請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94762
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林坤佑 | zh_TW |
dc.contributor.advisor | Kun-You Lin | en |
dc.contributor.author | 林宥均 | zh_TW |
dc.contributor.author | Yu-Chun Lin | en |
dc.date.accessioned | 2024-08-19T16:11:00Z | - |
dc.date.available | 2024-08-20 | - |
dc.date.copyright | 2024-08-19 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-05 | - |
dc.identifier.citation | [1] D. -W. Kim, "An Output Matching Technique for a GaN Distributed Power Amplifier MMIC Using Tapered Drain Shunt Capacitors," IEEE Microwave and Wireless Components Letters, vol. 25, no. 9, pp. 603-605, Sept. 2015.
[2] M. A. Gonzalez-Garrido, J. Grajal, P. Cubilla, A. Cetronio, C. Lanzieri, and M. Uren, "2-6 GHz GaN MMIC Power Amplifiers for Electronic Warfare Applications," European Microwave Integrated Circuit Conference, 2008. [3] G. R. Nikandish, R. B. Staszewski, and A. Zhu, "Broadband Fully Integrated GaN Power Amplifier With Minimum-Inductance BPF Matching and Two-Transistor AM-PM Compensation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4211-4223, Dec. 2020. [4] B. Liu, C. C. Boon, M. Mao, P. Choi, and T. Guo, "A 2.4–6 GHz Broadband GaN Power Amplifier for 802.11ax Application," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 6, pp. 2404-2417, June 2021. [5] Q. Lin et al., "A 2–20-GHz 10-W High-Efficiency GaN Power Amplifier Using Reactive Matching Technique," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 3148-3158, July 2020. [6] [Online]. Available: hmc1086f10-3462922.pdf (mouser.tw) [7] [Online]. Available: adpa1113-3401807.pdf (mouser.tw) [8] C. R. Chappidi and K. Sengupta, "Globally Optimal Matching Networks With Lossy Passives and Efficiency Bounds," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 1, pp. 257-269, Jan. 2018. [9] Po-Wei Huang, “Research on Millimeter-Wave Dual-Band and Wide-Band Power Amplifier for 5G Mobile Communication,” National Taiwan University Master Thesis, 2021. [10] M. Vigilante and P. Reynaert, "20.10 A 68.1-to-96.4GHz variable-gain low-noise amplifier in 28nm CMOS," 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2016 [11] F. Vecchi et al., "A Wideband Receiver for Multi-Gbit/s Communications in 65 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 46, no. 3, pp. 551-561, March 2011, doi: 10.1109/JSSC.2010 [12] M. Bassi, J. Zhao, A. Bevilacqua, A. Ghilioni, A. Mazzanti and F. Svelto, "A 40–67 GHz Power Amplifier With 13 dBm PSAT and 16% PAE in 28 nm CMOS LP," IEEE Journal of Solid-State Circuits, vol. 50, no. 7, pp. 1618-1628, July 2015 [13] P. -C. Huang, Z. -M. Tsai, K. -Y. Lin and H. Wang, "A 17–35 GHz Broadband, High Efficiency PHEMT Power Amplifier Using Synthesized Transformer Matching Technique," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 1, pp. 112-119, Jan. 2012 [14] Po-Wei Huang, “Research on Millimeter-Wave Dual-Band and Wide-Band Power Amplifier for 5G Mobile Communication,” National Taiwan University Master Thesis, 2021 [15] D. M. Pozar, Microwave Engineering. John wiley & sons, 2021. [16] [Online]. Available: https://www.rogerscorp.com/advanced-electronics-solutions/ro4000-series-laminates/ro4003c-laminates [17] [Online]. Available: https://rogerscorp.com/advanced-electronics-solutions/rt-duroid-laminates/rt-duroid-5880-laminates [18] [Online]. Available: https://www.rogerscorp.com/advanced-electronics-solutions/ro4000-series-laminates/ro4400-series-bondply [19] D. Lau, S. P. Marsh, L. E. Davis, and R. Sloan, "Simplified design technique for high performance microstrip multi-section couplers," IEEE Transactions on Microwave Theory and Techniques, (Cat. No.98CH36192), 1998 [20] H. -C. Chen and C. -Y. Chang, "Modified Vertically Installed Planar Couplers for Ultrabroadband Multisection Quadrature Hybrid," IEEE Microwave and Wireless Components Letters, vol. 16, no. 8, pp. 446-448, Aug. 2006 [21] J. -C. Chiu, C. -M. Lin and Y. -H. Wang, "A 3-dB Quadrature Coupler Suitable for PCB Circuit Design," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 9, pp. 3521-3525, Sept. 2006 [22] Javadzadeh, S. M. H., Majedi, S. M. S., and Farzaneh, F, "An ultra-wideband 3-dB quadrature hybrid with multisection broadside stripline tandem structure", International Conference on Mobile Multimedia Communications, pp. 672-681, Sept. 2010 [23] R.Monigia et al., "RF and Microwave Coupled-Line Circuits", ArtechHouse, pp281-285 [24] E. G. Cristal and L. Young, "Theory and Tables of Optimum Symmetrical TEM-Mode Coupled-Transmission-Line Directional Couplers," IEEE Transactions on Microwave Theory and Techniques, vol. 13, no. 5, pp. 544-558, September 1965 [25] M. Leib, M. Mirbach and W. Menzel, "An ultra-wideband vertical transition from microstrip to stripline in PCB technology," 2010 IEEE International Conference on Ultra-Wideband, Nanjing, China, 2010 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94762 | - |
dc.description.abstract | 此論文分為三個主要部分,探討在2-6 GHz頻段應用於軍事及衛星設備的寬頻功率放大器及模組。
第一部分介紹了0.25微米氮化鎵高電子遷移率電晶體製程的寬頻放大器設計。該電路採用了最佳化的路徑匹配網路及電容性和電感性磁耦合共振腔實現寬頻匹配。量測結果顯示,初版設計的增益為18.3至23.3 dB,全頻段飽和功率超過34.7 dBm,功率附加效率超過29.8%。為了進一步提升性能,我們進行了優化的再設計,沿用了最佳化的路徑匹配網路及改良磁耦合共振腔達到匹配。量測結果之增益提升至19.5至25.4 dB,全頻段飽和功率超過35.3 dBm,功率附加效率則超過36.5%,顯示這些改進有效地優化了電路特性。而高瓦數的輸出功率使得散熱成為量測中的一大挑戰,故設計了銅塊加速散熱,已達到更好的量測結果。兩電路設計皆使用小於3平方毫米的面積,彰顯其高功率密度之競爭力。 第二個部分同為0.25微米氮化鎵高電子遷移率電晶體製程所設計之2-6 GHz頻段寬頻放大器,但此功率規格提升至十瓦。此電路採用改良式磁耦合共振腔及電容性及電感性之磁耦合共振腔來達到寬頻匹配。同第二章之設計,高瓦數之輸出功率使得散熱成為量測中重要的一環,故也加入了銅塊設計加速散熱,已達到更好的量測結果。此電路量測增益達13.8至21 dB,飽和功率於全頻段超過40.2 dBm,而功率附加效率則超過 21%。 第三部分延伸自第二部分的設計,為一平衡式放大器之設計。此平衡式放大器由帶狀線寬頻耦合器、共面波導與帶狀線之轉接設計及兩顆十瓦功率放大器組合而成,同樣採用銅塊散熱設計來優化量測結果。此電路量測增益達8.9 至 18 dB,飽和功率於全頻段超過40 dBm ,而功率附加效率則超過 20.5%。 | zh_TW |
dc.description.abstract | This paper is divided into three main parts, dedicated to designing broadband power amplifiers and modules for military and satellite applications in 2-6 GHz.
The first part introduces a broadband amplifier design using a 0.25-um GaN process. This design employs optimal matching network contour and capacitively and inductively magnetically coupled resonators for broadband matching. Measurement results indicate an initial gain of 18.3 to 23.3 dB, a saturated power exceeding 34.7 dBm, and a power added efficiency surpassing 29.8%. A re-design network is conducted to enhance performance by using an optimal matching network with a more compact layout for output matching and the extended magnetically coupled resonator (MCR) for interstage and input matching, achieving a gain of 19.5 to 25.4 dB, a saturated power over 35.3 dBm, and a power added efficiency exceeding 36.5%. The measurements are conducted with a copper design under the chip since the heat generated by the large output power may jeopardize the overall performance. These results show effective improvements in the re-design network. Additionally, both designs occupy less than 3 mm2 of chip size, demonstrating their competitive high power density. The second part also utilizes the 0.25um GaN process for a 2-6 GHz broadband amplifier, but with power specifications increased to 10 W. This design utilizes extended MCR technique and capacitively and inductively magnetically coupled resonators for broadband matching. Addressing previous challenges related to heat generated during measurements, a copper heat dissipation system has been incorporated into the design. This addition aims to enhance overall performance by effectively managing thermal issues and optimizing operational conditions for improved results. Measurement results for this proposed PA show a gain of 13.8 to 21 dB, a saturated power exceeding 40.2 dBm, and a power added efficiency exceeding 21% across the entire frequency band. The third part extends from the design of the second part to a balanced amplifier. This balanced amplifier is composed of two broadband quadrature couplers with stripline structures, CPWG-to-stripline transitions, and two 10 W PAs. Similarly, copper heat dissipation designs were employed to optimize measurement results. Measurement results for this proposed balanced amplifier demonstrate a Psat exceeding 40 dBm with a maximum of 41.8 dBm, a measured small signal gain of 8.9-18 dB, and a PAE exceeding 13.1% with a maximum of 20.5%. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T16:11:00Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-19T16:11:00Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | CONTENTS
口試委員審定書 i 誌謝 ii 中文摘要 iv ABSTRACT v CONTENTS vii LIST OF FIGURES xi LIST OF TABLES xix Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Contributions 3 1.3 Thesis Organization 4 Chapter 2 2-6 GHz 3-5 W GaN Power Amplifier 5 2.1 Introduction 5 2.2 Circuit Design 6 2.2.1 Design of the Two-Stage Power Amplifier 6 2.2.2 Optimal Matching Network Contour for Output Matching 20 2.2.3 Interstage Matching Network Using Capacitively and Inductively Coupled Resonators 24 2.2.4 Input Matching Design 32 2.2.5 Circuit Schematic and Simulation Results 33 2.3 Measurement Results 38 2.3.1 Heat Dissipation Design 38 2.3.2 Measurement Results 41 2.3.3 Discussion 47 2.4 Circuit Re-design 49 2.4.1 Re-design of the Output Matching Network Utilizing Optimal Matching Network Contour 52 2.4.2 Re-design of the interstage matching utilizing the extended MCR Matching Network 54 2.4.3 Re-design of the input matching utilizing MCR Network 58 2.4.4 Circuit schematic of the Re-design PA 59 2.5 Measurement Results of the Re-design PA 67 2.5.1 Measurement Results of the Re-design PA 68 2.5.2 Discussion 73 2.6 Summary 75 Chapter 3 2-6 GHz 10 W GaN Power Amplifier 77 3.1 Introduction 77 3.2 Circuit Design 77 3.2.1 Design of the Two-Stage Power Amplifier 77 3.2.2 Extended MCR Matching Network for Output Matching 86 3.2.3 Extended Capacitively and Inductively Coupled Resonators for Interstage Matching Design 91 3.2.4 MCR For Input Matching Design 95 3.2.5 Bypass Design of the Power Stage Drain Biases 96 3.2.6 Circuit Schematic and Simulation Results 98 3.3 Measurement Results 106 3.3.1 Heat Dissipation Design 106 3.3.2 Measurement Results 107 3.3.3 Discussion 115 3.4 Summary 118 Chapter 4 2-6 GHz GaN Power Amplifier Module 121 4.1 Introduction 121 4.2 Module Design 121 4.2.1 Proposed Module Structure 121 4.2.2 PCB Stack-Up 123 4.2.3 Wideband Tandem Coupler Design 124 4.2.4 Off-chip Bypass Layout 130 4.2.5 Simulation Results 131 4.3 Measurement Results 144 4.3.1 Quadrature Coupler Measurement Results 145 4.3.2 CPWG-to-stripline Transition Measurement Results 148 4.3.3 CPWG Transmission Line and End-launch Connectors Measurement Results 149 4.3.4 Heat Dissipation Design 152 4.3.5 Balanced Amplifier Measurement Results 154 4.3.6 Discussion 159 4.4 Summary 160 Chapter 5 Conclusions 161 REFERENCE 163 | - |
dc.language.iso | en | - |
dc.title | 2-6 GHz氮化鎵功率放大器積體電路與模組之研究 | zh_TW |
dc.title | Research on 2-6 GHz GaN Power Amplifier Integrated Circuits and Modules | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蔡作敏;蔡政翰;張鴻埜;高堃堯 | zh_TW |
dc.contributor.oralexamcommittee | Zuo-Min Tsai;Jeng-Han Tsai;Hong-Yeh Chang;Kun-Yao Kao | en |
dc.subject.keyword | 氮化鎵,功率放大器,高功率,寬頻,2-6 GHz頻段,模組, | zh_TW |
dc.subject.keyword | GaN,Power Amplifier,High-Power Amplifier (HPA),wideband,2-6GHz,module, | en |
dc.relation.page | 165 | - |
dc.identifier.doi | 10.6342/NTU202402973 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-08 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電信工程學研究所 | - |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 7.91 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。