請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94754
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 華筱玲 | zh_TW |
dc.contributor.advisor | Hsiao-Lin Hwa | en |
dc.contributor.author | 戴鳴謙 | zh_TW |
dc.contributor.author | Ming-Chien Tai | en |
dc.date.accessioned | 2024-08-16T18:00:12Z | - |
dc.date.available | 2024-08-17 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-09 | - |
dc.identifier.citation | 1. Boyle P, Maisonneuve P, Autier P. Update on cancer control in women. Int J Gynaecol Obstet. 2000 Aug;70(2):263–303.
2. Yang C, Xia BR, Zhang ZC, Zhang YJ, Lou G, Jin WL. Immunotherapy for Ovarian Cancer: Adjuvant, Combination, and Neoadjuvant. Front Immunol. 2020;11:577869. 3. Chiang YC, Chen CA, Chiang CJ, Hsu TH, Lin MC, You SL, et al. Trends in incidence and survival outcome of epithelial ovarian cancer: 30-year national population-based registry in Taiwan. J Gynecol Oncol. 2013 Oct;24(4):342–51. 4. Asa SL. Tumors of the ovary, maldeveloped gonads, fallopian tube and broad ligament. Clinical Endocrinology. 1999;51(5):671–671. 5. Sambasivan S. Epithelial ovarian cancer: Review article. Cancer Treatment and Research Communications. 2022 Jan 1;33:100629. 6. O’Shea AS. Clinical Staging of Ovarian Cancer. Methods Mol Biol. 2022;2424:3–10. 7. Atallah GA, Abd. Aziz NH, Teik CK, Shafiee MN, Kampan NC. New Predictive Biomarkers for Ovarian Cancer. Diagnostics (Basel). 2021 Mar 7;11(3):465. 8. Rustin GJ. Tumour markers for ovarian cancer. Eur J Cancer. 1992;28(1):2–3. 9. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57(1):43–66. 10. Cannistra SA. Cancer of the ovary. N Engl J Med. 2004 Dec 9;351(24):2519–29. 11. Sato S, Itamochi H. Neoadjuvant chemotherapy in advanced ovarian cancer: latest results and place in therapy. Ther Adv Med Oncol. 2014 Nov;6(6):293–304. 12. Malkasian GD, Melton LJ, O’Brien PC, Greene MH. Prognostic significance of histologic classification and grading of epithelial malignancies of the ovary. Am J Obstet Gynecol. 1984 Jun 1;149(3):274–84. 13. Swenerton KD, Hislop TG, Spinelli J, LeRiche JC, Yang N, Boyes DA. Ovarian carcinoma: a multivariate analysis of prognostic factors. Obstet Gynecol. 1985 Feb;65(2):264–70. 14. Andreou M, Kyprianidou M, Cortas C, Polycarpou I, Papamichael D, Kountourakis P, et al. Prognostic Factors Influencing Survival in Ovarian Cancer Patients: A 10-Year Retrospective Study. Cancers. 2023 Jan;15(24):5710. 15. Suryadevara CM, Gedeon PC, Sanchez-Perez L, Verla T, Alvarez-Breckenridge C, Choi BD, et al. Are BiTEs the “missing link” in cancer therapy? Oncoimmunology. 2015 Apr 30;4(6):e1008339. 16. Yigit R, Massuger LFAG, Figdor CG, Torensma R. Ovarian cancer creates a suppressive microenvironment to escape immune elimination. Gynecol Oncol. 2010 May;117(2):366–72. 17. Tomsová M, Melichar B, Sedláková I, Steiner I. Prognostic significance of CD3+ tumor-infiltrating lymphocytes in ovarian carcinoma. Gynecol Oncol. 2008 Feb;108(2):415–20. 18. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003 Jan 16;348(3):203–13. 19. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004 Sep;10(9):942–9. 20. Ioannides CG, Platsoucas CD, Rashed S, Wharton JT, Edwards CL, Freedman RS. Tumor cytolysis by lymphocytes infiltrating ovarian malignant ascites. Cancer Res. 1991 Aug 15;51(16):4257–65. 21. Reuschenbach M, von Knebel Doeberitz M, Wentzensen N. A systematic review of humoral immune responses against tumor antigens. Cancer Immunol Immunother. 2009 Jun 28;58(10):1535–44. 22. Yuen GJ, Demissie E, Pillai S. B lymphocytes and cancer: a love-hate relationship. Trends Cancer. 2016 Dec;2(12):747–57. 23. Gupta P, Chen C, Chaluvally-Raghavan P, Pradeep S. B Cells as an Immune-Regulatory Signature in Ovarian Cancer. Cancers (Basel). 2019 Jun 26;11(7):894. 24. Ammirante M, Luo JL, Grivennikov S, Nedospasov S, Karin M. B cell–derived lymphotoxin promotes castration-resistant prostate cancer. Nature. 2010 Mar 11;464(7286):302–5. 25. Griss J, Bauer W, Wagner C, Simon M, Chen M, Grabmeier-Pfistershammer K, et al. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat Commun. 2019 Sep 13;10:4186. 26. de Visser KE, Korets LV, Coussens LM. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell. 2005 May;7(5):411–23. 27. Dong HP, Elstrand MB, Holth A, Silins I, Berner A, Trope CG, et al. NK- and B-cell infiltration correlates with worse outcome in metastatic ovarian carcinoma. Am J Clin Pathol. 2006 Mar;125(3):451–8. 28. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011 Jan 7;331(6013):44–9. 29. Bryceson YT, Chiang SCC, Darmanin S, Fauriat C, Schlums H, Theorell J, et al. Molecular mechanisms of natural killer cell activation. J Innate Immun. 2011;3(3):216–26. 30. La Rocca G, Anzalone R, Bucchieri F, Farina F, Cappello F, Zummo G. CD1a and antitumour immune response. Immunology Letters. 2004 Aug 15;95(1):1–4. 31. Eisenthal A, Polyvkin N, Bramante–Schreiber L, Misonznik F, Hassner A, Lifschitz–Mercer B. Expression of dendritic cells in ovarian tumors correlates with clinical outcome in patients with ovarian cancer. Human Pathology. 2001 Aug 1;32(8):803–7. 32. Zhang X, He T, Li Y, Chen L, Liu H, Wu Y, et al. Dendritic Cell Vaccines in Ovarian Cancer. Front Immunol. 2020;11:613773. 33. Baecher-Allan C, Anderson DE. Regulatory cells and human cancer. Semin Cancer Biol. 2006 Apr;16(2):98–105. 34. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006 Jan 15;66(2):1123–31. 35. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol. 2004 Jan 15;172(2):989–99. 36. Liu C, Yu S, Kappes J, Wang J, Grizzle WE, Zinn KR, et al. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood. 2007 May 15;109(10):4336–42. 37. Pietzner K, Nasser S, Alavi S, Darb-Esfahani S, Passler M, Muallem MZ, et al. Checkpoint-inhibition in ovarian cancer: rising star or just a dream? J Gynecol Oncol. 2018 Nov;29(6):e93. 38. Hamanishi J, Mandai M, Ikeda T, Minami M, Kawaguchi A, Murayama T, et al. Safety and Antitumor Activity of Anti-PD-1 Antibody, Nivolumab, in Patients With Platinum-Resistant Ovarian Cancer. J Clin Oncol. 2015 Dec 1;33(34):4015–22. 39. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012 Mar 22;12(4):252–64. 40. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010 Sep 27;207(10):2187–94. 41. Chen YL, Lin HW, Chien CL, Lai YL, Sun WZ, Chen CA, et al. BTLA blockade enhances Cancer therapy by inhibiting IL-6/IL-10-induced CD19high B lymphocytes. J Immunother Cancer. 2019 Nov 21;7(1):313. 42. Sun WZ, Lin HW, Chen WY, Chien CL, Lai YL, Chen J, et al. Dual inhibition of BTLA and PD-1 can enhance therapeutic efficacy of paclitaxel on intraperitoneally disseminated tumors. J Immunother Cancer. 2023 Jul;11(7):e006694. 43. Ahamad MdM, Aktar S, Uddin MdJ, Rahman T, Alyami SA, Al-Ashhab S, et al. Early-Stage Detection of Ovarian Cancer Based on Clinical Data Using Machine Learning Approaches. J Pers Med. 2022 Jul 25;12(8):1211. 44. Belkina AC, Ciccolella CO, Anno R, Halpert R, Spidlen J, Snyder-Cappione JE. Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets. Nat Commun. 2019 Nov 28;10(1):5415. 45. Alvarez-Rueda N, Rouges C, Touahri A, Misme-Aucouturier B, Albassier M, Pape PL. In vitro immune responses of human PBMCs against Candida albicans reveals fungal and leucocyte phenotypes associated with fungal persistence. Sci Rep. 2020 Apr 10;10(1):6211. 46. Sacerdote P, Rubboli F, Locatelli L, Ciciliato I, Mantegazza P, Panerai AE. Pharmacological modulation of neuropeptides in peripheral mononuclear cells. J Neuroimmunol. 1991 Apr;32(1):35–41. 47. Mok SC, Chao J, Skates S, Wong K, Yiu GK, Muto MG, et al. Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. J Natl Cancer Inst. 2001 Oct 3;93(19):1458–64. 48. Scholler N, Fu N, Yang Y, Ye Z, Goodman GE, Hellström KE, et al. Soluble member(s) of the mesothelin/megakaryocyte potentiating factor family are detectable in sera from patients with ovarian carcinoma. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11531–6. 49. Xu Y, Shen Z, Wiper DW, Wu M, Morton RE, Elson P, et al. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA. 1998 Aug 26;280(8):719–23. 50. Kim JH, Skates SJ, Uede T, Wong K kwok, Schorge JO, Feltmate CM, et al. Osteopontin as a potential diagnostic biomarker for ovarian cancer. JAMA. 2002 Apr 3;287(13):1671–9. 51. Meyer T, Rustin GJ. Role of tumour markers in monitoring epithelial ovarian cancer. Br J Cancer. 2000 May;82(9):1535–8. 52. Huang CY, Cheng WF, Lee CN, Su YN, Chien SC, Tzeng YL, et al. Serum mesothelin in epithelial ovarian carcinoma: a new screening marker and prognostic factor. Anticancer Res. 2006;26(6C):4721–8. 53. Chen YL, Cheng WF, Chang MC, Lin HW, Huang CT, Chien CL, et al. Interferon-gamma in ascites could be a predictive biomarker of outcome in ovarian carcinoma. Gynecol Oncol. 2013 Oct;131(1):63–8. 54. Chen YL, Chou CY, Chang MC, Lin HW, Huang CT, Hsieh SF, et al. IL17a and IL21 combined with surgical status predict the outcome of ovarian cancer patients. Endocr Relat Cancer. 2015 Oct;22(5):703–11. 55. Pavicic PG, Rayman PA, Swaidani S, Rupani A, Makarov V, Tannenbaum CS, et al. Immunotherapy with IL12 and PD1/CTLA4 inhibition is effective in advanced ovarian cancer and associates with reversal of myeloid cell-induced immunosuppression. Oncoimmunology. 12(1):2198185. 56. Atkins MB, Robertson MJ, Gordon M, Lotze MT, DeCoste M, DuBois JS, et al. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res. 1997 Mar;3(3):409–17. 57. Cohen J. IL-12 deaths: explanation and a puzzle. Science. 1995 Nov 10;270(5238):908. 58. Messenheimer DJ, Jensen SM, Afentoulis ME, Wegmann KW, Feng Z, Friedman DJ, et al. Timing of PD-1 blockade is critical to effective combination immunotherapy with anti-OX40. Clin Cancer Res. 2017 Oct 15;23(20):6165–77. 59. Yi M, Niu M, Xu L, Luo S, Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol. 2021 Jan 7;14:10. 60. Barlow TS, Przybylski M, Schilder JM, Moore DH, Look KY. The utility of presurgical CA125 to predict optimal tumor cytoreduction of epithelial ovarian cancer. Int J Gynecol Cancer. 2006;16(2):496–500. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94754 | - |
dc.description.abstract | 目的:
卵巢癌在所有婦科惡性腫瘤中佔據最重要的地位,同時也是造成死亡的主要原因。卵巢癌的主要(標準)治療包括了減積手術及化療。由於早期無特異性症狀,因此診斷困難、腫瘤標記的準確度不夠與缺乏卵巢癌全面的腫瘤生物學資訊均導致了預後不良的情形。研究顯示宿主的免疫機制對癌症的進展以及預後有很重要的影響,並且近年對於表達免疫檢查點之免疫細胞的相關研究越來越多且深入。免疫檢查點已被證實與T細胞的表現和毒殺腫瘤的能力有高度相關,因此在預測病人預後狀況時可能會扮演重要的角色。本研究旨在了解病人的免疫細胞亞群上免疫檢查點表現與疾病預後狀況兩者之間的相關性,期望能找到能夠作為預測病人預後狀況的指標及改善免疫檢查點阻斷的使用。 方法: 本研究收集了69位上皮性卵巢癌患者之周邊血單核細胞(peripheral blood mononuclear cell, PBMCs),利用多色流式細胞儀收集數據與使用Flowjo軟體分析周邊血單核細胞中各免疫細胞比例以及免疫檢查點的表現量,再藉由軟體內模組及演算法將細胞進行分群,篩選出潛在之免疫細胞亞群後觀察和病人預後之間的關聯性。卵巢癌患者依臨床資料分為三組: 初次治療完成後6個月內復發(≤ 6個月)、初次治療完成後6個月後復發(> 6個月)及從未復發,先利用復發時間≤ 6個月和從未復發兩組病人比較,尋找出具統計意義之免疫細胞亞群後,在復發時間> 6個月組別中進行與臨床病理特徵和存活情況(包括無疾病存活期DFS和整體存活期OS)的相關性分析。 結果: 經分析後篩選出具統計意義之免疫細胞亞群包括 CD3+CD4+BTLA+PD-1+、CD3+CD8+PD-1+、CD56+HVEM+TIM-3+CTLA-4+細胞,接著透過分析篩選出來的細胞亞群與初次治療完成後6個月後復發之患者的無疾病存活期和整體存活期之間的相關性,得到結果為在整體淋巴細胞中被篩選出來的細胞亞群比例和患者的DFS及OS沒有觀察到顯著關聯;但若進一步將CD3+CD4+T細胞群中CD3+CD4+BTLA+PD-1+細胞亞群的比例與整體存活期做相關性分析時,能觀察到負相關的結果;將CD56+自然殺手細胞群中CD56+HVEM+TIM-3+CTLA-1+細胞亞群的比例與無疾病存活期做相關性分析時,則可以觀察到正相關的結果。 結論: 上皮性卵巢癌患者若是在其周邊血單核細胞中具有較高的CD3+CD4+BTLA+PD-1+細胞亞群比例,就有可能會有較短的整體存活期;若有較高的CD56+HVEM+TIM-3+CTLA-4+細胞亞群比例則有可能會有較長的無疾病存活期。因此,利用高參數流式細胞儀技術區分出之病人免疫細胞亞群對於卵巢癌治療來說,是一個具有發展潛力的預後因子及用以評估標靶治療可行性的指標。 | zh_TW |
dc.description.abstract | Objectives: Epithelial ovarian cancer (EOC) holds a crucial position among all gynecologic malignancies and is also a leading cause of death. The primary (standard) treatment of ovarian cancer includes cytoreductive surgery and chemotherapy. The lack of specific early symptoms makes diagnosis challenging, and the insufficient accuracy of tumor markers and lack of comprehensive tumor biology information of disease contribute to poor prognosis. Studies have shown that the host immune mechanisms have a significant impact on cancer progression and prognosis. In recent years, research on immune cells expressing immune checkpoints has become increasingly extensive and in-depth. Immune checkpoints have been proven to be highly correlated with tumor-killing ability of T cells, and may play an important role on predicting patient prognosis. This study aims to investigate the correlation between the expression of immune checkpoints on the subsets of immune cell and patient prognosis, proposing to validate the novel subsets for predict patient outcomes and optimize the usage of immune checkpoint blockade.
Methods: Peripheral blood mononuclear cells (PBMCs) from 69 patients with epithelial ovarian cancer was collected for this study. Flowcytometric data was collected using multicolor flow cytometry and then analyzed with FlowJo software to determine the proportions of various immune cells and the expression levels of immune checkpoints in PBMCs. Additionally, the software's modules and algorithms were used to cluster cells and identify potential immune cell subsets, which were then examined for their relationship with patient prognosis. The ovarian cancer patients were divided into three groups based on clinical data: recurrence within 6 months of completion of primary treatment (≤ 6 months), recurrence after 6 months of completion of primary treatment (>6 months), and no recurrence. Initially, a comparison was made between the groups with recurrence within 6 months and those with no recurrence to identify statistically significant immune cell subsets. Subsequently, the group with recurrence after 6 months was analyzed for correlations with clinical pathological characteristics and survival outcomes, including disease-free survival (DFS) and overall survival (OS). Result: There were three immune cell subsets were identified including CD3+CD4+BTLA+PD-1+, CD3+CD8+PD-1+, and CD56+HVEM+TIM-3+CTLA-4+ cells. The correlation between these validated subsets and the DFS or OS of patients with a recurrence after 6 months of completion of primary treatment was analyzed. The results showed no significant correlation between these validated cell subsets in total lymphocytes and the DFS and OS of patients. However, when further analyzing the correlation between the CD3+CD4+BTLA+PD-1+ subset in the CD3+CD4+ T cell population and patient OS, a negative correlation was observed. In addition, a positive correlation was noted between the CD56+HVEM+TIM-3+CTLA-4+ subset in the CD56+ natural killer cell population and patient DFS. Conclusion: EOC patients with a higher proportion of CD3+CD4+BTLA+PD-1+ cell subsets in their PBMCs may experience shorter OS. However, those with a higher proportion of CD56+HVEM+TIM-3+CTLA-4+ cell subsets may have longer DFS. Therefore, utilizing high-parameter flow cytometry to validate immune cell subsets in patients holds significant potential as a prognostic factor and as an indicator for evaluating the feasibility of immune checkpoint blockade for EOC treatment. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T18:00:12Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T18:00:12Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iv 英文摘要 v 圖次 ix 表次 x 第一章 序言 1 1.1上皮性卵巢癌 1 1.2宿主免疫系統與卵巢癌的關係 2 1.3卵巢癌中的免疫檢查點阻斷治療 3 1.4高參數流式細胞儀技術 4 第二章 材料與方法 6 第三章 實驗結果 9 第四章 結果與討論 14 參考文獻 18 | - |
dc.language.iso | zh_TW | - |
dc.title | 探討晚期卵巢癌病人周邊血內免疫細胞亞群之臨床意義與角色 | zh_TW |
dc.title | Investigating the clinical significance and role of peripheral blood immune cell subsets in patients with advanced ovarian cancer. | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 陳宇立 | zh_TW |
dc.contributor.coadvisor | Yu-Li Chen | en |
dc.contributor.oralexamcommittee | 黃楚珺;陳婉瑜 | zh_TW |
dc.contributor.oralexamcommittee | Chu-Chun Huang;Wan-Yu Chen | en |
dc.subject.keyword | 上皮性卵巢癌,免疫細胞亞群,免疫檢查點,多色流式細胞儀,t-隨機鄰近嵌入法, | zh_TW |
dc.subject.keyword | epithelial ovarian cancer,immune cell subsets,immune checkpoints,multicolor flow cytometry,t-Stochastic Neighbor Embedding (t-SNE), | en |
dc.relation.page | 52 | - |
dc.identifier.doi | 10.6342/NTU202401568 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-07-09 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 分子醫學研究所 | - |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.13 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。