.-C., Nagarajan, V., Koner, S., & Hsu, B.-M. (2023). Analysis and interpretation of hot springs water, biofilms, and sediment bacterial community profiling and their metabolic potential in the area of Taiwan geothermal ecosystem. Science of The Total Environment, 856, 159115.
Chen, M., Schliep, M., Willows, R. D., Cai, Z.-L., Neilan, B. A., & Scheer, H. (2010). A red-shifted chlorophyll. Science, 329(5997), 1318-1319.
Cheng, Y.-I., Lin, Y.-C., Leu, J.-Y., Kuo, C.-H., & Chu, H.-A. (2022). Comparative analysis reveals distinctive genomic features of Taiwan hot-spring cyanobacterium Thermosynechococcus sp. TA-1. Frontiers in Microbiology, 13, 932840.
Chuang, L.-Y., Cheng, Y.-H., & Yang, C.-H. (2013). Specific primer design for the polymerase chain reaction. Biotechnology letters, 35, 1541-1549.
Claesson, M. J., Wang, Q., O'Sullivan, O., Greene-Diniz, R., Cole, J. R., Ross, R. P., & O'Toole, P. W. (2010). Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic acids research, 38(22), e200-e200.
Coman, C., Drugă, B., Hegedus, A., Sicora, C., & Dragoş, N. (2013). Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania. Extremophiles, 17(3), 523-534.
Cox, A., Shock, E. L., & Havig, J. R. (2011). The transition to microbial photosynthesis in hot spring ecosystems. Chemical Geology, 280(3-4), 344-351.
Dick, G. J., Grim, S. L., & Klatt, J. M. (2018). Controls on O2 production in cyanobacterial mats and implications for Earth's oxygenation. Annual Review of Earth and Planetary Sciences, 46, 123-147.
Gan, F., & Bryant, D. A. (2015). Adaptive and acclimative responses of cyanobacteria to far‐red light. Environmental Microbiology, 17(10), 3450-3465.
Gan, F., Shen, G., & Bryant, D. A. (2014). Occurrence of far-red light photoacclimation (FaRLiP) in diverse cyanobacteria. Life, 5(1), 4-24.
Gan, F., Zhang, S., Rockwell, N. C., Martin, S. S., Lagarias, J. C., & Bryant, D. A. (2014). Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science, 345(6202), 1312-1317.
Gisriel, C., Shen, G., Kurashov, V., Ho, M.-Y., Zhang, S., Williams, D., Golbeck, J. H., Fromme, P., & Bryant, D. A. (2020). The structure of Photosystem I acclimated to far-red light illuminates an ecologically important acclimation process in photosynthesis. Science Advances, 6(6), eaay6415.
Heidari, F., Hauer, T., Zima, J. R. H., & Riahi, H. (2018). New simple trichal cyanobacterial taxa isolated from radioactive thermal springs. Fottea, 18(2), 137-149.
Ho, M.-Y., & Bryant, D. A. (2019). Global transcriptional profiling of the cyanobacterium Chlorogloeopsis fritschii PCC 9212 in far-red light: insights into the regulation of chlorophyll d synthesis. Frontiers in Microbiology, 10, 440197.
Ho, M. Y., & Bryant, D. A. (2021). Photosynthesis: Long wavelength pigments in photosynthesis. Encyclopedia of Biological Chemistry: Third Edition (pp. 245-255).
Kühl, M., Chen, M., Ralph, P. J., Schreiber, U., & Larkum, A. W. (2005). A niche for cyanobacteria containing chlorophyll d. Nature, 433(7028), 820-820.
Kees, E. D., Murugapiran, S. K., Bennett, A. C., & Hamilton, T. L. (2022). Distribution and genomic variation of thermophilic cyanobacteria in diverse microbial mats at the upper temperature limits of photosynthesis. Msystems, 7(5), e00317-00322.
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic acids research, 41(1).
Ko, J. T., Li, Y. Y., Chen, P. Y., Liu, P. Y., & Ho, M. Y. (2023). Use of 16S rRNA gene sequences to identify cyanobacteria that can grow in far‐red light. Molecular Ecology Resources, 24(1), e13871.
Kulasooriya, S., & Magana-Arachchi, D. (2016). Nitrogen fixing cyanobacteria: their diversity, ecology and utilisation with special reference to rice cultivation. Journal of the National Science Foundation of Sri Lanka, 44(2).
Łach, Ł., Khomutovska, N., Kwiatowski, J., & Jasser, I. (2024). The selectivity of 16S primers influences the results of the diversity of cyanobacteria from small water bodies.
Łach, Ł., Khomutovska, N., Kwiatowski, J., & Jasser, I. (2024b). Testing 16S primers for proper identification of cyanobacterial communities in small water bodies. Water, 16(10), 1357.
Li, Y., Scales, N., Blankenship, R. E., Willows, R. D., & Chen, M. (2012). Extinction coefficient for red-shifted chlorophylls: chlorophyll d and chlorophyll f. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817(8), 1292-1298.
Liang, Y., Tang, J., Luo, Y., Kaczmarek, M. B., Li, X., & Daroch, M. (2019). Thermosynechococcus as a thermophilic photosynthetic microbial cell factory for CO2 utilisation. Bioresource Technology, 278, 255-265.
Liu, P.-Y., Wu, W.-K., Chen, C.-C., Panyod, S., Sheen, L.-Y., & Wu, M.-S. (2020). Evaluation of compatibility of 16S rRNA V3V4 and V4 amplicon libraries for clinical microbiome profiling. BioRxiv, 2020-08.
Maity, J. P., Liu, C.-C., Nath, B., Bundschuh, J., Kar, S., Jean, J.-S., Bhattacharya, P., Liu, J.-H., Atla, S. B., & Chen, C.-Y. (2011). Biogeochemical characteristics of Kuan-Tzu-Ling, Chung-Lun and Bao-Lai hot springs in southern Taiwan. Journal of Environmental Science and Health, Part A, 46(11), 1207-1217.
McCree, K. (1973). The measurement of photosynthetically active radiation. Solar energy, 15(1), 83-87.
Miller, S. R., & Carvey, D. (2019). Ecological divergence with gene flow in a thermophilic cyanobacterium. Microbial ecology, 78, 33-41.
Miyashita, H. (1996). Chlorophyll d as a major pigment. Nature, 338, 402.
Moro, I., Rascio, N., La Rocca, N., Di Bella, M., & Andreoli, C. (2007). Cyanobacterium aponinum, a new Cyanoprokaryote from the microbial mat of Euganean thermal springs (Padua, Italy). Algological studies, 123(1), 1-15.
Nübel, U., Garcia-Pichel, F., & Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and environmental microbiology, 63(8), 3327-3332.
Narsing Rao, M., Dong, Z., Luo, Z., Li, M., Liu, B., Guo, S., Hozzein, W., Xiao, M., & Li, W. (2021). Physicochemical and microbial diversity analyses of Indian Hot Springs. Frontiers in Microbiology, 12, 627200.

Nguyen, S. T., Vardeh, D. P., Nelson, T. M., Pearson, L. A., Kinsela, A. S., & Neilan, B. A. (2022). Bacterial community structure and metabolic potential in microbialite‐forming mats from South Australian saline lakes. Geobiology, 20(4), 546-559.
Nien, T.-S., Bryant, D. A., & Ho, M.-Y. (2022). Use of quartz sand columns to study far-red light photoacclimation (FaRLiP) in cyanobacteria. Applied and environmental microbiology, 88(13), e00562-00522.
Nishida, A., Thiel, V., Nakagawa, M., Ayukawa, S., & Yamamura, M. (2018). Effect of light wavelength on hot spring microbial mat biodiversity. PLoS One, 13(1), e0191650.
Ohkubo, S., & Miyashita, H. (2017). A niche for cyanobacteria producing chlorophyll f within a microbial mat. The ISME Journal, 11(10), 2368-2378.
Okuda, Y., Hiraiwa, M., Shimizu, N., & Hashimoto, S. (2023). Production of volatile organic iodine compounds by the marine cyanobacterium Calothrix parasitica under different light intensities. Marine Chemistry, 248, 104211.
Paerl, H. W., & Paul, V. J. (2012). Climate change: links to global expansion of harmful cyanobacteria. Water research, 46(5), 1349-1363.
Panda, A. K., Bisht, S. S., Kaushal, B. R., De Mandal, S., Kumar, N. S., & Basistha, B. C. (2017). Bacterial diversity analysis of Yumthang hot spring, North Sikkim, India by Illumina sequencing. Big Data Analytics, 2, 1-7.
Petti, C., Polage, C., & Schreckenberger, P. (2005). The role of 16S rRNA gene sequencing in identification of microorganisms misidentified by conventional methods. Journal of clinical microbiology, 43(12), 6123-6125.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research, 41(D1), D590-D596.
Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, e2584.
Samylina, O., Sapozhnikov, F., Gainanova, O. Y., Ryabova, A., Nikitin, M., & Sorokin, D. Y. (2014). Algo-bacterial communities of the Kulunda steppe (Altai region, Russia) soda lakes. Microbiology, 83, 849-860.
Selvarajan, R., Sibanda, T., Venkatachalam, S., Ogola, H. J., Christopher Obieze, C., & Msagati, T. A. (2019). Distribution, interaction and functional profiles of epiphytic bacterial communities from the rocky intertidal seaweeds, South Africa. Scientific reports, 9(1), 19835.
Stal, L. J. (1995). Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytologist, 131(1), 1-32.
Strunecký, O., Kopejtka, K., Goecke, F., Tomasch, J., Lukavský, J., Neori, A., Kahl, S., Pieper, D. H., Pilarski, P., & Kaftan, D. (2019). High diversity of thermophilic cyanobacteria in Rupite hot spring identified by microscopy, cultivation, single-cell PCR and amplicon sequencing. Extremophiles, 23, 35-48.
Sun, T., Yang, Z., Chen, J., Li, Y., Wang, J., Wang, X., Tang, X., & Xiao, H. (2022). Effects of Water Loss Stress under Tidal Effects on the Epiphytic Bacterial Community of Sargassum thunbergii in the Intertidal Zone. Msphere, 7(5), e00307-00322.
Suosaari, E., Reid, R., Playford, P., Foster, J., Stolz, J., Casaburi, G., Hagan, P., Chirayath, V., Macintyre, I., & Planavsky, N. (2016). New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia. Scientific reports, 6(1), 20557.
Swingley, W. D., Chen, M., Cheung, P. C., Conrad, A. L., Dejesa, L. C., Hao, J., Honchak, B. M., Karbach, L. E., Kurdoglu, A., & Lahiri, S. (2008). Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proceedings of the national academy of sciences, 105(6), 2005-2010.
Tang, J., Liang, Y., Jiang, D., Li, L., Luo, Y., Shah, M. M. R., & Daroch, M. (2018). Temperature-controlled thermophilic bacterial communities in hot springs of western Sichuan, China. BMC microbiology, 18, 1-14.
Tank, M., Thiel, V., & Imhoff, J. F. (2009). Phylogenetic relationship of phototrophic purple sulfur bacteria according to pufL and pufM genes. International Microbiology, 12(3), 175-185.
Ting, C. S., Rocap, G., King, J., & Chisholm, S. W. (2002). Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends in microbiology, 10(3), 134-142.
van der Meer, M. T., Schouten, S., Bateson, M. M., Nübel, U., Wieland, A., Kühl, M., de Leeuw, J. W., Sinninghe Damsté, J. S., & Ward, D. M. (2005). Diel variations in carbon metabolism by green nonsulfur-like bacteria in alkaline siliceous hot spring microbial mats from Yellowstone National Park. Applied and environmental microbiology, 71(7), 3978-3986.
Waterworth, S. C., Isemonger, E. W., Rees, E. R., Dorrington, R. A., & Kwan, J. C. (2021). Conserved bacterial genomes from two geographically isolated peritidal stromatolite formations shed light on potential functional guilds. Environmental microbiology reports, 13(2), 126-137.
Wickstrom, C. E. (1984). Discovery and evidence of nitrogen fixation by thermophilic heterotrophs in hot springs. Current Microbiology, 10, 275-280.
Wickstrom, C. E., & Castenholz, R. W. (1985). Dynamics of cyanobacterial and ostracod interactions in an Oregon hot spring. Ecology, 66(3), 1024-1041.
Zhang, C.-X., Lin, Q.-J., Chen, S.-K., Guo, J.-H., & Zhou, S.-Y. (2008). Study of water quality characteristics in recreational areas of hot springs in Taiwan. Journal of Agricultural Engineering, 54(1), 44-55.
Zhang, W. (, 2004). Investigation, collection, identification, and agricultural applications of indigenous thermophilic bacteria in Taiwan hot springs (III).
Zhang, Z., Han, P., Zheng, Y., Jiao, S., Dong, H., Liang, X., Gao, D., Niu, Y., Yin, G., & Liu, M. (2023). Spatiotemporal dynamics of bacterial taxonomic and functional profiles in estuarine intertidal soils of China coastal zone. Microbial ecology, 85(2), 383-399.
Zhang, Z. C., Li, Z. K., Yin, Y. C., Li, Y., Jia, Y., Chen, M., & Qiu, B. S. (2019). Widespread occurrence and unexpected diversity of red‐shifted chlorophyll producing cyanobacteria in humid subtropical forest ecosystems. Environmental Microbiology, 21(4), 1497-1510.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94763-
dc.description.abstract大部分藍綠菌僅能生長於可見光 (λ = 400-700 nm) 下,但有部分能吸收遠紅光 (λ = 700-750 nm) 行光合作用,稱之為遠紅光藍綠菌。這些遠紅光藍綠菌過去由多樣的環境中分離,其中多於溫泉環境中發現。然而,傳統方法如色素分析或純化培養難以系統化分析遠紅光藍綠菌的生態分佈。因此,我利用一個16S rRNA基因擴增子定序的方法—FRCI,調查11個臺灣溫泉的微生物群落。此外,透過其中30個溫泉樣本DNA測試專門針對藍綠菌擴增的CYA引子,與16S rRNA基因測序的通用微生物V3V4引子比較,其對藍綠菌分辨能力和效力。
結果顯示,遠紅光藍綠菌在台灣溫泉中分布廣泛,其相對豐度佔整體藍綠菌群落的0%至20%。其中,在龜丹溫泉,遠紅光藍綠菌佔整體藍綠菌群落的55%。此外,遠紅光藍綠菌的相對豐度會隨著溫泉pH值的上升而顯著增加,並且略隨著溫度的降低而減少。測序結果鑑定出11個遠紅光藍綠菌,主要屬於Leptolyngbya和Calothrix屬,此外,本研究也純化出三株先前未知其具有利用遠紅光能力的藍綠菌。我也從其他國家溫泉菌落資料中,發現在許多溫泉中常見的遠紅光藍綠菌Fischerella spp.在台灣僅少量分布,為台灣獨特的溫泉菌相生態提供重要線索。CYA引子在藍綠菌目組成的排序上表現出相似的結果,但在溫泉樣本中發現的多樣性高於V3V4引子。引子偏好的存在需要進一步通過定量的模擬微生物群落進行確認。我們的研究為了解台灣溫泉中獨特的遠紅光藍綠菌群落提供了基礎,並突顯了CYA引子在揭示藍綠菌多樣性方面的重要性。
zh_TW
dc.description.abstractSome cyanobacteria can harvest far-red light (FRL, wavelength = 700-750 nm) in addition to visible light (wavelength = 400-700 nm) for photosynthesis. These special cyanobacteria (hereafter far-red cyanobacteria) were predominantly isolated from hot springs and characterized by pigment or culture-based methods. However, these methods are limited in studying the distribution and ecological significance of far-red cyanobacteria. In this study, I investigated 11 hot springs in Taiwan using a 16S rRNA gene amplicon sequencing-based method named as Far-Red Cyanobacteria Identification (FRCI). Additionally, 30 hot spring samples were selected and amplified using cyanobacteria-specific CYA primers to compare their resolution and efficacy against the general prokaryotic V3V4 hypervariable regions used for 16S rRNA gene sequencing.
My investigation reveals that far-red cyanobacteria were widely distributed in 10 out of 11 hot springs. They comprised 0-55% of the cyanobacterial population. The population size positively correlates with pH value (r = 0.36, p<0.01) and negatively correlates with temperature ( r = -0.28, p<0.05). FRCI identified 11 distinct far-red cyanobacteria ASVs from hot spring samples, primarily belonging to genera Leptolyngbya and Calothrix. Cultivation under FRL revealed three previously unknown strains of cyanobacteria capable of utilizing FRL. These findings expand our understanding of far-red cyanobacterial diversity. Additionally, Fischerella spp. are common far-red cyanobacteria in Japan, China, and India; however, they are the minority in Taiwan hot springs. While CYA primers exhibited a similar ranking of cyanobacterial order composition, they found greater diversity in hot spring samples compared to V3V4 primers. The presence of primer preferences requires further confirmation with a mock community. Our study provides a basis for studying unique far-red cyanobacteria communities in Taiwan hot springs and highlights the importance of CYA primers in uncovering cyanobacterial diversity.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T16:11:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-19T16:11:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
Table of Contents vi
List of Figures ix
List of Tables x
Supplementary Figures xi
Supplementary Tables xii
Chapter 1. Introduction 1
1.1 The role and significance of far-red light utilizing cyanobacteria 1
1.2 Innovative methods for studying FRLCyano distribution and adaptation 2
1.3 Insights into FRLCyano ecology in hot springs 3
1.4 Evaluating the specificity of 16S rRNA primers for Cyanobacteria 3
1.5 Exploring FRLCyano ecology and primer efficacy in Taiwan neutral to alkaline hot springs 4
Chapter 2. Materials and Methods 6
2.1 Sample collection 6
2.2 Pigment extraction and HPLC analysis 6
2.3 FRLCyano isolation 7
2.4 DNA extraction, PCR amplification, library construction and sequencing 8
2.5 Sequence processing 9
2.6 Statistical analysis 9
Chapter 3. Results 11
3.1 Hot spring sample site descriptions 11
3.2 The distribution of FRLCyano in Taiwan neutral-alkaline hot springs revealed by V3V4 primers 12
3.3 Environmental factors influencing FRLCyano and bacterial communities in Taiwan hot springs 14
3.4 Discovery of novel FRLCyano strains from Taiwan hot springs 15
3.5 The efficacy and resolution of CYA primers detected cyanobacteria in field samples 15
Chapter 4. Discussion 17
4.1 Ecological distribution and niche preferences of FRLCyano in Taiwan hot springs 17
4.2 Microbial diversity and cyanobacterial communities in Taiwan hot springs 18
4.3 Identification and broader ecological context of FRLCyano ASVs 20
4.4 Environmental distribution of FRLCyano in hot springs and marine-influenced environments 22
4.5 Comparing cyanobacterial detection efficacy: CYA vs. V3V4 primer pairs 23
4.6 Future works 25
References 27
Figures 32
Tables 44
Supplementary Data 50
-
dc.language.isoen-
dc.title台灣溫泉菌相中遠紅光藍綠菌的相對豐度及其與酸鹼值和溫度之相關性探討zh_TW
dc.titleInvestigation of the relative abundance of far-red light-utilizing cyanobacteria and its correlation with pH and temperature in microbial communities of hot springs in Taiwanen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee朱修安 ;劉勃佑 ;郭志鴻zh_TW
dc.contributor.oralexamcommitteeHsiu-An Chu;Po-Yu Liu;Chih-Horng Kuoen
dc.subject.keyword藍綠菌,遠紅光,16S菌相分析,台灣溫泉,生物膜,zh_TW
dc.subject.keywordCyanobacteria,far-red light,16S metagenomics,Taiwan hot spring,Microbial mat,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU202403139-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-09-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept植物科學研究所-
dc.date.embargo-lift2029-08-01-
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-08-01
3.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved