Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94750
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳瑞菁zh_TW
dc.contributor.advisorJui-Ching Wuen
dc.contributor.author孫里葶zh_TW
dc.contributor.authorLi-Ting Sunen
dc.date.accessioned2024-08-16T17:58:58Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-07-14-
dc.identifier.citationEisenberg, M.L., et al., Male infertility. Nature Reviews Disease Primers, 2023. 9(1).
Ohkura, H., Meiosis: An Overview of Key Differences from Mitosis. Cold Spring Harbor Perspectives in Biology, 2015. 7(5): p. a015859.
Biswas, L., et al., Meiosis interrupted: the genetics of female infertility via meiotic failure. Reproduction, 2021. 161(2): p. R13-R35.
Verlhac, M.-H. and M.-E. Terret, Oocyte Maturation and Development. F1000Research, 2016. 5: p. 309.
Nishimura, H. and S.W. L’Hernault, Spermatogenesis. Current Biology, 2017. 27(18): p. R988-R994.
Chu, D.S., et al., Sperm chromatin proteomics identifies evolutionarily conserved fertility factors. Nature, 2006. 443(7107): p. 101-105.
Griswold, M.D., Spermatogenesis: The Commitment to Meiosis. Physiological Reviews, 2016. 96(1): p. 1-17.
Kadyk, L.C. and J. Kimble, Genetic regulation of entry into meiosis in Caenorhabditis elegans. Development, 1998. 125(10): p. 1803-1813.
Hubbard, E.J.A. and D. Greenstein, TheCaenorhabditis elegans gonad: A test tube for cell and developmental biology. Developmental Dynamics, 2000. 218(1): p. 2-22.
Shakes, D.C., et al., Spermatogenesis-Specific Features of the Meiotic Program in Caenorhabditis elegans. PLoS Genetics, 2009. 5(8): p. e1000611.
Jaramillo-Lambert, A., et al., Differential timing of S phases, X chromosome replication, and meiotic prophase in the C. elegans germ line. Developmental Biology, 2007. 308(1): p. 206-221.
McKee, B.D., R. Yan, and J.-H. Tsai, Meiosis in male Drosophila. Spermatogenesis, 2012. 2(3): p. 167-184.
Hamer, G., et al., Disruption of pairing and synapsis of chromosomes causes stage-specific apoptosis of male meiotic cells. Theriogenology, 2008. 69(3): p. 333-339.
Jan, S.Z., et al., Distinct prophase arrest mechanisms in human male meiosis. Development, 2018. 145(16): p. dev160614.
Fichelson, P. and J.-R. Huynh, Asymmetric Divisions of Germline Cells. 2007, Springer Berlin Heidelberg. p. 97-120.
Lascarez-Lagunas, L.I., et al., ATM/ATR kinases link the synaptonemal complex and DNA double-strand break repair pathway choice. Curr Biol, 2022. 32(21): p. 4719-4726 e4.
Yamaya, K., et al., Disparate roles for C. elegans DNA translocase paralogs RAD-54.L and RAD-54.B in meiotic prophase germ cells. Nucleic Acids Research, 2023. 51(17): p. 9183-9202.
Kim, H.J., et al., MJL-1 is a nuclear envelope protein required for homologous chromosome pairing and regulation of synapsis during meiosis in C. elegans. Science Advances, 2023. 9(6).
Chu, D.S. and D.C. Shakes, Spermatogenesis. 2013, Springer New York. p. 171-203.
Abe, K.-I., et al., Minor zygotic gene activation is essential for mouse preimplantation development. Proceedings of the National Academy of Sciences, 2018. 115(29): p. E6780-E6788.
Belew, M.D., E. Chien, and W.M. Michael, Characterization of factors that underlie transcriptional silencing in C. elegans oocytes. PLOS Genetics, 2023. 19(7): p. e1010831.
Navarro-Costa, P., et al., Early programming of the oocyte epigenome temporally controls late prophase I transcription and chromatin remodelling. Nature Communications, 2016. 7(1): p. 12331.
Das, N.K., E.P. Siegel, and M. Alfert, Syntetic activities during spermatogenesis in the locust. The Journal of Cell Biology, 1965. 25(2): p. 387-395.
Kulkarni, M., et al., SPE-44 Implements Sperm Cell Fate. PLoS Genetics, 2012. 8(4): p. e1002678.
Chien, E.M., WM, Transcriptional repression during spermatogenesis in C. elegans requires TOP-2, condensin II, and the MET-2 H3K9 methyltransferase. microPublication Biology, 2023.
Bogolyubov, D.S., Karyosphere (Karyosome): A Peculiar Structure of the Oocyte Nucleus. Int Rev Cell Mol Biol, 2018. 337: p. 1-48.
Bogolyubova, I., D. Salimov, and D. Bogolyubov, Chromatin Configuration in Diplotene Mouse and Human Oocytes during the Period of Transcriptional Activity Extinction. International Journal of Molecular Sciences, 2023. 24(14): p. 11517.
Blackman, M.W. The Spermatogenesis of the Myriapods. IV. On the Karyosphere and Nucleolus in the Spermatocytes of Scolopendra subspinipes. in Proceedings of the American Academy of Arts and Sciences. 1905. JSTOR.
Lancaster, O.M., C.F. Cullen, and H. Ohkura, NHK-1 phosphorylates BAF to allow karyosome formation in the Drosophila oocyte nucleus. The Journal of Cell Biology, 2007. 179(5): p. 817-824.
Foster, J.A. and G.L. Gerton, The Acrosomal Matrix. 2016, Springer International Publishing. p. 15-33.
Roberts, T.M., F.M. Pavalko, and S. Ward, Membrane and cytoplasmic proteins are transported in the same organelle complex during nematode spermatogenesis. The Journal of cell biology, 1986. 102(5): p. 1787-1796.
Yasuno, Y., et al., Distribution and morphological changes of the Golgi apparatus during Drosophila spermatogenesis. Development, Growth & Differentiation, 2013. 55(6): p. 635-647.
Singaravelu, G. and A. Singson, Chapter six - New Insights into the Mechanism of Fertilization in Nematodes, in International Review of Cell and Molecular Biology, K.W. Jeon, Editor. 2011, Academic Press. p. 211-238.
Price, K.L., et al., The intrinsically disordered protein SPE-18 promotes localized assembly of MSP in Caenorhabditis elegans spermatocytes. Development, 2021. 148(5).
Arduengo, P.M., et al., The presenilin protein family member SPE-4 localizes to an ER/Golgi derived organelle and is required for proper cytoplasmic partitioning during Caenorhabditis elegans spermatogenesis. Journal of Cell Science, 1998. 111(24): p. 3645-3654.
Ragle, J.M., et al., The conserved molting/circadian rhythm regulator NHR-23/NR1F1 serves as an essential co-regulator of C. elegans spermatogenesis. Development, 2020. 147(22): p. dev193862.
Ragle, J.M., et al., NHR-23 and SPE-44 regulate distinct sets of genes during Caenorhabditis elegans spermatogenesis. G3 Genes|Genomes|Genetics, 2022. 12(11).
Zhu, G.-D., et al., SPE-39 Family Proteins Interact with the HOPS Complex and Function in Lysosomal Delivery. Molecular Biology of the Cell, 2009. 20(4): p. 1223-1240.
Machaca, K. and S.W. L'Hernault, The Caenorhabditis elegans spe-5 Gene Is Required for Morphogenesis of a Sperm-Specific Organelle and Is Associated With an Inherent Cold-Sensitive Phenotype. Genetics, 1997. 146(2): p. 567-581.
Varkey, J.P., et al., The Caenorhabditis elegans spe-6 gene is required for major sperm protein assembly and shows second site non-complementation with an unlinked deficiency. Genetics, 1993. 133(1): p. 79-86.
陳宇豪, 以線蟲為模型探討在精子生成過程中兩次減數分裂之間過渡時期的表徵. 2021, 國立臺灣大學. p. 1-76.
陳思妤, 時序性新生蛋白合成調節雄性減數分裂的進程. 2023, 國立臺灣大學. p. 1-77.
Sun, F., K. Palmer, and M.A. Handel, Mutation of Eif4g3, encoding a eukaryotic translation initiation factor, causes male infertility and meiotic arrest of mouse spermatocytes. Development, 2010. 137(10): p. 1699-1707.
Hernández, G., et al., Eukaryotic initiation factor 4E-3 is essential for meiotic chromosome segregation, cytokinesis and male fertility in Drosophila. Development, 2012. 139(17): p. 3211-3220.
Ghosh, S. and P. Lasko, Loss-of-Function Analysis Reveals Distinct Requirements of the Translation Initiation Factors eIF4E, eIF4E-3, eIF4G and eIF4G2 in Drosophila Spermatogenesis. PLOS ONE, 2015. 10(4): p. e0122519.
Henderson, M.A., et al., A germline-specific isoform of eIF4E (IFE-1) is required for efficient translation of stored mRNAs and maturation of both oocytes and sperm. Journal of Cell Science, 2009. 122(10): p. 1529-1539.
Luitjens, C., et al., CPEB proteins control two key steps in spermatogenesis in C. elegans. Genes Dev, 2000. 14(20): p. 2596-609.
Chang, J.S., L. Tan, and P. Schedl, The Drosophila CPEB Homolog, Orb, Is Required for Oskar Protein Expression in Oocytes. Developmental Biology, 1999. 215(1): p. 91-106.
Fang, J. and D.A. Lerit, Orb-dependent polyadenylation contributes to PLP expression and centrosome scaffold assembly. Development, 2022. 149(13).
Huang, Y.-S., et al., CPEB and translational control by cytoplasmic polyadenylation: impact on synaptic plasticity, learning, and memory. Molecular Psychiatry, 2023. 28(7): p. 2728-2736.
Radford, H.E., H.A. Meijer, and C.H. de Moor, Translational control by cytoplasmic polyadenylation in Xenopus oocytes. Biochim Biophys Acta, 2008. 1779(4): p. 217-29.
Montgomery, M.K., S. Xu, and A. Fire, RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 1998. 95(26): p. 15502-15507.
Timmons, L., Delivery Methods for RNA Interference in C. elegans. Humana Press. p. 119-126.
Ashley, G.E., et al., An expanded auxin-inducible degron toolkit for Caenorhabditis elegans. Genetics, 2021. 217(3).
邱雅貞, 以線蟲為模型探討雄性減數分裂特異性CPEB調控蛋白CPB-1在精子生成過程扮演的角色, in 醫學檢驗暨生物技術學研究所. 2022, 國立臺灣大學. p. 1-62.
Hu, J., et al., Distinct roles of two myosins in C. elegans spermatid differentiation. PLOS Biology, 2019. 17(4): p. e3000211.
Duerr, J.S., Antibody Staining in C. Elegans Using "Freeze-Cracking". Journal of Visualized Experiments, 2013(80).
林怡秀, 利用線蟲為模型探討PP1去磷酸酶GSP-1與GSP-2在雄性減數分裂中染色體分離的角色, in 醫學檢驗暨生物技術學研究所. 2016, 國立臺灣大學. p. 1-56.
Hsu, J.-Y., et al., Mitotic Phosphorylation of Histone H3 Is Governed by Ipl1/aurora Kinase and Glc7/PP1 Phosphatase in Budding Yeast and Nematodes. Cell, 2000. 102(3): p. 279-291.
Kondo, T. and A. Kimura, Impaired chromosome segregation results in sperms with excess centrosomes in emb-27 APC6 mutant C. elegans. 2018, Cold Spring Harbor Laboratory.
Gorjánácz, M., et al., Caenorhabditis elegans BAF-1 and its kinase VRK-1 participate directly in post-mitotic nuclear envelope assembly. The EMBO Journal, 2007. 26(1): p. 132-143.
Flora, P., et al., Role of Chromatin Modifications in Drosophila Germline Stem Cell Differentiation. 2017, Springer International Publishing. p. 1-30.
Park, J.-A., et al., Deacetylation and Methylation at Histone H3 Lysine 9 (H3K9) Coordinate Chromosome Condensation during Cell Cycle Progression. Molecules and Cells, 2011. 31(4): p. 343-350.
Cornes, E., et al., piRNAs initiate transcriptional silencing of spermatogenic genes during C. elegans germline development. Developmental Cell, 2022. 57(2): p. 180-196.e7.
Mazzetto, M., et al., Characterization of the distribution and dynamics of chromatin states in the C. elegans germline reveals substantial H3K4me3 remodeling during oogenesis. Genome Research, 2024. 34(1): p. 57-69.
Schedl, T. and J. Kimble, fog-2, a germ-line-specific sex determination gene required for hermaphrodite spermatogenesis in Caenorhabditis elegans. Genetics, 1988. 119(1): p. 43-61.
Depina, A.S. and G.M. Langford, Vesicle transport: The role of actin filaments and myosin motors. Microscopy Research and Technique, 1999. 47(2): p. 93-106.
Varkey, J.P., et al., The Caenorhabditis elegans spe-26 gene is necessary to form spermatids and encodes a protein similar to the actin-associated proteins kelch and scruin. Genes & Development, 1995. 9(9): p. 1074-1086.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94750-
dc.description.abstract晚期成精作用代表了精細胞從減數分裂前期轉入中期,並得以進行分裂的階段。在這個轉變過程中,染色體和細胞質組件經歷廣泛的重新排列。雄性特有的轉譯調節因子CPB-1在粗線期的細胞質中高度表達。為了研究CPB-1在雄性生育中的功能,我們產生了一個可誘導降解CPB-1的線蟲株,以達成特定條件下的CPB-1降解。
在缺乏CPB-1的情況下,形成了初級精母細胞,但未能繼續進行分裂。對性腺的形態進行檢查顯示,CPB-1的缺乏不影響一般粗線期的染色體排列。然而,精元細胞核未能形成核小體,這是在初級精母細胞形成之前實現轉錄沉默的階段。此外,CPB-1缺失的初級精母細胞表現出轉錄活性。
我們的研究結果表明,CPB-1通過調節核小體階段的形成,在轉錄沉默中發揮作用。此外,CPB-1缺失的精原細胞缺乏細胞質顆粒,並表現出空泡狀結構,表明細胞膜胞器的異常。支持這一點的是,在缺乏CPB-1的情況下,精子特異性胞器纖維體-膜細胞器複合體(FB-MO)的結構出現高度混亂。FB-MO中的主要物質MSP蛋白有顯著的減少,並且混亂的MO結構與類似空泡的結構共定位。
綜上所述,CPB-1調控了成精作用的兩個方面的關鍵因子的轉譯:首先,調控生成核小體階段,以在形成初級精母細胞之前實現轉錄沉默;其次,在細胞質中組裝精子特異性胞器FB-MO。這些發現表明CPB-1在男性生育中參與了關鍵作用。
zh_TW
dc.description.abstractLate spermatogenesis represents a stage at which the spermatogenic cells transition into the M phase and are committed for division. During this transition, chromosomes and cytoplasmic components undergo extensive rearrangement. The male-specific translation regulator CPB-1 is highly expressed in the cytoplasm during the pachytene spermatogenic germline stage. To investigate the function of CPB-1 in male fertility, we generated an inducible CPB-1 degradation strain to enable controlled CPB-1 depletion.
In the absence of CPB-1, primary spermatocytes were formed but failed to progress to division. Examination of germline morphology revealed that CPB-1 depletion did not affect the general early pachytene chromosome arrangement. However, spermatogenic nuclei failed to form the karyosome, a stage that allows transcription silencing before primary spermatocyte formation. Furthermore, CPB-1-depleted primary spermatocytes exhibited transcriptional activity.
Our findings suggest that CPB-1 plays a role in transcriptional silencing by regulating the formation of the karyosome stage. Additionally, CPB-1-depleted spermatocytes lacked cytoplasmic granules and exhibited vacuole-like structures, indicating disorganization of cellular membranous organelles. Supporting this, the sperm-specific organelle FB-MO was highly disorganized in the absence of CPB-1. The levels of MSP, a major cargo in FB-MO, were severely reduced, and the disorganized MO structures colocalized with vacuole-like structures.
In summary, CPB-1 controls the translation of key regulators in two critical aspects of spermatogenesis: first, the formation of the karyosome stage to achieve transcriptional silence before primary spermatocyte formation; second, the assembly of the sperm-specific organelle FB-MO in the cytoplasm. These findings highlight the crucial role of CPB-1 in male fertility.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:58:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:58:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
Table of contents v
Chapter 1-Introduction 1
1.1 The role of spermatogenesis in infertility. 1
1.2 Caenorhabditis elegans serves as an ideal model for investigating spermatogenesis. 2
1.3 Prophase chromosome dynamics in C. elegans spermatocytes. 3
1.4 Spermatocytes undergo transcriptional silencing during karyosome formation. 5
1.5 The crucial role of sperm-specific organelle FB-MO in C. elegans spermatogenesis. 6
1.6 Nascent protein synthesis is required for spermatogenesis. 8
1.7 Male-specific translation factors are crucial for meiotic division in spermatogenesis. 9
1.8 CPB-1 plays a role in spermatogenesis through translation control. 11
1.9 The conditional CPB-1 depletion in male germline via the AID system. 12
1.10 CPB-1 depletion leads to meiotic arrest and abnormal primary spermatocyte morphology. 13
Chapter 2-Material and Method 15
2.1 Worm Strain 15
2.2 Worm Culture 15
2.3 KNAA Treatment 16
2.4 Immunoblot Assay 17
2.5 Time-lapse Live Image Microscopy 18
2.7 Quantification Method for Vacuole-Like Structures 19
2.8 Immunofluorescence Staining Assay 20
2.9 Post-pachytene cell in syncytial gonad (Rachis) count 22
2.10 Nascent RNA detection 22
Chapter 3-Result 24
3.1 CPB-1 depletion leads to chromosomal and cytoplasmic defects during primary spermatocytes development. 24
3.2 CPB-1-depleted primary spermatocytes exhibit M phase markers. 26
3.3 Transcription remains active in CPB-1 depleted primary spermatocytes. 28
3.4 Primary spermatocytes bud out at diplotene in CPB-1 depletion. 30
3.5 Transcriptional inhibition could not rescue the meiotic arrest caused by CPB-1 depletion. 32
3.6 The chromosome program during pachytene remains normal in CPB-1 depletion. 33
3.7 Vacuole-like structure formation correlates with duration of CPB-1 depletion. 35
3.8 Vacuole-like structure formation is not caused by meiotic arrest. 36
3.9 CPB-1 depletion causes disorganization of FB-MO structures. 37
3.10 The disorganized FB-MO structures cause vacuole-like structures formation in CPB-1 depletion. 38
Chapter 4-Discussion 41
4.1 The potential role of CPB-1 in karyosome formation in male germline. 42
4.2 The potential role of karyosome formation in C. elegans spermatogenesis. 43
4.3 Potential mechanisms of MSP downregulation in CPB-1 depleted spermatocytes. 45
4.4 Cytoplasmic implications of CPB-1 depletion in pachytene stage spermatocytes. 46
Figures 48
Figure 1: Model of hypothesis in this study. 49
Figure 2: 3xFLAG-CPB-1 in germline. 51
Figure 3: The phenotypes caused by CPB-1 Depletion. 53
Figure 4: Primary spermatocyte can enter the M phase but unable to divide. 56
Figure 5: CPB-1 depleted primary spermatocytes remain transcription activity 58
Figure 6: CPB-1 depleted primary spermatocytes bud out during Diplotene. 60
Figure 7: Transcriptional inhibition could not rescue the meiotic arrest caused by CPB-1 Depletion. 63
Figure 8: Chromosome program remains normal in CPB-1 depleted pachytene stage. 65
Figure 9: Vacuole-like structure formation correlates with duration of CPB-1 depletion. 67
Figure 10: Vacuole-like structure formation is not directly caused by meiotic arrest. 69
Figure 11: FB-MO structures disorganized in CPB-1 depletion. 71
Figure 12: The disorganized FB-MO structures cause vacuole-like structures formation in CPB-1 depletion. 74
Figure 13: Model of CPB-1 in spermatogenesis. 76
Tables 77
Table 1. Strains used in this study 77
Reference 78
-
dc.language.isoen-
dc.subject精子生成zh_TW
dc.subjectCPEBzh_TW
dc.subjectCPB-1zh_TW
dc.subject核小體生成zh_TW
dc.subject轉錄沉默zh_TW
dc.subject精子特異性胞器FB-MOzh_TW
dc.subjectCPEBen
dc.subjectKaryosome formationen
dc.subjectSpermatogenesisen
dc.subjectTranscriptional silencingen
dc.subjectCPB-1en
dc.subjectFB-MOen
dc.title雄性特異性轉譯調節因子CPB-1在線蟲精子生成中參與調控轉錄關閉和精子特異性胞器組成zh_TW
dc.titleMale-specific translation regulator CPB-1 regulates transcriptional silencing and sperm-specific organelle assembly in C. elegans spermatogenesis.en
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳師誠;賴韻如;蔡欣祐zh_TW
dc.contributor.oralexamcommitteeShih-Chen Wu;Yun-Ju Lai;Hsin-Yue Tsaien
dc.subject.keyword精子生成,CPEB,CPB-1,核小體生成,轉錄沉默,精子特異性胞器FB-MO,zh_TW
dc.subject.keywordSpermatogenesis,CPEB,CPB-1,Karyosome formation,Transcriptional silencing,FB-MO,en
dc.relation.page87-
dc.identifier.doi10.6342/NTU202401754-
dc.rights.note未授權-
dc.date.accepted2024-07-15-
dc.contributor.author-college醫學院-
dc.contributor.author-dept醫學檢驗暨生物技術學系-
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
3.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved