Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94746
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方偉宏zh_TW
dc.contributor.advisorWoei-horng Fangen
dc.contributor.author張惠嵐zh_TW
dc.contributor.authorHui-Lan Changen
dc.date.accessioned2024-08-16T17:57:25Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-07-03-
dc.identifier.citationReferences

1 Karas, M., Bachmann, D. & Hillenkamp, F. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Analytical Chemistry. 57 (14), 2935-2939, doi:10.1021/ac00291a042, (1985).
2 Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry. 60 (20), 2299-2301, doi:10.1021/ac00171a028, (1988).
3 Yates, J. R., 3rd. Mass spectrometry and the age of the proteome. J Mass Spectrom. 33 (1), 1-19, doi:10.1002/(sici)1096-9888(199801)33:1<1::Aid-jms624>3.0.Co;2-9, (1998).
4 Pareige, C., Lefebvre-Ulrikson, W., Vurpillot, F. & Sauvage, X. in Atom Probe Tomography eds Williams Lefebvre-Ulrikson, François Vurpillot, & Xavier Sauvage) 123-154 (Academic Press, 2016).
5 Brock, A., Rodriguez, N. & Zare, R. N. Hadamard Transform Time-of-Flight Mass Spectrometry. Analytical Chemistry. 70 (18), 3735-3741, doi:10.1021/ac9804036, (1998).
6 Singhal, N., Kumar, M., Kanaujia, P. K. & Virdi, J. S. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. 6 791, doi:10.3389/fmicb.2015.00791, (2015).
7 Fuh, M. M., Heikaus, L. & Schlüter, H. MALDI mass spectrometry in medical research and diagnostic routine laboratories. International Journal of Mass Spectrometry. 416 96-109, doi:10.1016/j.ijms.2016.10.004, (2017).
8 Coolen, M. W., Statham, A. L., Gardiner-Garden, M. & Clark, S. J. Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: critical evaluation and improvements. Nucleic Acids Res. 35 (18), e119, doi:10.1093/nar/gkm662, (2007).
9 Martisova, A. et al. DNA Methylation in Solid Tumors: Functions and Methods of Detection. Int J Mol Sci. 22 (8), doi:10.3390/ijms22084247, (2021).
10 Hwa Yun, B., Guo, J., Bellamri, M. & Turesky, R. J. DNA adducts: Formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. Mass Spectrom Rev. 39 (1-2), 55-82, doi:10.1002/mas.21570, (2020).
11 Garaguso, I., Halter, R., Krzeminski, J., Amin, S. & Borlak, J. Method for the rapid detection and molecular characterization of DNA alkylating agents by MALDI-TOF mass spectrometry. Anal Chem. 82 (20), 8573-8582, doi:10.1021/ac101568h, (2010).
12 Su, K. Y. et al. Mutational monitoring of EGFR T790M in cfDNA for clinical outcome prediction in EGFR-mutant lung adenocarcinoma. PLoS One. 13 (11), e0207001, doi:10.1371/journal.pone.0207001, (2018).
13 Haff, L. A. & Smirnov, I. P. Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. Genome Res. 7 (4), 378-388, doi:10.1101/gr.7.4.378, (1997).
14 Haff, L. A. & Smirnov, I. P. Multiplex genotyping of PCR products with MassTag-labeled primers. Nucleic Acids Res. 25 (18), 3749-3750, doi:10.1093/nar/25.18.3749, (1997).
15 Jurinke, C., Oeth, P. & van den Boom, D. MALDI-TOF mass spectrometry: a versatile tool for high-performance DNA analysis. Mol Biotechnol. 26 (2), 147-164, doi:10.1385/mb:26:2:147, (2004).
16 Blondal, T. et al. A novel MALDI-TOF based methodology for genotyping single nucleotide polymorphisms. Nucleic Acids Res. 31 (24), e155, doi:10.1093/nar/gng156, (2003).
17 Su, K. Y. et al. Application of single nucleotide extension and MALDI-TOF mass spectrometry in proofreading and DNA repair assay. DNA Repair (Amst). 61 63-75, doi:10.1016/j.dnarep.2017.11.011, (2018).
18 Su, K. Y. et al. Proofreading and DNA Repair Assay Using Single Nucleotide Extension and MALDI-TOF Mass Spectrometry Analysis. J Vis Exp. (136), doi:10.3791/57862, (2018).
19 Su, K.-Y. et al. DNA polymerase I proofreading exonuclease activity is required for endonuclease V repair pathway both in vitro and in vivo. DNA Repair. 64 59-67, doi:10.1016/j.dnarep.2018.02.005, (2018).
20 Duval, A. & Hamelin, R. Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res. 62 (1), 2447-2454 (2002).
21 Duval, A. et al. Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability. Cancer Res. 59 (2), 4213-4215 (1999).
22 Minetti, C. A., Remeta, D. P., Dickstein, R. & Breslauer, K. J. Energetic signatures of single base bulges: thermodynamic consequences and biological implications. Nucleic Acids Res. 38 (1), 97-116, doi:10.1093/nar/gkp1036, (2010).
23 Streisinger, G. et al. Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. Cold Spring Harb Symp Quant Biol. 31 77-84, doi:10.1101/sqb.1966.031.01.014, (1966).
24 Garcia-Diaz, M., Bebenek, K., Krahn, J. M., Pedersen, L. C. & Kunkel, T. A. Structural analysis of strand misalignment during DNA synthesis by a human DNA polymerase. Cell. 124 (2), 331-342, doi:10.1016/j.cell.2005.10.039, (2006).
25 Ling, H., Boudsocq, F., Woodgate, R. & Yang, W. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell. 107 (1), 91-102, doi:10.1016/s0092-8674(01)00515-3, (2001).
26 Calos, M. P. & Miller, J. H. Genetic and sequence analysis of frameshift mutations induced by ICR-191. J Mol Biol. 153 (1), 39-64, doi:10.1016/0022-2836(81)90525-8, (1981).
27 McCulloch, S. D. & Kunkel, T. A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res. 18 (1), 148-161, doi:10.1038/cr.2008.4, (2008).
28 Kroutil, L. C., Register, K., Bebenek, K. & Kunkel, T. A. Exonucleolytic proofreading during replication of repetitive DNA. Biochemistry. 35 (3), 1046-1053, doi:10.1021/bi952178h, (1996).
29 Joyce, C. M. & Steitz, T. A. Function and structure relationships in DNA polymerases. Annu Rev Biochem. 63 777-822, doi:10.1146/annurev.bi.63.070194.004021, (1994).
30 Garcia-Diaz, M. & Bebenek, K. Multiple functions of DNA polymerases. CRC Crit Rev Plant Sci. 26 (2), 105-122, doi:10.1080/07352680701252817, (2007).
31 Bessman, M. J., Kornberg, A., Lehman, I. R. & Simms, E. S. Enzymic synthesis of deoxyribonucleic acid. Biochim Biophys Acta. 21 (1), 197-198, doi:10.1016/0006-3002(56)90127-5, (1956).
32 De Lucia, P. & Cairns, J. Isolation of an E. coli strain with a mutation affecting DNA polymerase. Nature. 224 (5225), 1164-1166, doi:10.1038/2241164a0, (1969).
33 Makiela-Dzbenska, K. et al. Role of Escherichia coli DNA polymerase I in chromosomal DNA replication fidelity. Mol Microbiol. 74 (5), 1114-1127, doi:10.1111/j.1365-2958.2009.06921.x, (2009).
34 Knippers, R. DNA polymerase II. Nature. 228 (5276), 1050-1053, doi:10.1038/2281050a0, (1970).
35 Escarceller, M. et al. Involvement of Escherichia coli DNA polymerase II in response to oxidative damage and adaptive mutation. J Bacteriol. 176 (20), 6221-6228, doi:10.1128/jb.176.20.6221-6228.1994, (1994).
36 Qiu, Z. & Goodman, M. F. The Escherichia coli polB locus is identical to dinA, the structural gene for DNA polymerase II. Characterization of Pol II purified from a polB mutant. J Biol Chem. 272 (13), 8611-8617, doi:10.1074/jbc.272.13.8611, (1997).
37 Bonner, C. A., Hays, S., McEntee, K. & Goodman, M. F. DNA polymerase II is encoded by the DNA damage-inducible dinA gene of Escherichia coli. Proc Natl Acad Sci U S A. 87 (19), 7663-7667, doi:10.1073/pnas.87.19.7663, (1990).
38 Iwasaki, H., Nakata, A., Walker, G. C. & Shinagawa, H. The Escherichia coli polB gene, which encodes DNA polymerase II, is regulated by the SOS system. J Bacteriol. 172 (11), 6268-6273, doi:10.1128/jb.172.11.6268-6273.1990, (1990).
39 Banach-Orlowska, M., Fijalkowska, I. J., Schaaper, R. M. & Jonczyk, P. DNA polymerase II as a fidelity factor in chromosomal DNA synthesis in Escherichia coli. Mol Microbiol. 58 (1), 61-70, doi:10.1111/j.1365-2958.2005.04805.x, (2005).
40 Gefter, M. L., Hirota, Y., Kornberg, T., Wechsler, J. A. & Barnoux, C. Analysis of DNA polymerases II and 3 in mutants of Escherichia coli thermosensitive for DNA synthesis. Proc Natl Acad Sci U S A. 68 (12), 3150-3153, doi:10.1073/pnas.68.12.3150, (1971).
41 Birge, E. A. in Bacterial and Bacteriophage Genetics (ed Edward A. Birge) 19-63 (Springer New York, 2000).
42 Yao, N. Y., Georgescu, R. E., Finkelstein, J. & O'Donnell, M. E. Single-molecule analysis reveals that the lagging strand increases replisome processivity but slows replication fork progression. Proc Natl Acad Sci U S A. 106 (32), 13236-13241, doi:10.1073/pnas.0906157106, (2009).
43 Lewis, J. S., Jergic, S. & Dixon, N. E. in The Enzymes Vol. 39 eds Laurie S. Kaguni & Marcos Túlio Oliveira) 31-88 (Academic Press, 2016).
44 Tang, M. et al. Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Nature. 404 (6781), 1014-1018, doi:10.1038/35010020, (2000).
45 Goodman, M. F. Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem. 71 17-50, doi:10.1146/annurev.biochem.71.083101.124707, (2002).
46 Kim, S. R., Matsui, K., Yamada, M., Gruz, P. & Nohmi, T. Roles of chromosomal and episomal dinB genes encoding DNA pol IV in targeted and untargeted mutagenesis in Escherichia coli. Mol Genet Genomics. 266 (2), 207-215, doi:10.1007/s004380100541, (2001).
47 Wagner, J. et al. The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagenesis. Mol Cell. 4 (2), 281-286, doi:10.1016/s1097-2765(00)80376-7, (1999).
48 Witkin, E. M., McCall, J. O., Volkert, M. R. & Wermundsen, I. E. Constitutive expression of SOS functions and modulation of mutagenesis resulting from resolution of genetic instability at or near the recA locus of Escherichia coli. Mol Gen Genet. 185 (1), 43-50, doi:10.1007/bf00333788, (1982).
49 Wrzesiński, M., Nowosielska, A., Nieminuszczy, J. & Grzesiuk, E. Effect of SOS-induced Pol II, Pol IV, and Pol V DNA polymerases on UV-induced mutagenesis and MFD repair in Escherichia coli cells. Acta Biochim Pol. 52 (1), 139-147 (2005).
50 Joyce, C. M. & Grindley, N. D. Method for determining whether a gene of Escherichia coli is essential: application to the polA gene. J Bacteriol. 158 (2), 636-643, doi:10.1128/jb.158.2.636-643.1984, (1984).
51 Ollis, D. L., Brick, P., Hamlin, R., Xuong, N. G. & Steitz, T. A. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature. 313 (6005), 762-766, doi:10.1038/313762a0, (1985).
52 Freemont, P. S., Ollis, D. L., Steitz, T. A. & Joyce, C. M. A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity. Proteins. 1 (1), 66-73, doi:10.1002/prot.340010111, (1986).
53 Polesky, A. H., Dahlberg, M. E., Benkovic, S. J., Grindley, N. D. & Joyce, C. M. Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli. J Biol Chem. 267 (12), 8417-8428 (1992).
54 Polesky, A. H., Steitz, T. A., Grindley, N. D. & Joyce, C. M. Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli. J Biol Chem. 265 (24), 14579-14591 (1990).
55 Catalano, C. E., Allen, D. J. & Benkovic, S. J. Interaction of Escherichia coli DNA polymerase I with azidoDNA and fluorescent DNA probes: identification of protein-DNA contacts. Biochemistry. 29 (15), 3612-3621, doi:10.1021/bi00467a004, (1990).
56 Kuchta, R. D., Mizrahi, V., Benkovic, P. A., Johnson, K. A. & Benkovic, S. J. Kinetic mechanism of DNA polymerase I (Klenow). Biochemistry. 26 (25), 8410-8417, doi:10.1021/bi00399a057, (1987).
57 Derbyshire, V. et al. Genetic and crystallographic studies of the 3',5'-exonucleolytic site of DNA polymerase I. Science. 240 (4849), 199-201, doi:10.1126/science.2832946, (1988).
58 Beese, L. S., Derbyshire, V. & Steitz, T. A. Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science. 260 (5106), 352-355, doi:10.1126/science.8469987, (1993).
59 Joyce, C. M. & Steitz, T. A. DNA polymerase I: from crystal structure to function via genetics. Trends in Biochemical Sciences. 12 288-292, doi:10.1016/0968-0004(87)90143-5, (1987).
60 Allen, D. J., Darke, P. L. & Benkovic, S. J. Fluorescent oligonucleotides and deoxynucleotide triphosphates: preparation and their interaction with the large (Klenow) fragment of Escherichia coli DNA polymerase I. Biochemistry. 28 (11), 4601-4607, doi:10.1021/bi00437a014, (1989).
61 Turner, R. M., Jr., Grindley, N. D. & Joyce, C. M. Interaction of DNA polymerase I (Klenow fragment) with the single-stranded template beyond the site of synthesis. Biochemistry. 42 (8), 2373-2385, doi:10.1021/bi026566c, (2003).
62 Patel, P. H., Kawate, H., Adman, E., Ashbach, M. & Loeb, L. A. A single highly mutable catalytic site amino acid is critical for DNA polymerase fidelity. J Biol Chem. 276 (7), 5044-5051, doi:10.1074/jbc.M008701200, (2001).
63 Steitz, T. A. DNA polymerases: structural diversity and common mechanisms. J Biol Chem. 274 (25), 17395-17398, doi:10.1074/jbc.274.25.17395, (1999).
64 Ludmann, S. & Marx, A. Getting it Right: How DNA Polymerases Select the Right Nucleotide. Chimia (Aarau). 70 (3), 203-206, doi:10.2533/chimia.2016.203, (2016).
65 Xia, S. & Konigsberg, W. H. RB69 DNA polymerase structure, kinetics, and fidelity. Biochemistry. 53 (17), 2752-2767, doi:10.1021/bi4014215, (2014).
66 Wang, M. et al. Insights into base selectivity from the 1.8 Å resolution structure of an RB69 DNA polymerase ternary complex. Biochemistry. 50 (4), 581-590, doi:10.1021/bi101192f, (2011).
67 Lovett, S. T. The DNA Exonucleases of Escherichia coli. EcoSal Plus. 4 (2), doi:10.1128/ecosalplus.4.4.7, (2011).
68 Wong, I., Patel, S. S. & Johnson, K. A. An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. Biochemistry. 30 (2), 526-537, doi:10.1021/bi00216a030, (1991).
69 Green, M. R. & Sambrook, J. E. coli DNA Polymerase I and the Klenow Fragment. Cold Spring Harb Protoc. 2020 (5), 100743, doi:10.1101/pdb.top100743, (2020).
70 Cowart, M., Gibson, K. J., Allen, D. J. & Benkovic, S. J. DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases. Biochemistry. 28 (5), 1975-1983, doi:10.1021/bi00431a004, (1989).
71 Freemont, P. S., Friedman, J. M., Beese, L. S., Sanderson, M. R. & Steitz, T. A. Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc Natl Acad Sci U S A. 85 (23), 8924-8928, doi:10.1073/pnas.85.23.8924, (1988).
72 Tippin, B., Kobayashi, S., Bertram, J. G. & Goodman, M. F. To slip or skip, visualizing frameshift mutation dynamics for error-prone DNA polymerases. J Biol Chem. 279 (44), 45360-45368, doi:10.1074/jbc.M408600200, (2004).
73 Dangerfield, T. L., Kirmizialtin, S. & Johnson, K. A. Substrate specificity and proposed structure of the proofreading complex of T7 DNA polymerase. J Biol Chem. 298 (3), 101627, doi:10.1016/j.jbc.2022.101627, (2022).
74 Lee, C. C. et al. The excision of 3' penultimate errors by DNA polymerase I and its role in endonuclease V-mediated DNA repair. DNA Repair (Amst). 12 (11), 899-911, doi:10.1016/j.dnarep.2013.08.003, (2013).
75 Krokan, H. E., Drabløs, F. & Slupphaug, G. Uracil in DNA--occurrence, consequences and repair. Oncogene. 21 (58), 8935-8948, doi:10.1038/sj.onc.1205996, (2002).
76 Hagen, L. et al. Genomic uracil and human disease. Exp Cell Res. 312 (14), 2666-2672, doi:10.1016/j.yexcr.2006.06.015, (2006).
77 Kuraoka, I. et al. Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis. J Biol Chem. 278 (9), 7294-7299, doi:10.1074/jbc.M208102200, (2003).
78 Tye, B. K., Chien, J., Lehman, I. R., Duncan, B. K. & Warner, H. R. Uracil incorporation: a source of pulse-labeled DNA fragments in the replication of the Escherichia coli chromosome. Proc Natl Acad Sci U S A. 75 (1), 233-237, doi:10.1073/pnas.75.1.233, (1978).
79 Mosbaugh, D. W. & Bennett, S. E. Uracil-excision DNA repair. Prog Nucleic Acid Res Mol Biol. 48 315-370, doi:10.1016/s0079-6603(08)60859-4, (1994).
80 Ingraham, H. A., Dickey, L. & Goulian, M. DNA fragmentation and cytotoxicity from increased cellular deoxyuridylate. Biochemistry. 25 (11), 3225-3230, doi:10.1021/bi00359a022, (1986).
81 Duncan, B. K. & Miller, J. H. Mutagenic deamination of cytosine residues in DNA. Nature. 287 (5782), 560-561, doi:10.1038/287560a0, (1980).
82 Lindahl, T. Instability and decay of the primary structure of DNA. Nature. 362 (6422), 709-715, doi:10.1038/362709a0, (1993).
83 Frederico, L. A., Kunkel, T. A. & Shaw, B. R. A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry. 29 (10), 2532-2537, doi:10.1021/bi00462a015, (1990).
84 Sousa, M. M., Krokan, H. E. & Slupphaug, G. DNA-uracil and human pathology. Mol Aspects Med. 28 (3-4), 276-306, doi:10.1016/j.mam.2007.04.006, (2007).
85 Jacobs, A. L. & Schär, P. DNA glycosylases: in DNA repair and beyond. Chromosoma. 121 (1), 1-20, doi:10.1007/s00412-011-0347-4, (2012).
86 Robertson, A. B., Klungland, A., Rognes, T. & Leiros, I. DNA repair in mammalian cells: Base excision repair: the long and short of it. Cell Mol Life Sci. 66 (6), 981-993, doi:10.1007/s00018-009-8736-z, (2009).
87 Li, M. & Wilson, D. M., 3rd. Human apurinic/apyrimidinic endonuclease 1. Antioxid Redox Signal. 20 (4), 678-707, doi:10.1089/ars.2013.5492, (2014).
88 Lindahl, T. Uracil-DNA glycosylase from Escherichia coli. Methods Enzymol. 65 (1), 284-290, doi:10.1016/s0076-6879(80)65038-1, (1980).
89 Richardson, C. C., Lehman, I. R. & Kornberg, A. A DEOXYRIBONUCLEIC ACID PHOSPHATASE-EXONUCLEASE FROM ESCHERICHIA COLI. II. CHARACTERIZATION OF THE EXONUCLEASE ACTIVITY. J Biol Chem. 239 251-258 (1964).
90 Bailly, V. & Verly, W. G. The multiple activities of Escherichia coli endonuclease IV and the extreme lability of 5'-terminal base-free deoxyribose 5-phosphates. Biochem J. 259 (3), 761-768, doi:10.1042/bj2590761, (1989).
91 Lyamichev, V., Brow, M. A. & Dahlberg, J. E. Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science. 260 (5109), 778-783, doi:10.1126/science.7683443, (1993).
92 Chen, R., Wang, H. & Mansky, L. M. Roles of uracil-DNA glycosylase and dUTPase in virus replication. J Gen Virol. 83 (Pt 10), 2339-2345, doi:10.1099/0022-1317-83-10-2339, (2002).
93 Olsen, L. C., Aasland, R., Wittwer, C. U., Krokan, H. E. & Helland, D. E. Molecular cloning of human uracil-DNA glycosylase, a highly conserved DNA repair enzyme. Embo j. 8 (10), 3121-3125, doi:10.1002/j.1460-2075.1989.tb08464.x, (1989).
94 Chung, J. H. et al. A novel uracil-DNA glycosylase family related to the helix-hairpin-helix DNA glycosylase superfamily. Nucleic Acids Res. 31 (8), 2045-2055, doi:10.1093/nar/gkg319, (2003).
95 Duncan, B. K. & Weiss, B. Specific mutator effects of ung (uracil-DNA glycosylase) mutations in Escherichia coli. J Bacteriol. 151 (2), 750-755, doi:10.1128/jb.151.2.750-755.1982, (1982).
96 Lutsenko, E. & Bhagwat, A. S. The role of the Escherichia coli mug protein in the removal of uracil and 3,N(4)-ethenocytosine from DNA. J Biol Chem. 274 (43), 31034-31038, doi:10.1074/jbc.274.43.31034, (1999).
97 Lee, H. W., Dominy, B. N. & Cao, W. New family of deamination repair enzymes in uracil-DNA glycosylase superfamily. J Biol Chem. 286 (36), 31282-31287, doi:10.1074/jbc.M111.249524, (2011).
98 Nilsen, H. et al. Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene. Nucleic Acids Res. 25 (4), 750-755, doi:10.1093/nar/25.4.750, (1997).
99 Pettersen, H. S. et al. Uracil-DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms. Nucleic Acids Res. 35 (12), 3879-3892, doi:10.1093/nar/gkm372, (2007).
100 Aravind, L. & Koonin, E. V. The alpha/beta fold uracil DNA glycosylases: a common origin with diverse fates. Genome Biol. 1 (4), Research0007, doi:10.1186/gb-2000-1-4-research0007, (2000).
101 Oliver, B. in Antibody Engineering (ed Böldicke Thomas) Ch. 1 (IntechOpen, 2018).
102 Seal, G., Brech, K., Karp, S. J., Cool, B. L. & Sirover, M. A. Immunological lesions in human uracil DNA glycosylase: association with Bloom syndrome. Proc Natl Acad Sci U S A. 85 (7), 2339-2343, doi:10.1073/pnas.85.7.2339, (1988).
103 Duschinsky, R., Pleven, E. & Heidelberger, C. THE SYNTHESIS OF 5-FLUOROPYRIMIDINES. Journal of the American Chemical Society. 79 (16), 4559-4560, doi:10.1021/ja01573a087, (1957).
104 Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 3 (5), 330-338, doi:10.1038/nrc1074, (2003).
105 Tanaka, M., Yoshida, S., Saneyoshi, M. & Yamaguchi, T. Utilization of 5-fluoro-2'-deoxyuridine triphosphate and 5-fluoro-2'-deoxycytidine triphosphate in DNA synthesis by DNA polymerases alpha and beta from calf thymus. Cancer Res. 41 (10), 4132-4135 (1981).
106 Fischer, F., Baerenfaller, K. & Jiricny, J. 5-Fluorouracil is efficiently removed from DNA by the base excision and mismatch repair systems. Gastroenterology. 133 (6), 1858-1868, doi:10.1053/j.gastro.2007.09.003, (2007).
107 Mauro, D. J., De Riel, J. K., Tallarida, R. J. & Sirover, M. A. Mechanisms of excision of 5-fluorouracil by uracil DNA glycosylase in normal human cells. Mol Pharmacol. 43 (6), 854-857 (1993).
108 Andersen, S. et al. Incorporation of dUMP into DNA is a major source of spontaneous DNA damage, while excision of uracil is not required for cytotoxicity of fluoropyrimidines in mouse embryonic fibroblasts. Carcinogenesis. 26 (3), 547-555, doi:10.1093/carcin/bgh347, (2005).
109 An, Q., Robins, P., Lindahl, T. & Barnes, D. E. 5-Fluorouracil incorporated into DNA is excised by the Smug1 DNA glycosylase to reduce drug cytotoxicity. Cancer Res. 67 (3), 940-945, doi:10.1158/0008-5472.Can-06-2960, (2007).
110 Krokan, H. & Wittwer, C. U. Uracil DNa-glycosylase from HeLa cells: general properties, substrate specificity and effect of uracil analogs. Nucleic Acids Res. 9 (11), 2599-2613, doi:10.1093/nar/9.11.2599, (1981).
111 Kreklau, E. L. et al. A novel fluorometric oligonucleotide assay to measure O( 6)-methylguanine DNA methyltransferase, methylpurine DNA glycosylase, 8-oxoguanine DNA glycosylase and abasic endonuclease activities: DNA repair status in human breast carcinoma cells overexpressing methylpurine DNA glycosylase. Nucleic Acids Res. 29 (12), 2558-2566, doi:10.1093/nar/29.12.2558, (2001).
112 Ono, T. et al. Direct fluorescence monitoring of DNA base excision repair. Angew Chem Int Ed Engl. 51 (7), 1689-1692, doi:10.1002/anie.201108135, (2012).
113 Gao, X. et al. A G-quadruplex DNA structure resolvase, RHAU, is essential for spermatogonia differentiation. Cell Death Dis. 6 (1), e1610, doi:10.1038/cddis.2014.571, (2015).
114 Zhao, H., Hu, W., Jing, J. & Zhang, X. One-step G-quadruplex-based fluorescence resonance energy transfer sensing method for ratiometric detection of uracil-DNA glycosylase activity. Talanta. 221 121609, doi:10.1016/j.talanta.2020.121609, (2021).
115 Jiao, F. et al. A novel and label-free biosensors for uracil-DNA glycosylase activity based on the electrochemical oxidation of guanine bases at the graphene modified electrode. Talanta. 147 98-102, doi:10.1016/j.talanta.2015.09.045, (2016).
116 Squillaro, T. et al. A rapid, safe, and quantitative in vitro assay for measurement of uracil-DNA glycosylase activity. J Mol Med (Berl). 97 (7), 991-1001, doi:10.1007/s00109-019-01788-8, (2019).
117 Tian, G., Li, W., Liu, B., Xiao, M. & Xia, Q. An enzyme-free electrochemical biosensor based on NiCoP@PtCu nanozyme and multi-MNAzyme junctions for ultrasensitive Uracil-DNA glycosylase detection. Sensors and Actuators B: Chemical. 379 133224, doi:10.1016/j.snb.2022.133224, (2023).
118 Myrnes, B., Guddal, P. H. & Krokan, H. Metabolism of dITP in HeLa cell extracts, incorporation into DNA by isolated nuclei and release of hypoxanthine from DNA by a hypoxanthine-DNA glycosylase activity. Nucleic Acids Res. 10 (12), 3693-3701, doi:10.1093/nar/10.12.3693, (1982).
119 Karran, P. & Lindahl, T. Hypoxanthine in deoxyribonucleic acid: generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus. Biochemistry. 19 (26), 6005-6011, doi:10.1021/bi00567a010, (1980).
120 Taghizadeh, K. et al. Quantification of DNA damage products resulting from deamination, oxidation and reaction with products of lipid peroxidation by liquid chromatography isotope dilution tandem mass spectrometry. Nat Protoc. 3 (8), 1287-1298, doi:10.1038/nprot.2008.119, (2008).
121 Behmanesh, M. et al. Characterization of the structure and expression of mouse Itpa gene and its related sequences in the mouse genome. DNA Res. 12 (1), 39-51, doi:10.1093/dnares/12.1.39, (2005).
122 Lin, S. et al. Cloning, expression, and characterization of a human inosine triphosphate pyrophosphatase encoded by the itpa gene. J Biol Chem. 276 (22), 18695-18701, doi:10.1074/jbc.M011084200, (2001).
123 Bjelland, S., Birkeland, N. K., Benneche, T., Volden, G. & Seeberg, E. DNA glycosylase activities for thymine residues oxidized in the methyl group are functions of the AlkA enzyme in Escherichia coli. J Biol Chem. 269 (48), 30489-30495 (1994).
124 Cunningham, R. P. DNA glycosylases. Mutation Research/DNA Repair. 383 (3), 189-196, doi:10.1016/S0921-8777(97)00008-6, (1997).
125 Zheng, L., Tsai, B. & Gao, N. Structural and mechanistic insights into the DNA glycosylase AAG-mediated base excision in nucleosome. Cell Discov. 9 (1), 62, doi:10.1038/s41421-023-00560-0, (2023).
126 Saparbaev, M. & Laval, J. Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases. Proc Natl Acad Sci U S A. 91 (13), 5873-5877, doi:10.1073/pnas.91.13.5873, (1994).
127 Hedglin, M. & O'Brien, P. J. Human alkyladenine DNA glycosylase employs a processive search for DNA damage. Biochemistry. 47 (44), 11434-11445, doi:10.1021/bi801046y, (2008).
128 Gates, F. T. & Linn, S. Endonuclease from Escherichia coli that acts specifically upon duplex DNA damaged by ultraviolet light, osmium tetroxide, acid, or x-rays. Journal of Biological Chemistry. 252 (9), 2802-2807, doi:10.1016/S0021-9258(17)40433-9, (1977).
129 Lee, C. C. et al. Endonuclease V-mediated deoxyinosine excision repair in vitro. DNA Repair (Amst). 9 (10), 1073-1079, doi:10.1016/j.dnarep.2010.07.007, (2010).
130 Lee, C.-C. et al. Deoxyinosine repair in nuclear extracts of human cells. Cell & Bioscience. 5 (1), 52, doi:10.1186/s13578-015-0044-8, (2015).
131 Yao, M. & Kow, Y. W. Strand-specific cleavage of mismatch-containing DNA by deoxyinosine 3'-endonuclease from Escherichia coli. J Biol Chem. 269 (50), 31390-31396 (1994).
132 Gates, F. T., 3rd & Linn, S. Endonuclease V of Escherichia coli. J Biol Chem. 252 (5), 1647-1653 (1977).
133 Guo, G., Ding, Y. & Weiss, B. nfi, the gene for endonuclease V in Escherichia coli K-12. J Bacteriol. 179 (2), 310-316, doi:10.1128/jb.179.2.310-316.1997, (1997).
134 Yao, M. & Kow, Y. W. Cleavage of insertion/deletion mismatches, flap and pseudo-Y DNA structures by deoxyinosine 3'-endonuclease from Escherichia coli. J Biol Chem. 271 (48), 30672-30676, doi:10.1074/jbc.271.48.30672, (1996).
135 Yao, M. & Kow, Y. W. Further characterization of Escherichia coli endonuclease V. Mechanism of recognition for deoxyinosine, deoxyuridine, and base mismatches in DNA. J Biol Chem. 272 (49), 30774-30779, doi:10.1074/jbc.272.49.30774, (1997).
136 Yao, M. & Kow, Y. W. Interaction of deoxyinosine 3'-endonuclease from Escherichia coli with DNA containing deoxyinosine. J Biol Chem. 270 (48), 28609-28616, doi:10.1074/jbc.270.48.28609, (1995).
137 Shapiro, R. & Pohl, S. H. The reaction of ribonucleosides with nitrous acid. Side products and kinetics. Biochemistry. 7 (1), 448-455, doi:10.1021/bi00841a057, (1968).
138 Mi, R., Abole, A. K. & Cao, W. Dissecting endonuclease and exonuclease activities in endonuclease V from Thermotoga maritima. Nucleic Acids Research. 39 (2), 536-544, doi:10.1093/nar/gkq791, (2011).
139 Huang, J., Lu, J., Barany, F. & Cao, W. Multiple Cleavage Activities of Endonuclease V from Thermotoga maritima:  Recognition and Strand Nicking Mechanism. Biochemistry. 40 (30), 8738-8748, doi:10.1021/bi010183h, (2001).
140 Feng, H., Klutz, A. M. & Cao, W. Active site plasticity of endonuclease V from Salmonella typhimurium. Biochemistry. 44 (2), 675-683, doi:10.1021/bi048752j, (2005).
141 Fladeby, C. et al. The human homolog of Escherichia coli endonuclease V is a nucleolar protein with affinity for branched DNA structures. PLoS One. 7 (11), e47466, doi:10.1371/journal.pone.0047466, (2012).
142 Mi, R., Alford-Zappala, M., Kow, Y. W., Cunningham, R. P. & Cao, W. Human endonuclease V as a repair enzyme for DNA deamination. Mutat Res. 735 (1-2), 12-18, doi:10.1016/j.mrfmmm.2012.05.003, (2012).
143 Vik, E. S. et al. Endonuclease V cleaves at inosines in RNA. Nat Commun. 4 2271, doi:10.1038/ncomms3271, (2013).
144 Kong, X. Y. et al. Endonuclease V Regulates Atherosclerosis Through C-C Motif Chemokine Ligand 2-Mediated Monocyte Infiltration. J Am Heart Assoc. 10 (14), e020656, doi:10.1161/jaha.120.020656, (2021).
145 Kong, X. Y. et al. Deletion of Endonuclease V suppresses chemically induced hepatocellular carcinoma. Nucleic Acids Res. 48 (8), 4463-4479, doi:10.1093/nar/gkaa115, (2020).
146 Nawaz, M. S. et al. Regulation of Human Endonuclease V Activity and Relocalization to Cytoplasmic Stress Granules*. Journal of Biological Chemistry. 291 (41), 21786-21801, doi:10.1074/jbc.M116.730911, (2016).
147 Summer, H., Grämer, R. & Dröge, P. Denaturing urea polyacrylamide gel electrophoresis (Urea PAGE). J Vis Exp. (32), doi:10.3791/1485, (2009).
148 Baker, R. P. & Reha-Krantz, L. J. Identification of a transient excision intermediate at the crossroads between DNA polymerase extension and proofreading pathways. Proc Natl Acad Sci U S A. 95 (7), 3507-3512, doi:10.1073/pnas.95.7.3507, (1998).
149 Berdis, A. J. Mechanisms of DNA polymerases. Chem Rev. 109 (7), 2862-2879, doi:10.1021/cr800530b, (2009).
150 Brammer, K. W., Jones, A. S., Mian, A. M. & Walker, R. T. Study of the use of alkaline degradation of DNA derivatives as a procedure for the determination of nucleotide distribution. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis. 166 (3), 732-734, doi:10.1016/0005-2787(68)90388-2, (1968).
151 Su, K. Y. et al. Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non-small-cell lung cancer. J Clin Oncol. 30 (4), 433-440, doi:10.1200/jco.2011.38.3224, (2012).
152 Lindahl, T., Ljungquist, S., Siegert, W., Nyberg, B. & Sperens, B. DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. Journal of Biological Chemistry. 252 (10), 3286-3294, doi:10.1016/S0021-9258(17)40386-3, (1977).
153 Rashtchian, A., Buchman, G. W., Schuster, D. M. & Berninger, M. S. Uracil DNA glycosylase-mediated cloning of polymerase chain reaction-amplified DNA: application to genomic and cDNA cloning. Anal Biochem. 206 (1), 91-97, doi:10.1016/s0003-2697(05)80015-6, (1992).
154 Varshney, U. & van de Sande, J. H. Specificities and kinetics of uracil excision from uracil-containing DNA oligomers by Escherichia coli uracil DNA glycosylase. Biochemistry. 30 (16), 4055-4061, doi:10.1021/bi00230a033, (1991).
155 Delort, A. M. et al. Excision of uracil residues in DNA: mechanism of action of Escherichia coli and Micrococcus luteus uracil-DNA glycosylases. Nucleic Acids Res. 13 (2), 319-335, doi:10.1093/nar/13.2.319, (1985).
156 Varshney, U. & van de Sande, J. H. Specificities and kinetics of uracil excision from uracil-containing DNA oligomers by Escherichia coli uracil DNA glycosylase. Biochemistry. 30 (16), 4055-4061, doi:10.1021/bi00230a033, (1991).
157 Savva, R. & Pearl, L. H. Cloning and expression of the uracil-DNA glycosylase inhibitor (UGI) from bacteriophage PBS-1 and crystallization of a uracil-DNA glycosylase-UGI complex. Proteins. 22 (3), 287-289, doi:10.1002/prot.340220310, (1995).
158 Wang, Z. G., Smith, D. G. & Mosbaugh, D. W. Overproduction and characterization of the uracil-DNA glycosylase inhibitor of bacteriophage PBS2. Gene. 99 (1), 31-37, doi:10.1016/0378-1119(91)90030-f, (1991).
159 Biolabs, N. E. Unit definition of Endonuclease V (2024).
160 林靜宜. 應用質譜儀進行第五型核酸內切酶與第一型 DNA聚合酶修復亞黃嘌呤之研究. 碩士論文. doi:10.6342/NTU202103527, (2021).
161 林哲宇. 第五型核酸內切酶與第一型DNA聚合酶在亞黃嘌呤修復中交互作用之研究. 碩士論文. doi:10.6342/NTU202100313, (2021).
162 Murray, K. K. et al. Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013). Pure and Applied Chemistry. 85 (7), 1515-1609, doi:10.1351/PAC-REC-06-04-06, (2013).
163 Oberacher, H., Parson, W., Mühlmann, R. & Huber, C. G. Analysis of Polymerase Chain Reaction Products by On-Line Liquid Chromatography−Mass Spectrometry for Genotyping of Polymorphic Short Tandem Repeat Loci. Analytical Chemistry. 73 (21), 5109-5115, doi:10.1021/ac010587f, (2001).
164 徐屾玨. 第一型DNA聚合酶校正機制之研究分析. 碩士論文. doi:10.6342/NTU202303596, (2023).
165 Capson, T. L. et al. Kinetic characterization of the polymerase and exonuclease activities of the gene 43 protein of bacteriophage T4. Biochemistry. 31 (45), 10984-10994, doi:10.1021/bi00160a007, (1992).
166 Astatke, M., Ng, K., Grindley, N. D. & Joyce, C. M. A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides. Proc Natl Acad Sci U S A. 95 (7), 3402-3407, doi:10.1073/pnas.95.7.3402, (1998).
167 Beese, L. S. & Steitz, T. A. Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. Embo j. 10 (1), 25-33, doi:10.1002/j.1460-2075.1991.tb07917.x, (1991).
168 Garcia-Diaz, M. & Kunkel, T. A. Mechanism of a genetic glissando: structural biology of indel mutations. Trends Biochem Sci. 31 (4), 206-214, doi:10.1016/j.tibs.2006.02.004, (2006).
169 Derbyshire, V., Grindley, N. D. & Joyce, C. M. The 3'-5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction. Embo j. 10 (1), 17-24, doi:10.1002/j.1460-2075.1991.tb07916.x, (1991).
170 Tsai-Wu, J. J., Liu, H. F. & Lu, A. L. Escherichia coli MutY protein has both N-glycosylase and apurinic/apyrimidinic endonuclease activities on A.C and A.G mispairs. Proc Natl Acad Sci U S A. 89 (18), 8779-8783, doi:10.1073/pnas.89.18.8779, (1992).
171 Bennett, S. E., Sanderson, R. J. & Mosbaugh, D. W. Processivity of Escherichia coli and Rat Liver Mitochondrial Uracil-DNA Glycosylase Is Affected by NaCl Concentration. Biochemistry. 34 (18), 6109-6119, doi:10.1021/bi00018a014, (1995).
172 Alexeeva, M. et al. Excision of uracil from DNA by hSMUG1 includes strand incision and processing. Nucleic Acids Res. 47 (2), 779-793, doi:10.1093/nar/gky1184, (2019).
173 Brammer, K. W., Jones, A. S., Mian, A. M. & Walker, R. T. Study of the use of alkaline degradation of DNA derivative as a procedure for the determination of nucleotide distribution. Biochim Biophys Acta. 166 (3), 732-734, doi:10.1016/0005-2787(68)90388-2, (1968).
174 張倖林. 發展質譜儀進行DNA修復蛋白-hSMUG1之分析. 碩士論文. doi:10.6342/NTU202002939, (2020).
175 Männistö, R. H., Kivelä, H. M., Paulin, L., Bamford, D. H. & Bamford, J. K. The complete genome sequence of PM2, the first lipid-containing bacterial virus To Be isolated. Virology. 262 (2), 355-363, doi:10.1006/viro.1999.9837, (1999).
176 Kowalski, D. & Sanford, J. P. Action of mung bean nuclease on supercoiled PM2 DNA. J Biol Chem. 257 (13), 7820-7825 (1982).
177 Lebendiker, M. & Danieli, T. Purification of proteins fused to maltose-binding protein. Methods Mol Biol. 681 281-293, doi:10.1007/978-1-60761-913-0_15, (2011).
178 Öhrmalm, C. et al. Hybridization properties of long nucleic acid probes for detection of variable target sequences, and development of a hybridization prediction algorithm. Nucleic Acids Research. 38 (21), e195-e195, doi:10.1093/nar/gkq777, (2010).
179 Baumann, T., Arndt, K. M. & Müller, K. M. Directional cloning of DNA fragments using deoxyinosine-containing oligonucleotides and endonuclease V. BMC Biotechnology. 13 (1), 81, doi:10.1186/1472-6750-13-81, (2013).
180 Zhang, Z., Jia, Q., Zhou, C. & Xie, W. Crystal structure of E. coli endonuclease V, an essential enzyme for deamination repair. Sci Rep. 5 12754, doi:10.1038/srep12754, (2015).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94746-
dc.description.abstract此篇研究主要為利用基質輔助雷射脫附游離飛行時間質譜技術 (MALDI-TOF MS),搭配未標定的DNA寡核苷酸受質設計,研究三種維護基因體穩定性酵素的活性,提出新的檢測酵素活性的方法,期望未來可應用於生技產業或臨床檢驗。此篇研究分為三個部分,第一部分為第一型DNA聚合酶校正在單一核苷酸插入/缺失錯誤的活性之研究;第二部分為大腸桿菌中DNA修復蛋白Uracil-DNA glycosylase (UDG)活性之研究;第三部分為大腸桿菌第五型內切酶活性檢測方法之建立與研究。
重複序列DNA因為易於滑動,在複製過程中常見插入/缺失錯誤的產生,此錯誤通常可以透過DNA聚合酶校正活性進行校正,但若錯誤位置距離引子3’端較遠,則可能因為末端正確配對使聚合酶直接進行引子延伸。為了研究插入/缺失錯誤之校正活性,我們設計了距離3’端倒數第1至第9個位置的單一核苷酸插入/缺失錯誤,利用MALDI-TOF MS的方法分析 DNA聚合酶的校正活性。使用3種dNTP或4種ddNTP進行校正活性的測定,研究結果發現距離3’端第1至5個核苷酸的插入/缺失錯誤能夠很好的被第一型 DNA 聚合酶進行校正,在距離3’端第6個核苷酸的插入/缺失錯誤僅部分被校正,距離3’端第7至9個核苷酸的插入/缺失錯誤無法被 DNA 聚合酶校正,而會直接進行引子延伸。根據以上結果我們推測此校正活性與傾向,和DNA聚合酶與DNA引子-模板交界的接觸有關。
第二部分為大腸桿菌DNA修復蛋白Uracil-DNA glycosylase (UDG)活性之探討。尿密啶 (Uracil)是DNA中常見的損傷,由胞密啶水解脫氨形成。此DNA損傷若未即時進行修復,則會在DNA複製後形成G:C to A:T的轉換突變。在大腸桿菌中,主要由UDG進行U的修復,此酵素於原核與真核細胞中在演化上高度保留。已知許多測定UDG活性的方法都有其限制性,故我們欲發展高專一性與非標定受質的檢驗方法,期望能應用於臨床上抑制劑篩選的方法。我們利用帶有U的寡核苷酸受質與UDG酵素進行反應,形成帶有apyrimidinic site (AP site) 的產物與U受質分子量相差94,經過MALDI-TOF MS的分析,能夠用質譜圖的信號強度計算酵素的活性。我們利用此方法針對UDG進行酵素活性的研究,結果顯示其Km為50 nM, Vmax 為 0.98 nM/s ,Kcat 為 9.31 s-1,此結果與傳統法所得結果相近。利用uracil DNA glycosylase inhibitor (UGI) 作為抑制物進行抑制效果檢測,結果測得IC50為7.6 pM。另外針對多種的U受質檢測UDG對不同受質的專一性,結果顯示U在正中間且與G配對的受質(T1/U+9)最適合用於檢測UDG的活性,且以質譜儀檢測UDG活性能夠很好的應用於臨床上的檢測。
第三部分則利用MALDI-TOF MS的平台建立用以檢測大腸桿菌內第五型核酸內切酶酵素(Endo V)的活性。DNA 中的腺嘌呤經脫氨作用會形成亞黃嘌呤(dI) 的損傷,若未被及時修復再次複製後會形成A:T to G:C的轉換突變。在大腸桿菌中Endo V為參與dI修復的重要酵素,先前研究發現dI的修復由Endo V、第一型DNA聚合酶(Pol I)與DNA連接酶完成。Endo V在切割完dI受質後會停留在DNA受質上,被認為可能與後續Pol I的作用有關。為了能夠更深入研究Endo V的活性,我們發展以MALDI-TOF MS方法搭配高週轉性的dI受質進行Endo V酵素活性的分析,結果發現高週轉性受質能夠提高Endo V週轉5次的切割活性,並能夠以動力學方法分析發現Endo V對不同DNA受質具有特異性(I-G> I-A≒I-T> I-C),且利用MS的方法相較於螢光法可提升16倍的靈敏度。我們也利用尿素變性聚丙烯醯胺膠體電泳搭配螢光標定的DNA受質,以研究Endo V與Pol I的交互作用,發現具有3’端至5’端外切酶活性Pol I可以促進Endo V週轉1.5倍的活性,而沒有外切酶活性的Pol I則促進週轉活性能力較差。因此可從這個結果判定Pol I與Endo V之間在修復過程有交互作用。
在此篇論文中我們展現了MALDI-TOF MS此平台檢驗的優勢,快速、高通量、高專一性,搭配非標定的DNA 受質且彈性的受質設計,可以更全面的了解酵素的活性,更重要的是可以做抑制物的檢測,將可應用於生技製藥的研發。
zh_TW
dc.description.abstractMatrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been widely used in the detection of DNA modifications and SNPs. In this study, a non-labeled DNA substrate assay was established using MALDI-TOF MS to study the activities of DNA maintenance enzymes, including DNA polymerase I (Pol I), uracil DNA glycosylase (UDG), and endonuclease V (Endo V).
Insertion/deletion errors frequently occur during the replication of repetitive DNA sequences and could be corrected by DNA polymerase proofreading activity. A series of single nucleotide insertion/deletion (indel) error substrates, with the indel errors located 1 to 9 nucleotide (nt) from the 3' terminus, were designed for a proofreading assay and subjected to MALDI-TOF MS. The proofreading activity was performed with three dNTPs or four ddNTPs. The results revealed that indel errors located 1 to 5-nt from the 3' terminus could be effectively proofread by the Pol I, while partially proofread when indel errors at 6-nt from the 3’ terminus. Indel error at 7 to 9-nt from 3’terminus escaped proofreading, leading to primer extension. Based on these results, it suggests that proofreading activity is correlated with the interaction between DNA polymerase and primer-template junction.
Uracil (U) is a DNA damage caused by the deamination of cytosine. It would cause G: C to A: T transition mutations if not repaired prior to DNA replication. In E. coli, uracil is mainly repaired by uracil UDG, an enzyme that is highly conserved in both prokaryotic and eukaryotic cells. The UDG detection assay was designed with site-specific uracil and performed by MALDI-TOF MS. UDG activity was determined using a non-labeled double-strand oligonucleotide carrying a uracil on its middle position. Kinetic parameters of UDG with Km at 50 nM, Vmax at 0.98 nM/s, and Kcat of 9.31 s-1 were obtained by mass spectrometric analysis and these parameters were comparable to those revealed by traditional methods. The inhibitor screen assay was performed with a uracil glycosylase inhibitor (UGI), yielding an IC50 at 7.6 pM. Additionally, the UDG substrate specificity for various uracil substrates was tested, concluding that the substrate with uracil located at the center and paired with guanine is the most suitable for detecting UDG activity.
Deoxyinosine (dI) is formed by the deamination of adenine and leads to A: T to G: C transition mutations if not repaired before DNA replication. In E. coli, dI repair involves Endo V, Pol I, and DNA ligase. Previous nicking assay showed tightly binding of Endo V to dI-containing DNA suggesting the possible role of dI-bound Endo V as a repair signal for Pol I. To study the interplay of Pol I and Endo V in the repair of dI, the activity of Endo V was determined using a MALDI-TOF MS-based assay and a PAGE assay. Analysis of Endo V activity using MALDI-TOF MS showed a 16-fold higher nicking activity compared to the fluorescence-based method, and substrate specificity in the order of I-G > I-A ≈ I-T > I-C. The interaction between Endo V and Pol I was studied by denaturing urea polyacrylamide gel electrophoresis with fluorescently labeled DNA substrates. The results indicated that Pol I KF with 3' to 5' exonuclease activity enhances Endo V turnover by 1.5 times, while Pol I without exonuclease activity showed much less turnover. These findings suggest a direct interaction between Pol I and Endo V in the repair process.
In conclusion, we demonstrate that MALDI-TOF MS is a powerful tool for enzyme activity analysis. It offers rapid, high-throughput, and highly specific results, and allows for flexible substrate design using unlabeled DNA. This approach provides a comprehensive understanding of enzyme activity and shows great potential for inhibitor screening in biomedical settings.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:57:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:57:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgment i
中文摘要 ii
Abstract v
Contents viii
List of Figures xiv
List of Tables xvi
Abbreviations xvii
Chapter I: Introduction 1
1.1 Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) for DNA Detection 1
1.2 Indel Error and DNA Proofreading 5
1.2.1 Insertion/ Deletion Error 5
1.2.2 Correction of Insertion/Deletion Error 7
1.2.3 DNA Polymerases in E. coli 8
1.2.4 E. coli DNA Polymerase I 10
1.2.5 The Proofreading Assays 13
1.3 Base Excision Repair and Glycosylase 15
1.3.1 Uracil in DNA 15
1.3.2 Base Excision Repair (BER) Pathway 17
1.3.3 Uracil DNA Glycosylase (UDG) 19
1.3.4 5-Fluorouracil and UDG Activity 21
1.3.5 The Detection Method of UDG Activity 22
1.4 Repair of Deoxyinosine and E. coli Endonuclease V 26
1.4.1 Deoxyinosine in DNA 26
1.4.2 Repair of Deoxyinosine in DNA 27
1.4.3 E. coli Endonuclease V 28
1.4.4 Homologs of Endonuclease V 30
1.4.5 The Endonuclease V Repair Pathway 31
1.5 Research Motivation and Strategy 32
Chapter II Materials and Methods 34
2.1 Materials 34
2.1.1 Synthetic DNA Oligonucleotides 34
2.1.2 Enzymes 34
2.1.3 Reagents 35
2.2 DNA Duplex Substrate Preparation 35
2.3 DNA Polymerase Proofreading Assay for MALDI-TOF MS 36
2.4 Uracil DNA Glycosylase Assay for MALDI-TOF MS 37
2.5 Endonuclease V Nicking Assay for MALDI-TOF MS 37
2.6 MALDI-TOF MS Analysis 38
2.7 MS Data Analysis 39
2.8 Fluorescence-Based Gel Assay 39
2.9 Detection of DNA Possessing Enzymes by Fluorescently Labeled DNA Duplex 40
Chapter III Result 42
3.1 Proofreading of Single Nucleotide Insertion/deletion Replication Errors Analyzed by MALDI-TOF Mass Spectrometry Assay 42
3.1.1 The Indel DNA Substrate Design and Reaction Condition 42
3.1.2 Single Nucleotide Deletion Error at 1 to 6-nt from 3’ Terminus Can be Proofread by Pol I with 4ddNTPs 44
3.1.3 Single Nucleotide Deletion Error at 1 to 5-nt from 3’ Terminus Can be Proofread by Pol I with 3ddNTPs 45
3.1.4 Single Nucleotide Insertion Error at 1 to 5-nt from 3’ Terminus Can be Proofread by Pol I with 4ddNTPs 46
3.1.5 Single Nucleotide Insertion Error at 1 to 5-nt from 3’ Terminus Can be Proofread by Pol I with 3dNTPs 47
3.1.6 The Ability of DNA Polymerase I to Correct Indel Errors 48
3.2 Measurement of Uracil-DNA Glycosylase Activity by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Technique 49
3.2.1 The Scheme of Uracil DNA Glycosylase Activity Assay 49
3.2.2 UDG Kinetic Parameters Determined by MS-based Assay were Comparable to Traditional Method 51
3.2.3 Investigation of UDG Substrate Specificity and Glycosylase Activity with Varied Uracil Positions in DNA Oligonucleotides 54
3.2.4 The Inhibitor Screen Assay of Uracil DNA Glycosylase 55
3.3 Study of E. coli Endonuclease V Enzyme Activity by MS-based and PAGE-based Analysis 57
3.3.1 The Scheme of Endonuclease V Nicking Assay by MALDI-TOF MS Analysis 57
3.3.2 Enzymatic Analysis of Endonuclease V by MS-based Analysis 59
3.3.3 The Substrate Specificity of Endonuclease V Nicking Activity 61
3.3.4 The Fluoresce-based Analysis for Endonuclease V Nicking Assay 62
3.3.5 Endonuclease V Nicking Activity Analyzed by The Fluorescence-based Assay 64
3.3.6 The Exonuclease Activity of Pol I Promotes Endonuclease V Turnover 65
Chapter IV Discussion 67
4.1 The MS-based Analysis of DNA Processive Proteins 67
4.1.1 The Prospective of MALDI-TOF MS Analysis in Biomedical Research and Development 67
4.1.2 Mass-to-Charge Ratio Consideration of DNA Substrates and Products Analysis 68
4.1.3 Adducts Interference and Intervention in Measurement 69
4.2 The Different Outcomes of 4 ddNTPs and 3 dNTPs in Proofreading Assay 70
4.3 The Contact of KF and DNA Junction Affects the Proofreading Efficiency 73
4.4 Acid Termination Method Offers Safer Alternative to Phenol/Chloroform Extraction in Glycosylase Assay 74
4.5 Comparison of UDG Kinetic Parameters Using MALDI-TOF MS and Traditional Radioisotope Methods 75
4.6 The Comparison of MS-based and Fluorescence-labeled Assays for Endonuclease V Repair Pathway Study 76
4.7 The Turnover Activity of Endonuclease V 79
Chapter V Conclusion 82
Figures 84
Tables 118
References 126
Biography 143
Publications 144
-
dc.language.isoen-
dc.subjectMALDI-TOF MSzh_TW
dc.subject核酸修復zh_TW
dc.subject大腸桿菌第五型核酸內切酶zh_TW
dc.subjectKlenow fragment 校正活性zh_TW
dc.subject大腸桿菌UDGzh_TW
dc.subjecturacil DNA glycosylaseen
dc.subjectEndonuclease Ven
dc.subjectturnover activity.en
dc.subjectDNA polymerase I proofreading activityen
dc.subjectMALDI-TOF MSen
dc.title利用飛行時間質譜儀進行基因恆定性相關酵素活性之研究zh_TW
dc.titleStudy of Genomic Maintenance Enzymes by MALDI-TOF Mass Spectrometry Analysisen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee蔡芷季;許濤;郭靜穎;蘇剛毅zh_TW
dc.contributor.oralexamcommitteeJyy-Jih Tsai;Todd Hsu;Ching-Ying Kuo;Kang-Yi Suen
dc.subject.keyword核酸修復,MALDI-TOF MS,大腸桿菌UDG,Klenow fragment 校正活性,大腸桿菌第五型核酸內切酶,zh_TW
dc.subject.keywordMALDI-TOF MS,DNA polymerase I proofreading activity,uracil DNA glycosylase,Endonuclease V,turnover activity.,en
dc.relation.page144-
dc.identifier.doi10.6342/NTU202401466-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-03-
dc.contributor.author-college醫學院-
dc.contributor.author-dept醫學檢驗暨生物技術學系-
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf5.64 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved