Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 法醫學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94745
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張晉誠zh_TW
dc.contributor.advisorChin-Chen Changen
dc.contributor.author劉裕雯zh_TW
dc.contributor.authorYu-Wen Liuen
dc.date.accessioned2024-08-16T17:57:02Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-07-01-
dc.identifier.citation1. Cafarelli, F.P., et al., Postmortem Imaging: An Update. Semin Ultrasound CT MR, 2019. 40(1): p. 86-93.
2. Decker, S.J., et al., Forensic Radiology: A Primer. Acad Radiol, 2019. 26(6): p. 820-830.
3. Filograna, L., et al., A Practical Guide to Virtual Autopsy: Why, When and How. Semin Ultrasound CT MR, 2019. 40(1): p. 56-66.
4. Norberti, N., et al., State of the art in post-mortem computed tomography: a review of current literature. Virchows Arch, 2019. 475(2): p. 139-150.
5.Zhang, M., Forensic imaging: a powerful tool in modern forensic investigation. Forensic Sciences Research, 2022. 7(3): p. 385-392.
6. Brough, A.L., B. Morgan, and G.N. Rutty, Postmortem computed tomography (PMCT) and disaster victim identification. Radiol Med, 2015. 120(9): p. 866-73.
7. Re, G.L., et al., Radiology in Forensic Medicine: From Identification to Post-Mortem Imaging. 2019: Springer.
8. Chandy, P.E., et al., Postmortem CT in Trauma: An Overview. Can Assoc Radiol J, 2020. 71(3): p. 403-414.
9. Graziani, G., et al., Usefulness of unenhanced post mortem computed tomography - Findings in postmortem non-contrast computed tomography of the head, neck and spine compared to traditional medicolegal autopsy. J Forensic Leg Med, 2018. 55: p. 105-111.
10. Offiah, C., Fire-damage findings in post-mortem CT. Clinical radiology, 2023.
11. Vester, M.E.M., et al., Postmortem Computed Tomography in Firearm Homicides: A Retrospective Case Series. J Forensic Sci, 2020. 65(5): p. 1568-1573.
12. Carballeira Álvarez, A., et al., Diagnostic value of unenhanced postmortem computed tomography in the detection of traumatic abdominal injuries. Diagn Interv Imaging, 2018. 99(6): p. 397-402.
13. Kirchhoff, S.M., et al., Postmortem computed tomography (PMCT) and autopsy in deadly gunshot wounds--a comparative study. Int J Legal Med, 2016. 130(3): p. 819-26.
14. Ducloyer, M., et al., Pictorial review of the postmortem computed tomography in neonaticide cases. Int J Legal Med, 2021. 135(6): p. 2395-2408.
15. Stassi, C., et al., State of the Art on the Role of Postmortem Computed Tomography Angiography and Magnetic Resonance Imaging in the Diagnosis of Cardiac Causes of Death: A Narrative Review. Tomography, 2022. 8(2): p. 961-973.
16. Levy, A.D., H.T. Harcke, and C.T. Mallak, Postmortem imaging: MDCT features of postmortem change and decomposition. The American journal of forensic medicine and pathology, 2010. 31(1): p. 12-17.
17. Sugimoto, M., et al., Freezing effect on brain density in postmortem CT. Leg Med (Tokyo), 2016. 18: p. 62-5.
18. Giovannini, E., et al., Postmortem histological freeze–thaw artifacts: a case report of a frozen infant and literature review. Forensic Science, Medicine and Pathology, 2023: p. 1-8.
19. Schäfer, A.T. and J.D. Kaufmann, What happens in freezing bodies?: experimental study of histological tissue change caused by freezing injuries. Forensic science international, 1999. 102(2-3): p. 149-158.
20. Li, Y., H. Wang, and P. Tingrui, Intracellular ice formation (IIF) during freeze–thaw repetitions. International Journal of Heat and Mass Transfer, 2013. 64: p. 436-443.
21. Mazur, P., Cryobiology: The Freezing of Biological Systems: The responses of living cells to ice formation are of theoretical interest and practical concern. Science, 1970. 168(3934): p. 939-949.
22. Mazur, P., Freezing of living cells: mechanisms and implications. American journal of physiology-cell physiology, 1984. 247(3)
23. Muldrew, K. and L.E. McGann, Mechanisms of intracellular ice formation. Biophysical journal, 1990. 57(3): p. 525-532.
24. Leibo, S. and P. Mazur, The role of cooling rates in low-temperature preservation. Cryobiology, 1971. 8(5): p. 447-452.
25. Meryman, H.T., General principles of freezing and freezing injury in cellular materials. Annals of the New York Academy of Sciences, 1960. 85(2): p. 503-509.
26. Theodorescu, D., Cancer cryotherapy: evolution and biology. Reviews in urology, 2004. 6(Suppl 4)
27. Gage, A.A. and J. Baust, Mechanisms of tissue injury in cryosurgery. Cryobiology, 1998. 37(3): p. 171-186.
28. Sen, A. and N. Sharma, Effect of freezing and thawing on the histology and ultrastructure of buffalo muscle. Asian-Australasian journal of animal sciences, 2004. 17(9): p. 1291-1295.
29. Olsen, T.B. and P.M. Leth, Homicide victims concealed in a freezer. Forensic Science, Medicine and Pathology, 2018. 14: p. 386-389.
30. Kozawa, S., E. Kakizaki, and N. Yukawa, Autopsy of two frozen newborn infants discovered in a home freezer. Legal medicine, 2010. 12(4): p. 203-207.
31. Tabata, N., M. Morita, and J. Azumi, A frozen newborn infant: froth in the air-passage after thawing. Forensic science international, 2000. 108(1): p. 67-74.
32. Roe, W., B. Gartrell, and S. Hunter, Freezing and thawing of pinniped carcasses results in artefacts that resemble traumatic lesions. The Veterinary Journal, 2012. 194(3): p. 326-331.
33. Tokue, H., et al., Hypothermic death resulting from extreme freezing with characteristic postmortem computed tomography findings: A case report and review of the literature. Radiology Case Reports, 2023. 18(4): p. 1423-1426.
34. Palmiere, C., G. Teresiński, and P. Hejna, Postmortem diagnosis of hypothermia. International journal of legal medicine, 2014. 128: p. 607-614.
35. Saukko, P. and B. Knight, Knight's forensic pathology. 2015: CRC press.
36. Thicot, F., et al., Artifacts in postmortem CT-imaging of the brain: A cooling effect? Forensic Science International: Reports, 2023. 8
37. Kawasumi, Y., et al., Post-mortem computed tomography findings of the frozen brain. Journal of Forensic Radiology and Imaging, 2017. 10: p. 37-40.
38. O'Donnell, C., P. Bedford, and M. Burke, Massive hemoperitoneum due to ruptured ectopic gestation: postmortem CT findings in a deeply frozen deceased person. Leg Med (Tokyo), 2011. 13(5): p. 245-9.
39. Hyodoh, H., et al., Experimental evaluation of freezing preparation for the macroscopic inspection in putrefied brain. Legal Medicine, 2017. 24: p. 19-23.
40. Bolliger, S.A., et al., Rapid and reliable detection of previous freezing of cerebral tissue by computed tomography and magnetic resonance imaging. Forensic Science, Medicine and Pathology, 2018. 14: p. 85-94.
41. Klop, A.C., et al., The effect of repeated freeze‐thaw cycles on human muscle tissue visualized by postmortem computed tomography (PMCT). Clinical Anatomy, 2017. 30(6): p. 799-804.
42. Kawamura, T., Observations of the internal structure of sea ice by X ray computed tomography. Journal of Geophysical Research: Oceans, 1988. 93(C3): p. 2343-2350.
43. Hyodoh, H., et al., Frozen (iced) effect on postmortem CT–Experimental evaluation. Journal of Forensic Radiology and Imaging, 2015. 3(4): p. 210-213.
44. Pech, P., et al., Attenuation values, volume changes and artifacts in tissue due to freezing. Acta Radiol, 1987. 28(6): p. 779-82.
45. Matuszewski, S., et al., Pigs vs people: the use of pigs as analogues for humans in forensic entomology and taphonomy research. International journal of legal medicine, 2020. 134: p. 793-810.
46. Gebhart, F.T., et al., Gas at postmortem computed tomography–An evaluation of 73 non-putrefied trauma and non-trauma cases. Forensic science international, 2012. 222(1-3): p. 162-169.
47. Hemmingsson, A., A. Johansson, and W. Rauschning, Attenuation in human muscle and fat tissue in vivo and in vitro. Acta Radiologica. Diagnosis, 1982. 23(2): p. 149-151.
48. Bydder, G.M. and L. Kreel, The temperature dependence of computed tomography attenuation values. Journal of computer assisted tomography, 1979. 3(4): p. 506-510.
49. Okuma, H., et al., Comparison of attenuation of striated muscle between postmortem and antemortem computed tomography: results of a longitudinal study. PLoS One, 2014. 9(11)
50. Dokmanović, M., et al., Relationships among pre-slaughter stress, rigor mortis, blood lactate, and meat and carcass quality in pigs. Acta veterinaria, 2014. 64(1): p. 124-137.
51. Marsh, B., P.R. Woodhams, and N. Leet, Studies in meat tenderness. 5. The effects on tenderness of carcass cooling and freezing before the completion of rigor mortis. Journal of Food Science, 1968. 33(1): p. 12-18.
52. Marsh, B., Rigor mortis in beef. Journal of the Science of Food and Agriculture, 1954. 5(2): p. 70-75.
53. Levy, A.D. and J. Harcke, Essentials of forensic imaging: a text-atlas. 2010: CRC Press.
54. Bulcke, J., et al., Computed tomography of the human skeletal muscular system. Neuroradiology, 1979. 17: p. 127-136.
55. Termote, J.-L., et al., Computed tomography of the normal and pathologic muscular system. Radiology, 1980. 137(2): p. 439-444.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94745-
dc.description.abstract死後電腦斷層目前在世界多國已普遍應用在法醫領域上,作為協助病理解剖或決定死亡原因及方式的工具。在我國,自2023年3月法醫影像中心成立以來,掃描案件超過450件。因我國在進行死後電腦斷層檢查或病理解剖前的遺體會放置冷凍庫保存,因此常遇到死後電腦斷層檢查時遺體有退冰不完全的情形,造成在電腦斷層影像上出現冷凍退冰的假影,而可能影響影像上的判讀。
本次的研究目的為欲了解冷凍與退冰對死後電腦斷層影像上的影響,及尋找能夠了解遺體掃描時退冰情形的可行方法,未來能夠應用在實務上。
我們針對組織標本和完整動物做實驗,組織標本為豬腦、心、肝、肺、里肌肉、梅花肉及五花肉各5個,完整動物為4公斤小豬2隻的腦、心、肝、左肺、右腎、膀胱及右大腿肌,於攝氏-20度冷凍後,退冰過程中每半小時測量內部溫度、表面溫度和電腦斷層掃描,再分析電腦斷層影像,測量各組織標本ROI的CT值。
從研究結果得到,冷凍後在各豬內臟與豬肉的CT影像上產生低密度區域、在心臟大血管內血液和膀胱內尿液有冰晶和微小氣泡形成,及顱內和肝血管內空氣累積等冷凍假影,肺臟則毛玻璃樣陰影增加。此外,我們也在冷凍後梅花肉和五花肉上看到肌肉組織CT值下降和脂肪組織CT值上升,造成肌肉與脂肪的對比下降的現象。
而在退冰過程中,心臟的CT值最慢回到冷凍前CT值。左肺CT值則在冷凍後及退冰過程中皆持續上升,沒有回到冷凍前的CT值。
心、肝與肺的冷凍(或冷藏)及退冰(或回溫)速度最慢,腦、背肌和大腿肌則較快。在體表溫度部分,完整動物實驗冷凍組中頭與下肢表面溫度上升較快,冷藏組則是腹部表面溫度上升較快。退冰過程中。頭、上腹與下腹的體表溫度與腦、心、肝和膀胱內部溫度之間存在高度線性相關性。在體表溫度和內部溫度與內臟CT值之間在特定溫度區間存在高度線性相關性。在冷凍實驗豬隻退冰過程中,其頭部體表溫度高於11.2度、腹部溫度高於8.8度時或退冰17.5小時後,體內各器官的CT值多已回復到冷凍前的數值。實際將透過測量體表溫度來推測體內是否退冰完全的方法應用在人體身上發現,達到體內完全退冰所需要的體表溫度比本研究得到的結果較高。
本研究是以小豬為實驗對象,且樣本數量較不足,希望之後能更加瞭解人體表面溫度、內臟溫度與內臟CT值之間的關係,並更準確的推測出體內的冷凍和退冰狀態,協助實務上冷凍遺體的應用。
zh_TW
dc.description.abstractPostmortem computed tomography (PMCT) is widely used in forensic science across many countries as an aid in pathological autopsy or determining the cause and manner of death. In our country, since the establishment of the Forensic Imaging Center in March 2023, over 450 cases have been scanned. Due to the practice of storing bodies in freezers before conducting PMCT or pathological autopsies, incomplete thawing of the bodies often occurs during PMCT examinations, resulting in freeze-thaw artifacts that may affect image interpretation.
The purpose of this study is to understand the impact of freezing and thawing on PMCT images and to find feasible methods to assess the thawing status of bodies during scanning, which can be applied in practice.
We conducted experiments on tissue specimens and whole animals. Tissue specimens included 5 samples each of pig brain, heart, liver, lung, loin muscle, shoulder blade muscle, and belly muscle. Whole animals included two 4 kg piglets, from which we examined the brain, heart, liver, left lung, right kidney, bladder, and right thigh muscle. After freezing at -20°C, internal temperature, surface temperature, and CT scans were measured every half hour during the thawing process. The CT images were then analyzed, and the CT values of the ROIs (Regions of Interest) in each tissue specimen were measured.
The results showed that freezing produced low-density areas in the CT images of the piglet organs and muscle tissues, ice crystals and microbubbles in the blood vessels, the heart and the urinary bladder, and air accumulation in the brain and liver vessels, all of which are freezing artifacts. The lung also showed increased ground-glass opacity. Additionally, we observed decreased CT values in muscle tissues and increased CT values in fat tissues in the shoulder blade muscle and belly muscle, leading to a reduction in the contrast between muscle and fat.
During the thawing process, the CT values of the heart returned to their pre-freezing values the slowest. The CT values of the left lung continuously increased during both freezing and thawing, not returning to pre-freezing values.
The freezing (or refrigeration) and thawing (or warming) rates of the heart, liver, and lung were the slowest, while those of the brain, back muscle, and thigh muscle were faster. In the whole animal experiments, the surface temperatures of the head and lower limbs increased faster in the freezing group, while the surface temperature of the abdomen increased faster in the refrigeration group. During thawing, there was a high linear correlation between the surface temperatures of the head, upper abdomen, and lower abdomen and the internal temperatures of the brain, heart, liver, and bladder. There was also a high linear correlation between the surface and internal temperatures and the CT values of the internal organs within specific temperature ranges. During the thawing process of frozen experimental pigs, when the surface temperature of the head exceeds 11.2°C and the abdominal temperature exceeds 8.8°C, or after 17.5 hours of thawing, the CT values of various internal organs mostly return to the values they had before freezing. When applying the method of estimating internal thawing status through surface temperature measurement to human bodies, we found that the surface temperature required to achieve complete internal thawing was higher than the results obtained in this study.
This study used piglets as experimental subjects, and the sample size was relatively small. We hope to further understand the relationship between human surface temperature, internal organ temperature, and internal organ CT values, and more accurately estimate the freezing and thawing status inside the body to assist in the practical application of frozen bodies in forensic science.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:57:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:57:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
Abstract iii
目次 vi
圖次 viii
表次 x
第一章 介紹 1
1.1 死後電腦斷層檢查 1
1.2 死後電腦斷層的應用與限制 1
1.3 遺體的腐敗與冷卻保存 3
1.4 冷凍與退冰在死後電腦斷層影像上的假影 4
1.5 研究動機 6
第二章 材料與方法 7
2.1 組織標本實驗(豬肉及豬內臟) 7
2.2 完整動物實驗 9
2.3 遺體PMCT影像案例 11
第三章 實驗結果 12
3.1 組織標本實驗(豬肉及豬內臟)結果 12
3.2 完整動物實驗結果 23
3.3 遺體PMCT影像案例 51
第四章 討論 53
4.1 內臟與肌肉的冷凍退冰速度 53
4.2 體表溫度和內臟與肌肉的內部溫度 54
4.3 冷藏回溫和內臟與肌肉的CT影像變化 54
4.4 冷凍退冰和內臟與肌肉的CT影像和組織學變化 55
4.5 體表溫度和內臟與肌肉的CT值 56
4.6 研究限制 56
第五章 結論 57
參考文獻 58
補充圖附錄 63
補充表附錄 77
-
dc.language.isozh_TW-
dc.subject死後電腦斷層檢查zh_TW
dc.subject虛擬解剖zh_TW
dc.subject冷凍退冰假影zh_TW
dc.subject冷凍zh_TW
dc.subject退冰zh_TW
dc.subjectCT值zh_TW
dc.subjectfreeze-thaw artifacten
dc.subjectPostmortem computed tomographyen
dc.subjectCT numberen
dc.subjectthawingen
dc.subjectfreezingen
dc.subjectvirtopsyen
dc.title解凍過程中的動物內臟於死後電腦斷層上的影像表現zh_TW
dc.titleThawing effect of the freezing animal organs on postmortem computed tomographyen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡崇弘;許倬憲zh_TW
dc.contributor.oralexamcommitteeChung-Hung Tsai;Cho-Hsien Hsuen
dc.subject.keyword死後電腦斷層檢查,虛擬解剖,冷凍退冰假影,冷凍,退冰,CT值,zh_TW
dc.subject.keywordPostmortem computed tomography,virtopsy,freeze-thaw artifact,freezing,thawing,CT number,en
dc.relation.page122-
dc.identifier.doi10.6342/NTU202401407-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-01-
dc.contributor.author-college醫學院-
dc.contributor.author-dept法醫學研究所-
顯示於系所單位:法醫學科所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf3.85 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved