請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94761完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳忠幟 | zh_TW |
| dc.contributor.advisor | Chung-chih Wu | en |
| dc.contributor.author | 呂嘉偉 | zh_TW |
| dc.contributor.author | Chia-Wei Lu | en |
| dc.date.accessioned | 2024-08-19T16:10:27Z | - |
| dc.date.available | 2024-08-20 | - |
| dc.date.copyright | 2024-08-19 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | 參考文獻
[1] Jiang, H. X., & Lin, J. Y. (2000). 12 μm micro-LEDs. Applied Physics Letters, 76(25), 3835-3837. [2] Li, Y., Zhang, S., Liu, Z., & Wang, X. (2015). High efficiency sub-millimeter micro-LEDs with sizes between 100-200 micrometers. Optics Express, 23(20), 26098-26108. [3] Roh, Y. S., Kim, S. W., & Park, J. H. (2018). High-contrast, high-stability, and long-lifetime micro-LED displays for advanced applications. Journal of Display Technology, 14(5), 437-443. [4] Wu, T., Sher, C. W., Lin, Y., Lee, C. F., Liang, S., Lu, Y., ... & Kuo, H. C. (2018). Mini-LED and Micro-LED: Promising candidates for the next generation display technology. Applied Sciences, 8(9), 1557. [5] Kitai, A. (2011). Principles of solar cells, LEDs and diodes: The role of the PN junction. John Wiley & Sons. [6] Feng, M., Lv, Z., Wang, F., Gong, X., Wang, Y., Wang, S., ... & Wang, J. (2020). High-efficiency blue and green micro-LEDs based on InGaN microstructure arrays with different quantum well arrangements. Applied Physics Letters, 117(5), 051104. [7] Zhang, S., Zhang, L., Wang, C., Wu, M., Liu, Z., & Wang, X. (2019). High-efficiency micro-LEDs with optimized texture structures. Optics Express, 27(24), 34637-34647. [8] Li, Q., Zeng, Q., Shi, L., Zhang, X., & Zhang, K.-Q. (2016). Bio-inspired sensors based on photonic structures of Morpho butterfly wings: A review. Journal of Materials Chemistry C, 4(6), 1752-1763. [9] Khorasaninejad, M., Shi, Z., Zhu, A. Y., Chen, W. T., Sanjeev, V., Zaidi, A., & Capasso, F. (2017). Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Letters, 17(3), 1819-1825. [10] Chen, T.-A., Chou, Y.-C., Huang, T.-Y., Lu, Y.-J., Kuang, Y.-P., & Yen, T.-J. (2022). TiO2 nanodisk arrays as all-dielectric Huygens’ metasurfaces for engineering the wavefront of near-UV light. ACS Applied Nano Materials, 5(1), 925-930. [11] Back, J., Wong, M. S., DenBaars, S. P., Weisbuch, C., & Nakamura, S. (2021). High efficiency blue InGaN microcavity light-emitting diode with a 205nm ultra-short cavity. Applied Physics Letters, 118(3), 031102. [12] Huang, J., Tang, M., Zhou, B., Liu, Z., Yi, X., Wang, J., Li, J., Pan, A., & Wang, L. (2022). GaN-based resonant cavity micro-LEDs for AR application. Applied Physics Letters, 121(20), 201104. [13] Chang, S. H., Yoo, S. W., Lee, J. S., & Lee, J. L. (2016). Crosstalk analysis of micro-LED arrays for high resolution display. Journal of the Society for Information Display, 24(8), 473-479. [14] Lee, W. K. (2018), Investigation of emission theories of organic light-emitting materials and devices, and their applications in emitting material analyses and high-efficiency device designs. PhD Thesis, National Taiwan University. [15] Veach, E. (1997). Robust Monte Carlo Methods for Light Transport Simulation. PhD Thesis, Stanford University. [16] Chen, B.-T., & Pan, J.-W. (2018). High-efficiency directional backlight design for an automotive display. Applied Optics, 57(17), 4386-4395. [17] Luo, Y., Tseng, M. L., Vyas, S., Kuo, H. Y., Chu, C. H., Chen, M. K., Lee, H. C., Chen, W. P., Su, V. C., Shi, X., Misawa, H., Tsai, D. P., & Yang, P. C. (2022). Metasurface-based abrupt autofocusing beam for biomedical applications. Small Methods, 6(4), 2101228. [18] Chu, C. H., Chia, Y. H., Hsu, H. C., Vyas, S., Tsai, C. M., Yamaguchi, T., Tanaka, T., Chen, H. W., Luo, Y., Yang, P. C., & Tsai, D. P. (2023). Intelligent phase contrast meta-microscope system. Nano Letters, 23(12), 11630-11635. [19] Liu, Y., Zhang, D., Li, W., & Zhang, S. (2021). Generalized Snell's law for metasurfaces with phase discontinuities. Journal of Optics, 23(4), 045102. [20] Yee, K. S. (1966). Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3), 302-307. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94761 | - |
| dc.description.abstract | 本論文主要探討車用顯示器及生醫影像應用中的光場需求,針對微型發光二極體與自聚焦超穎介面元件進行研究。首先,在車用顯示器的部分,透過基於微共振腔結合微共振腔設計的微型發光二極體,並搭配分佈式布拉格反射器(DBR)進行光場準直設計, 最後選定微透鏡曲率以及像素填充材折射率進行調節光場發散。
在生醫影像應用方面,針對自聚焦超穎透鏡的相位需求,進行模擬與製程,利用Rsoft軟體中 FDTD模擬選取最佳的相位覆蓋及穿透率,並選用TiO2材料進行製作,透過實際製程結果量測,在綠光與藍光中,超穎介面具有較低的雜訊及良好的穿透率,證實了其在自聚焦超穎介面應用中的效益。 本研究驗證了微型發光二極體與自聚焦超穎透鏡在車用顯示器和生醫影像應用中的可行性及優勢,為未來相關領域發展提供了重要參考。 | zh_TW |
| dc.description.abstract | This thesis primarily explores the optical field requirements in automotive displays and biomedical imaging applications, focusing on micro-LEDs and abrupt autofocusing metasurfaces. Firstly, for automotive displays, micro-LEDs designed with microcavities, microlens and paired with Distributed Bragg Reflectors (DBR) were employed to achieve collimated light fields. Further adjustments of light field divergence were made using selected micro-lens curvatures and reflective indexes of pixel fill material.
In the biomedical imaging application, simulations and fabrication processes were conducted to meet the phase requirements of abrupt autofocusing metalenses. Using Rsoft FDTD simulations, optimal phase coverage and transmittance were selected, and TiO2 was chosen for fabrication due to its lower absorption in the visible spectrum. Measurement results from the fabricated metasurfaces demonstrated low noise and good transmittance in both green and blue light, confirming their effectiveness in self-focusing applications. This study validates the feasibility and advantages of micro-LEDs and self-focusing metalenses in automotive display and biomedical imaging applications, providing valuable references for future developments in these fields. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T16:10:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-19T16:10:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員審定書 I 謝辭 II 摘要 III Abstract IV 目次 V 圖次 VII 表次 IX 第一章 緒論 1 1.1 微型發光二極體簡介 1 1.2 薄膜光學簡介 3 1.3 傳統透鏡與平面超穎透鏡簡介 5 1.4 研究動機與論文結構 6 第一章圖表 8 第二章 單向準直之微型發光二極體 11 2.1 前言 11 2.2 單向準直微型發光二極體設計之結構與概念 11 2.3 模擬方法 13 2.3.1 電磁模擬 13 2.3.2 光線追跡法 14 2.4 結果與討論 15 第二章圖表 18 第三章 用於自聚焦生醫影像用途之二氧化鈦超穎介面研究 26 3.1 前言 26 3.2 超穎介面模擬設計 26 3.2.1 廣義斯乃爾定律 26 3.2.2 時域有限差分法模擬 27 3.3 超穎透鏡製作分析 29 3.3.1 超穎透鏡製作 29 3.3.2 量測系統架設與結果分析 33 第三章圖表 36 第四章 總結 48 4.1 總結 48 參考文獻 49 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 單向準直 | zh_TW |
| dc.subject | 微型發光二極體 | zh_TW |
| dc.subject | 自聚焦超穎透鏡 | zh_TW |
| dc.subject | 微共振腔 | zh_TW |
| dc.subject | Microcavity | en |
| dc.subject | Micro-LED | en |
| dc.subject | Unidirectional Collimation | en |
| dc.subject | Abrupt Autofocuing Metasurface | en |
| dc.title | 單向準直微型發光二極體顯示裝置與二氧化鈦超穎介面研究 | zh_TW |
| dc.title | Research on Unidirectional Collimated Micro LED Display Devices and Titanium Dioxide Metasurfaces | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳俐吟;蔡志宏 | zh_TW |
| dc.contributor.oralexamcommittee | Li-Yin Chen;Chih-Hung Tsai | en |
| dc.subject.keyword | 微共振腔,微型發光二極體,單向準直,自聚焦超穎透鏡, | zh_TW |
| dc.subject.keyword | Microcavity,Micro-LED,Unidirectional Collimation,Abrupt Autofocuing Metasurface, | en |
| dc.relation.page | 51 | - |
| dc.identifier.doi | 10.6342/NTU202403632 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2026-08-14 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 5.68 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
