請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94735
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡文友 | zh_TW |
dc.contributor.advisor | Wen-Yu Tsai | en |
dc.contributor.author | 李正婷 | zh_TW |
dc.contributor.author | Cheng-Ting Lee | en |
dc.date.accessioned | 2024-08-16T17:53:05Z | - |
dc.date.available | 2024-08-17 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-06-16 | - |
dc.identifier.citation | Adam, M. P., and L. Hudgins. Kabuki syndrome: a review. Clin Genet. 2005 Mar;67 (3):209-219.
Adzick, N. S., D. D. De Leon, L. J. States, K. Lord, T. R. Bhatti, S. A. Becker, and C. A. Stanley. Surgical treatment of congenital hyperinsulinism: Results from 500 pancreatectomies in neonates and children. J Pediatr Surg. 2019 Jan;54 (1):27-32. Aguilar-Bryan, L., and J. Bryan. Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev. 1999 Apr;20 (2):101-135. Aguilar-Bryan, L., C. G. Nichols, S. W. Wechsler, J. P. t. Clement, A. E. Boyd, 3rd, G. Gonzalez, H. Herrera-Sosa, K. Nguy, J. Bryan, and D. A. Nelson. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science. 1995 Apr 21;268 (5209):423-426. Alexandrescu, S., N. Tatevian, O. Olutoye, and R. E. Brown. Persistent hyperinsulinemic hypoglycemia of infancy: constitutive activation of the mTOR pathway with associated exocrine-islet transdifferentiation and therapeutic implications. Int J Clin Exp Pathol. 2010 Aug 8;3 (7):691-705. Alkhayyat, H., H. B. Christesen, J. Steer, H. Stewart, K. Brusgaard, and K. Hussain. Mosaic Turner syndrome and hyperinsulinaemic hypoglycaemia. J Pediatr Endocrinol Metab. 2006 Dec;19 (12):1451-1457. Antunes, J. D., M. E. Geffner, B. M. Lippe, and E. M. Landaw. Childhood hypoglycemia: differentiating hyperinsulinemic from nonhyperinsulinemic causes. J Pediatr. 1990 Jan;116 (1):105-108. Arnoux, J. B., V. Verkarre, C. Saint-Martin, F. Montravers, A. Brassier, V. Valayannopoulos, F. Brunelle, J. C. Fournet, J. J. Robert, Y. Aigrain, C. Bellanne-Chantelot, and P. de Lonlay. Congenital hyperinsulinism: current trends in diagnosis and therapy. Orphanet J Rare Dis. 2011 Oct 3;6:63. Arya, V. B., M. Guemes, A. Nessa, S. Alam, P. Shah, C. Gilbert, S. Senniappan, S. E. Flanagan, S. Ellard, and K. Hussain. Clinical and histological heterogeneity of congenital hyperinsulinism due to paternally inherited heterozygous ABCC8/KCNJ11 mutations. Eur J Endocrinol. 2014a Dec;171 (6):685-695. Arya, V. B., S. Senniappan, H. Demirbilek, S. Alam, S. E. Flanagan, S. Ellard, and K. Hussain. Pancreatic endocrine and exocrine function in children following near-total pancreatectomy for diffuse congenital hyperinsulinism. PLoS One. 2014b May 19;9 (5):e98054. Ashcroft, F. M., D. E. Harrison, and S. J. Ashcroft. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature. 1984 Nov 29-Dec 5;312 (5993):446-448. Aynsley-Green, A., K. Hussain, J. Hall, J. M. Saudubray, C. Nihoul-Fekete, P. De Lonlay-Debeney, F. Brunelle, T. Otonkoski, P. Thornton, and K. J. Lindley. Practical management of hyperinsulinism in infancy. Arch Dis Child Fetal Neonatal Ed. 2000 Mar;82 (2):F98-F107. Bakalov, V. K., C. Cheng, J. Zhou, and C. A. Bondy. X-chromosome gene dosage and the risk of diabetes in Turner syndrome. J Clin Endocrinol Metab. 2009 Sep;94 (9):3289-3296. Banerjee, I., D. De Leon, and M. J. Dunne. Extreme caution on the use of sirolimus for the congenital hyperinsulinism in infancy patient. Orphanet J Rare Dis. 2017 Apr 14;12 (1):70. Banerjee, I., J. Raskin, J. B. Arnoux, D. D. De Leon, S. A. Weinzimer, M. Hammer, D. M. Kendall, and P. S. Thornton. Congenital hyperinsulinism in infancy and childhood: challenges, unmet needs and the perspective of patients and families. Orphanet J Rare Dis. 2022 Feb 19;17 (1):61. Banerjee, I., M. Salomon-Estebanez, P. Shah, J. Nicholson, K. E. Cosgrove, and M. J. Dunne. Therapies and outcomes of congenital hyperinsulinism-induced hypoglycaemia. Diabet Med. 2019 Jan;36 (1):9-21. Banerjee, I., M. Skae, S. E. Flanagan, L. Rigby, L. Patel, M. Didi, J. Blair, S. Ehtisham, S. Ellard, K. E. Cosgrove, M. J. Dunne, and P. E. Clayton. The contribution of rapid KATP channel gene mutation analysis to the clinical management of children with congenital hyperinsulinism. Eur J Endocrinol. 2011 May;164 (5):733-740. Bas, F., F. Darendeliler, D. Demirkol, R. Bundak, N. Saka, and H. Gunoz. Successful therapy with calcium channel blocker (nifedipine) in persistent neonatal hyperinsulinemic hypoglycemia of infancy. J Pediatr Endocrinol Metab. 1999 Nov-Dec;12 (6):873-878. Beardsall, K., L. Thomson, C. Guy, I. Iglesias-Platas, M. M. van Weissenbruch, S. Bond, A. Allison, S. Kim, S. Petrou, B. Pantaleo, R. Hovorka, D. Dunger, and R. collaborative. Real-time continuous glucose monitoring in preterm infants (REACT): an international, open-label, randomised controlled trial. Lancet Child Adolesc Health. 2021 Apr;5 (4):265-273. Bellanne-Chantelot, C., C. Saint-Martin, M. J. Ribeiro, C. Vaury, V. Verkarre, J. B. Arnoux, V. Valayannopoulos, S. Gobrecht, C. Sempoux, J. Rahier, J. C. Fournet, F. Jaubert, Y. Aigrain, C. Nihoul-Fekete, and P. de Lonlay. ABCC8 and KCNJ11 molecular spectrum of 109 patients with diazoxide-unresponsive congenital hyperinsulinism. J Med Genet. 2010 Nov;47 (11):752-759. Beltrand, J., M. Caquard, J. B. Arnoux, K. Laborde, G. Velho, V. Verkarre, J. Rahier, F. Brunelle, C. Nihoul-Fekete, J. M. Saudubray, J. J. Robert, and P. de Lonlay. Glucose metabolism in 105 children and adolescents after pancreatectomy for congenital hyperinsulinism. Diabetes Care. 2012 Feb;35 (2):198-203. Bonfig, W., N. J. Salem, K. Heiliger, M. Hempel, G. Lederer, M. Bornkamm, K. Wieland, P. Lohse, S. Burdach, and K. Oexle. Recurrent hypoglycemia due to growth hormone deficiency in an infant with Turner syndrome. J Pediatr Endocrinol Metab. 2012;25 (9-10):991-995. Brady, C., A. A. Palladino, and I. Gutmark-Little. A novel case of compound heterozygous congenital hyperinsulinism without high insulin levels. Int J Pediatr Endocrinol. 2015;2015 (1):16. Brandt, A., N. Agarwal, D. Giri, Z. Yung, M. Didi, and S. Senniappan. Hyperinsulinism hyperammonaemia (HI/HA) syndrome due to GLUD1 mutation: phenotypic variations ranging from late presentation to spontaneous resolution. J Pediatr Endocrinol Metab. 2020 May 26;33 (5):675-679. Brewer, C. J., M. Gillespie, J. Fierro, W. A. Scaringe, J. M. Li, C. Y. Lee, H. Y. Yen, H. Gao, and S. P. Strom. The Value of Parental Testing by Next-Generation Sequencing Includes the Detection of Germline Mosaicism. J Mol Diagn. 2020 May;22 (5):670-678. Brioude, F., J. M. Kalish, A. Mussa, A. C. Foster, J. Bliek, G. B. Ferrero, S. E. Boonen, T. Cole, R. Baker, M. Bertoletti, G. Cocchi, C. Coze, M. De Pellegrin, K. Hussain, A. Ibrahim, M. D. Kilby, M. Krajewska-Walasek, C. P. Kratz, E. J. Ladusans, P. Lapunzina, Y. Le Bouc, S. M. Maas, F. Macdonald, K. Ounap, L. Peruzzi, S. Rossignol, S. Russo, C. Shipster, A. Skorka, K. Tatton-Brown, J. Tenorio, C. Tortora, K. Gronskov, I. Netchine, R. C. Hennekam, D. Prawitt, Z. Tumer, T. Eggermann, D. J. G. Mackay, A. Riccio, and E. R. Maher. Expert consensus document: Clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol. 2018 Apr;14 (4):229-249. Cabezas, O. R., S. E. Flanagan, H. Stanescu, E. Garcia-Martinez, R. Caswell, H. Lango-Allen, M. Anton-Gamero, J. Argente, A. M. Bussell, A. Brandli, C. Cheshire, E. Crowne, S. Dumitriu, R. Drynda, J. P. Hamilton-Shield, W. Hayes, A. Hofherr, D. Iancu, N. Issler, C. Jefferies, P. Jones, M. Johnson, A. Kesselheim, E. Klootwijk, M. Koettgen, W. Lewis, J. M. Martos, M. Mozere, J. Norman, V. Patel, A. Parrish, C. Perez-Cerda, J. Pozo, S. A. Rahman, N. Sebire, M. Tekman, P. D. Turnpenny, W. V. Hoff, D. Viering, M. N. Weedon, P. Wilson, L. Guay-Woodford, R. Kleta, K. Hussain, S. Ellard, and D. Bockenhauer. Polycystic Kidney Disease with Hyperinsulinemic Hypoglycemia Caused by a Promoter Mutation in Phosphomannomutase 2. J Am Soc Nephrol. 2017 Aug;28 (8):2529-2539. Calabria, A. C., C. Li, P. R. Gallagher, C. A. Stanley, and D. D. De Leon. GLP-1 receptor antagonist exendin-(9-39) elevates fasting blood glucose levels in congenital hyperinsulinism owing to inactivating mutations in the ATP-sensitive K+ channel. Diabetes. 2012 Oct;61 (10):2585-2591. Cartier, E. A., L. R. Conti, C. A. Vandenberg, and S. L. Shyng. Defective trafficking and function of KATP channels caused by a sulfonylurea receptor 1 mutation associated with persistent hyperinsulinemic hypoglycemia of infancy. Proc Natl Acad Sci U S A. 2001 Feb 27;98 (5):2882-2887. Chen, C. H., J. H. Yang, C. W. K. Chiang, C. N. Hsiung, P. E. Wu, L. C. Chang, H. W. Chu, J. Chang, I. W. Song, S. L. Yang, Y. T. Chen, F. T. Liu, and C. Y. Shen. Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum Mol Genet. 2016 Dec 15;25 (24):5321-5331. Chen, P. C., E. M. Olson, Q. Zhou, Y. Kryukova, H. M. Sampson, D. Y. Thomas, and S. L. Shyng. Carbamazepine as a novel small molecule corrector of trafficking-impaired ATP-sensitive potassium channels identified in congenital hyperinsulinism. J Biol Chem. 2013 Jul 19;288 (29):20942-20954. Chondrogiannis, S., G. Grassetto, M. C. Marzola, L. Rampin, A. Massaro, E. Bellan, A. Ferretti, A. Mazza, A. Al-Nahhas, and D. Rubello. 18F-DOPA PET/CT biodistribution consideration in 107 consecutive patients with neuroendocrine tumours. Nucl Med Commun. 2012 Feb;33 (2):179-184. Christesen, H. B., B. B. Jacobsen, S. Odili, C. Buettger, A. Cuesta-Munoz, T. Hansen, K. Brusgaard, O. Massa, M. A. Magnuson, C. Shiota, F. M. Matschinsky, and F. Barbetti. The second activating glucokinase mutation (A456V): implications for glucose homeostasis and diabetes therapy. Diabetes. 2002 Apr;51 (4):1240-1246. Christesen, H. B., N. D. Tribble, A. Molven, J. Siddiqui, T. Sandal, K. Brusgaard, S. Ellard, P. R. Njolstad, J. Alm, B. Brock Jacobsen, K. Hussain, and A. L. Gloyn. Activating glucokinase (GCK) mutations as a cause of medically responsive congenital hyperinsulinism: prevalence in children and characterisation of a novel GCK mutation. Eur J Endocrinol. 2008 Jul;159 (1):27-34. Christiansen, C. D., H. Petersen, A. L. Nielsen, S. Detlefsen, K. Brusgaard, L. Rasmussen, M. Melikyan, K. Ekstrom, E. Globa, A. H. Rasmussen, C. Hovendal, and H. T. Christesen. 18F-DOPA PET/CT and 68Ga-DOTANOC PET/CT scans as diagnostic tools in focal congenital hyperinsulinism: a blinded evaluation. Eur J Nucl Med Mol Imaging. 2018 Feb;45 (2):250-261. Clayton, P. T., S. Eaton, A. Aynsley-Green, M. Edginton, K. Hussain, S. Krywawych, V. Datta, H. E. Malingre, R. Berger, and I. E. van den Berg. Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion. J Clin Invest. 2001 Aug;108 (3):457-465. Cleveland, M. H., J. M. Zook, M. Salit, and P. M. Vallone. Determining Performance Metrics for Targeted Next-Generation Sequencing Panels Using Reference Materials. J Mol Diagn. 2018 Sep;20 (5):583-590. Cohen, M. C., E. C. Roper, N. J. Sebire, J. Stanek, and D. O. Anumba. Placental mesenchymal dysplasia associated with fetal aneuploidy. Prenat Diagn. 2005 Mar;25 (3):187-192. Colclough, K., C. Bellanne-Chantelot, C. Saint-Martin, S. E. Flanagan, and S. Ellard. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha and 4 alpha in maturity-onset diabetes of the young and hyperinsulinemic hypoglycemia. Hum Mutat. 2013 May;34 (5):669-685. Cook, D. L., and C. N. Hales. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature. 1984 Sep 20-26;311 (5983):271-273. Corda, H., S. Kummer, A. Welters, N. Teig, D. Klee, E. Mayatepek, and T. Meissner. Treatment with long-acting lanreotide autogel in early infancy in patients with severe neonatal hyperinsulinism. Orphanet J Rare Dis. 2017 Jun 2;12 (1):108. Crane, A., and L. Aguilar-Bryan. Assembly, maturation, and turnover of K(ATP) channel subunits. J Biol Chem. 2004 Mar 5;279 (10):9080-9090. Cryer, P. E. Glucose counterregulation: prevention and correction of hypoglycemia in humans. Am J Physiol. 1993 Feb;264 (2 Pt 1):E149-155. Cuesta-Munoz, A. L., H. Huopio, T. Otonkoski, J. M. Gomez-Zumaquero, K. Nanto-Salonen, J. Rahier, S. Lopez-Enriquez, M. A. Garcia-Gimeno, P. Sanz, F. C. Soriguer, and M. Laakso. Severe persistent hyperinsulinemic hypoglycemia due to a de novo glucokinase mutation. Diabetes. 2004 Aug;53 (8):2164-2168. Cuff, H., K. Lord, L. Ballester, T. Scully, N. Stewart, and D. D. De Leon. The Use of Lanreotide in the Treatment of Congenital Hyperinsulinism. J Clin Endocrinol Metab. 2022 Jul 14;107 (8):e3115-e3120. Dabrowski, M., T. Larsen, F. M. Ashcroft, J. Bondo Hansen, and P. Wahl. Potent and selective activation of the pancreatic beta-cell type K(ATP) channel by two novel diazoxide analogues. Diabetologia. 2003 Oct;46 (10):1375-1382. Damaj, L., M. le Lorch, V. Verkarre, C. Werl, L. Hubert, C. Nihoul-Fekete, Y. Aigrain, Y. de Keyzer, S. P. Romana, C. Bellanne-Chantelot, P. de Lonlay, and F. Jaubert. Chromosome 11p15 paternal isodisomy in focal forms of neonatal hyperinsulinism. J Clin Endocrinol Metab. 2008 Dec;93 (12):4941-4947. Dastamani, A., M. Guemes, C. Pitfield, K. Morgan, M. Rajab, C. Rottenburger, J. Bomanji, P. De Coppi, M. Dattani, and P. Shah. The Use of a Long-Acting Somatostatin Analogue (Lanreotide) in Three Children with Focal Forms of Congenital Hyperinsulinaemic Hypoglycaemia. Horm Res Paediatr. 2019;91 (1):56-61. De Leon, D. D., J. B. Arnoux, I. Banerjee, I. Bergada, T. Bhatti, L. S. Conwell, J. F. Fu, S. E. Flanagan, D. Gillis, T. Meissner, K. Mohnike, T. L. S. Pasquini, P. Shah, C. A. Stanley, A. Vella, T. Yorifuji, and P. S. Thornton. International Guidelines for the Diagnosis and Management of Hyperinsulinism. Horm Res Paediatr. 2024;97 (3):279-298. De Leon, D. D., C. Li, M. I. Delson, F. M. Matschinsky, C. A. Stanley, and D. A. Stoffers. Exendin-(9-39) corrects fasting hypoglycemia in SUR-1-/- mice by lowering cAMP in pancreatic beta-cells and inhibiting insulin secretion. J Biol Chem. 2008 Sep 19;283 (38):25786-25793. De Leon, D. D., and C. A. Stanley. Mechanisms of Disease: advances in diagnosis and treatment of hyperinsulinism in neonates. Nat Clin Pract Endocrinol Metab. 2007 Jan;3 (1):57-68. de Lonlay-Debeney, P., F. Poggi-Travert, J. C. Fournet, C. Sempoux, C. Dionisi Vici, F. Brunelle, G. Touati, J. Rahier, C. Junien, C. Nihoul-Fekete, J. J. Robert, and J. M. Saudubray. Clinical features of 52 neonates with hyperinsulinism. N Engl J Med. 1999 Apr 15;340 (15):1169-1175. de Lonlay, P., J. C. Fournet, G. Touati, M. S. Groos, D. Martin, C. Sevin, V. Delagne, C. Mayaud, V. Chigot, C. Sempoux, M. C. Brusset, K. Laborde, C. Bellane-Chantelot, A. Vassault, J. Rahier, C. Junien, F. Brunelle, C. Nihoul-Fekete, J. M. Saudubray, and J. J. Robert. Heterogeneity of persistent hyperinsulinaemic hypoglycaemia. A series of 175 cases. Eur J Pediatr. 2002 Jan;161 (1):37-48. Demirbilek, H., and K. Hussain. Congenital Hyperinsulinism: Diagnosis and Treatment Update. J Clin Res Pediatr Endocrinol. 2017 Dec 30;9 (Suppl 2):69-87. Devriendt, K. Hydatidiform mole and triploidy: the role of genomic imprinting in placental development. Hum Reprod Update. 2005 Mar-Apr;11 (2):137-142. Dhawan, S., S. I. Tschen, C. Zeng, T. Guo, M. Hebrok, A. Matveyenko, and A. Bhushan. DNA methylation directs functional maturation of pancreatic beta cells. J Clin Invest. 2015 Jul 1;125 (7):2851-2860. Ding, D., M. Wang, J. X. Wu, Y. Kang, and L. Chen. The Structural Basis for the Binding of Repaglinide to the Pancreatic K(ATP) Channel. Cell Rep. 2019 May 7;27 (6):1848-1857 e1844. Doupnik, C. A., N. Davidson, and H. A. Lester. The inward rectifier potassium channel family. Curr Opin Neurobiol. 1995 Jun;5 (3):268-277. Elliott, M., R. Bayly, T. Cole, I. K. Temple, and E. R. Maher. Clinical features and natural history of Beckwith-Wiedemann syndrome: presentation of 74 new cases. Clin Genet. 1994 Aug;46 (2):168-174. ElSheikh, A., and S. L. Shyng. K(ATP) channel mutations in congenital hyperinsulinism: Progress and challenges towards mechanism-based therapies. Front Endocrinol (Lausanne). 2023 Mar 28:14:1161117. Fafoula, O., H. Alkhayyat, and K. Hussain. Prolonged hyperinsulinaemic hypoglycaemia in newborns with intrauterine growth retardation. Arch Dis Child Fetal Neonatal Ed. 2006 Nov;91 (6):F467. Fan, Z. C., J. W. Ni, L. Yang, L. Y. Hu, S. M. Ma, M. Mei, B. J. Sun, H. J. Wang, and W. H. Zhou. Uncovering the molecular pathogenesis of congenital hyperinsulinism by panel gene sequencing in 32 Chinese patients. Mol Genet Genomic Med. 2015 Nov;3 (6):526-536. Ferrara, C., P. Patel, S. Becker, C. A. Stanley, and A. Kelly. Biomarkers of Insulin for the Diagnosis of Hyperinsulinemic Hypoglycemia in Infants and Children. J Pediatr. 2016 Jan;168:212-219. Ferrara, C. T., K. E. Boodhansingh, E. Paradies, G. Fiermonte, L. J. Steinkrauss, L. S. Topor, J. B. Quintos, A. Ganguly, D. D. De Leon, F. Palmieri, and C. A. Stanley. Novel Hypoglycemia Phenotype in Congenital Hyperinsulinism Due to Dominant Mutations of Uncoupling Protein 2. J Clin Endocrinol Metab. 2017 Mar 1;102 (3):942-949. Filling, C., B. Keller, D. Hirschberg, H. U. Marschall, H. Jornvall, M. J. Bennett, and U. Oppermann. Role of short-chain hydroxyacyl CoA dehydrogenases in SCHAD deficiency. Biochem Biophys Res Commun. 2008 Mar 28;368 (1):6-11. Finegold, D. N., C. A. Stanley, and L. Baker. Glycemic response to glucagon during fasting hypoglycemia: an aid in the diagnosis of hyperinsulinism. J Pediatr. 1980 Feb;96 (2):257-259. Flanagan, S. E., R. R. Kapoor, I. Banerjee, C. Hall, V. V. Smith, K. Hussain, and S. Ellard. Dominantly acting ABCC8 mutations in patients with medically unresponsive hyperinsulinaemic hypoglycaemia. Clin Genet. 2011a Jun;79 (6):582-587. Flanagan, S. E., R. R. Kapoor, G. Mali, D. Cody, N. Murphy, B. Schwahn, T. Siahanidou, I. Banerjee, T. Akcay, O. Rubio-Cabezas, J. P. Shield, K. Hussain, and S. Ellard. Diazoxide-responsive hyperinsulinemic hypoglycemia caused by HNF4A gene mutations. Eur J Endocrinol. 2010 May;162 (5):987-992. Flanagan, S. E., A. M. Patch, J. M. Locke, T. Akcay, E. Simsek, M. Alaei, Z. Yekta, M. Desai, R. R. Kapoor, K. Hussain, and S. Ellard. Genome-wide homozygosity analysis reveals HADH mutations as a common cause of diazoxide-responsive hyperinsulinemic-hypoglycemia in consanguineous pedigrees. J Clin Endocrinol Metab. 2011b Mar;96 (3):E498-502. Flanagan, S. E., F. Vairo, M. B. Johnson, R. Caswell, T. W. Laver, H. Lango Allen, K. Hussain, and S. Ellard. A CACNA1D mutation in a patient with persistent hyperinsulinaemic hypoglycaemia, heart defects, and severe hypotonia. Pediatr Diabetes. 2017 Jun;18 (4):320-323. Flanagan, S. E., W. Xie, R. Caswell, A. Damhuis, C. Vianey-Saban, T. Akcay, F. Darendeliler, F. Bas, A. Guven, Z. Siklar, G. Ocal, M. Berberoglu, N. Murphy, M. O'Sullivan, A. Green, P. E. Clayton, I. Banerjee, P. T. Clayton, K. Hussain, M. N. Weedon, and S. Ellard. Next-generation sequencing reveals deep intronic cryptic ABCC8 and HADH splicing founder mutations causing hyperinsulinism by pseudoexon activation. Am J Hum Genet. 2013 Jan 10;92 (1):131-136. Fleury, C., M. Neverova, S. Collins, S. Raimbault, O. Champigny, C. Levi-Meyrueis, F. Bouillaud, M. F. Seldin, R. S. Surwit, D. Ricquier, and C. H. Warden. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet. 1997 Mar;15 (3):269-272. Fournet, J. C., C. Mayaud, P. de Lonlay, M. S. Gross-Morand, V. Verkarre, M. Castanet, M. Devillers, J. Rahier, F. Brunelle, J. J. Robert, C. Nihoul-Fekete, J. M. Saudubray, and C. Junien. Unbalanced expression of 11p15 imprinted genes in focal forms of congenital hyperinsulinism: association with a reduction to homozygosity of a mutation in ABCC8 or KCNJ11. Am J Pathol. 2001 Jun;158 (6):2177-2184. Garg, P. K., S. J. Lokitz, L. Truong, B. Putegnat, C. Reynolds, L. Rodriguez, R. Nazih, J. Nedrelow, M. Guardia, J. K. Uffman, S. Garg, and P. S. Thornton. Pancreatic uptake and radiation dosimetry of 6-[18F]fluoro-L-DOPA from PET imaging studies in infants with congenital hyperinsulinism. PLoS One. 2017 Nov 8;12 (11):e0186340. Gibson, C. E., K. E. Boodhansingh, C. Li, L. Conlin, P. Chen, S. A. Becker, T. Bhatti, V. Bamba, N. S. Adzick, D. D. De Leon, A. Ganguly, and C. A. Stanley. Congenital Hyperinsulinism in Infants with Turner Syndrome: Possible Association with Monosomy X and KDM6A Haploinsufficiency. Horm Res Paediatr. 2018;89 (6):413-422. Gillis, D., A. Krishnamohan, B. Yaacov, A. Shaag, J. E. Jackman, and O. Elpeleg. TRMT10A dysfunction is associated with abnormalities in glucose homeostasis, short stature and microcephaly. J Med Genet. 2014 Sep;51 (9):581-586. Giri, D., M. L. Vignola, A. Gualtieri, V. Scagliotti, P. McNamara, M. Peak, M. Didi, C. Gaston-Massuet, and S. Senniappan. Novel FOXA2 mutation causes Hyperinsulinism, Hypopituitarism with Craniofacial and Endoderm-derived organ abnormalities. Hum Mol Genet. 2017 Nov 15;26 (22):4315-4326. Glaser, B., I. Blech, Y. Krakinovsky, J. Ekstein, D. Gillis, K. Mazor-Aronovitch, H. Landau, and D. Abeliovich. ABCC8 mutation allele frequency in the Ashkenazi Jewish population and risk of focal hyperinsulinemic hypoglycemia. Genet Med. 2011 Oct;13 (10):891-894. Glaser, B., P. Kesavan, M. Heyman, E. Davis, A. Cuesta, A. Buchs, C. A. Stanley, P. S. Thornton, M. A. Permutt, F. M. Matschinsky, and K. C. Herold. Familial hyperinsulinism caused by an activating glucokinase mutation. N Engl J Med. 1998 Jan 22;338 (4):226-230. Glaser, B., F. Ryan, M. Donath, H. Landau, C. A. Stanley, L. Baker, D. E. Barton, and P. S. Thornton. Hyperinsulinism caused by paternal-specific inheritance of a recessive mutation in the sulfonylurea-receptor gene. Diabetes. 1999 Aug;48 (8):1652-1657. Gonzalez-Barroso, M. M., I. Giurgea, F. Bouillaud, A. Anedda, C. Bellanne-Chantelot, L. Hubert, Y. de Keyzer, P. de Lonlay, and D. Ricquier. Mutations in UCP2 in congenital hyperinsulinism reveal a role for regulation of insulin secretion. PLoS One. 2008; 3 (12):e3850. Goto, M. Possible relationship between ring X chromosome and neonatal hypoglycemia. J Pediatr Endocrinol Metab. 2008 Nov;21 (11):1103. Grange, D. K., H. I. Roessler, C. McClenaghan, K. Duran, K. Shields, M. S. Remedi, N. Knoers, J. M. Lee, E. P. Kirk, I. Scurr, S. F. Smithson, G. K. Singh, M. M. van Haelst, C. G. Nichols, and G. van Haaften. Cantu syndrome: Findings from 74 patients in the International Cantu Syndrome Registry. Am J Med Genet C Semin Med Genet. 2019 Dec;181 (4):658-681. Gravholt, C. H., N. H. Andersen, G. S. Conway, O. M. Dekkers, M. E. Geffner, K. O. Klein, A. E. Lin, N. Mauras, C. A. Quigley, K. Rubin, D. E. Sandberg, T. C. J. Sas, M. Silberbach, V. Soderstrom-Anttila, K. Stochholm, J. A. van Alfen-van derVelden, J. Woelfle, P. F. Backeljauw, and G. International Turner Syndrome Consensus. Clinical practice guidelines for the care of girls and women with Turner syndrome: proceedings from the 2016 Cincinnati International Turner Syndrome Meeting. Eur J Endocrinol. 2017 Sep;177 (3):G1-G70. Gravholt, C. H., S. Juul, R. W. Naeraa, and J. Hansen. Morbidity in Turner syndrome. J Clin Epidemiol. 1998 Feb;51 (2):147-158. Gregory, L. C., C. B. Ferreira, S. K. Young-Baird, H. J. Williams, M. Harakalova, G. van Haaften, S. A. Rahman, C. Gaston-Massuet, D. Kelberman, Gosgene, W. Qasim, S. A. Camper, T. E. Dever, P. Shah, I. Robinson, and M. T. Dattani. Impaired EIF2S3 function associated with a novel phenotype of X-linked hypopituitarism with glucose dysregulation. EBioMedicine. 2019 Apr;42:470-480. Guemes, M., P. Shah, K. Rozenkova, C. Gilbert, K. Morgan, and K. Hussain. Severe Hyperinsulinaemic Hypoglycaemia in Beckwith-Wiedemann Syndrome due to Paternal Uniparental Disomy of 11p15.5 Managed with Sirolimus Therapy. Horm Res Paediatr. 2016;85 (5):353-357. Gussinyer, M., M. Clemente, R. Cebrian, D. Yeste, M. Albisu, and A. Carrascosa. Glucose intolerance and diabetes are observed in the long-term follow-up of nonpancreatectomized patients with persistent hyperinsulinemic hypoglycemia of infancy due to mutations in the ABCC8 gene. Diabetes Care. 2008 Jun;31 (6):1257-1259. Gutgold, A., D. J. Gross, B. Glaser, and A. Szalat. Diagnosis of ABCC8 Congenital Hyperinsulinism of Infancy in a 20-Year-Old Man Evaluated for Factitious Hypoglycemia. J Clin Endocrinol Metab. 2017 Feb 1;102 (2):345-349. Haliloglu, B., H. Tuzun, S. E. Flanagan, M. Celik, A. Kaya, S. Ellard, and M. N. Ozbek. Sirolimus-Induced Hepatitis in Two Patients with Hyperinsulinemic Hypoglycemia. J Clin Res Pediatr Endocrinol. 2018 Jul 31;10 (3):279-283. Hamilton, A. J., C. Bingham, T. J. McDonald, P. R. Cook, R. C. Caswell, M. N. Weedon, R. A. Oram, B. M. Shields, M. Shepherd, C. D. Inward, J. P. Hamilton-Shield, J. Kohlhase, S. Ellard, and A. T. Hattersley. The HNF4A R76W mutation causes atypical dominant Fanconi syndrome in addition to a beta cell phenotype. J Med Genet. 2014 Mar;51 (3):165-169. Hardy, O. T., M. Hernandez-Pampaloni, J. R. Saffer, J. S. Scheuermann, L. M. Ernst, R. Freifelder, H. Zhuang, C. MacMullen, S. Becker, N. S. Adzick, C. Divgi, A. Alavi, and C. A. Stanley. Accuracy of [18F]fluorodopa positron emission tomography for diagnosing and localizing focal congenital hyperinsulinism. J Clin Endocrinol Metab. 2007a Dec;92 (12):4706-4711. Hardy, O. T., M. Hernandez-Pampaloni, J. R. Saffer, M. Suchi, E. Ruchelli, H. Zhuang, A. Ganguly, R. Freifelder, N. S. Adzick, A. Alavi, and C. A. Stanley. Diagnosis and localization of focal congenital hyperinsulinism by 18F-fluorodopa PET scan. J Pediatr. 2007b Feb;150 (2):140-145. Henquin, J. C., C. Sempoux, J. Marchandise, S. Godecharles, Y. Guiot, M. Nenquin, and J. Rahier. Congenital hyperinsulinism caused by hexokinase I expression or glucokinase-activating mutation in a subset of beta-cells. Diabetes. 2013 May;62 (5):1689-1696. Heslegrave, A. J., R. R. Kapoor, S. Eaton, B. Chadefaux, T. Akcay, E. Simsek, S. E. Flanagan, S. Ellard, and K. Hussain. Leucine-sensitive hyperinsulinaemic hypoglycaemia in patients with loss of function mutations in 3-Hydroxyacyl-CoA Dehydrogenase. Orphanet J Rare Dis. 2012 May 14;7:25. Hoban, P. R., J. Heighway, G. R. White, B. Baker, J. Gardner, J. M. Birch, P. Morris-Jones, and A. M. Kelsey. Genome-wide loss of maternal alleles in a nephrogenic rest and Wilms' tumour from a BWS patient. Hum Genet. 1995 Jun;95 (6):651-656. Houghton, J. A., I. Banerjee, G. Shaikh, S. Jabbar, T. W. Laver, E. Cheesman, A. Chinnoy, D. Yau, M. Salomon-Estebanez, M. J. Dunne, and S. E. Flanagan. Unravelling the genetic causes of mosaic islet morphology in congenital hyperinsulinism. J Pathol Clin Res. 2020 Jan;6 (1):12-16. Hsu, P. Y., Y. C. Tung, W. Y. Tsai, J. S. Lee, and P. H. Hsiao. Effect of growth hormone therapy on adult height of children with Turner syndrome. J Formos Med Assoc. 2008 Sep;107 (9):704-709. Huopio, H., F. Reimann, R. Ashfield, J. Komulainen, H. L. Lenko, J. Rahier, I. Vauhkonen, J. Kere, M. Laakso, F. Ashcroft, and T. Otonkoski. Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1. J Clin Invest. 2000 Oct;106 (7):897-906. Hussain, K., and A. Aynsley-Green. Hyperinsulinism in infancy: understanding the pathophysiology. Int J Biochem Cell Biol. 2003 Sep;35 (9):1312-1317. Hussain, K., O. Blankenstein, P. De Lonlay, and H. T. Christesen. Hyperinsulinaemic hypoglycaemia: biochemical basis and the importance of maintaining normoglycaemia during management. Arch Dis Child. 2007 Jul;92 (7):568-570. Hussain, K., K. E. Cosgrove, R. M. Shepherd, A. Luharia, V. V. Smith, S. Kassem, J. W. Gregory, A. Sivaprasadarao, H. T. Christesen, B. B. Jacobsen, K. Brusgaard, B. Glaser, E. A. Maher, K. J. Lindley, P. Hindmarsh, M. Dattani, and M. J. Dunne. Hyperinsulinemic hypoglycemia in Beckwith-Wiedemann syndrome due to defects in the function of pancreatic beta-cell adenosine triphosphate-sensitive potassium channels. J Clin Endocrinol Metab. 2005 Jul;90 (7):4376-4382. Hussain, K., S. E. Flanagan, V. V. Smith, M. Ashworth, M. Day, A. Pierro, and S. Ellard. An ABCC8 gene mutation and mosaic uniparental isodisomy resulting in atypical diffuse congenital hyperinsulinism. Diabetes. 2008 Jan;57 (1):259-263. Inagaki, N., T. Gonoi, J. P. t. Clement, N. Namba, J. Inazawa, G. Gonzalez, L. Aguilar-Bryan, S. Seino, and J. Bryan. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science. 1995 Nov 17;270 (5239):1166-1170. Inbar-Feigenberg, M., S. Choufani, C. Cytrynbaum, Y. A. Chen, L. Steele, C. Shuman, P. N. Ray, and R. Weksberg. Mosaicism for genome-wide paternal uniparental disomy with features of multiple imprinting disorders: diagnostic and management issues. Am J Med Genet A. 2013 Jan;161A (1):13-20. Investigators, G. P. P., D. Smedley, K. R. Smith, A. Martin, E. A. Thomas, E. M. McDonagh, V. Cipriani, J. M. Ellingford, G. Arno, A. Tucci, J. Vandrovcova, G. Chan, H. J. Williams, T. Ratnaike, W. Wei, K. Stirrups, K. Ibanez, L. Moutsianas, M. Wielscher, A. Need, M. R. Barnes, L. Vestito, J. Buchanan, S. Wordsworth, S. Ashford, K. Rehmstrom, E. Li, G. Fuller, P. Twiss, O. Spasic-Boskovic, S. Halsall, R. A. Floto, K. Poole, A. Wagner, S. G. Mehta, M. Gurnell, N. Burrows, R. James, C. Penkett, E. Dewhurst, S. Graf, R. Mapeta, M. Kasanicki, A. Haworth, H. Savage, M. Babcock, M. G. Reese, M. Bale, E. Baple, C. Boustred, H. Brittain, A. de Burca, M. Bleda, A. Devereau, D. Halai, E. Haraldsdottir, Z. Hyder, D. Kasperaviciute, C. Patch, D. Polychronopoulos, A. Matchan, R. Sultana, M. Ryten, A. L. T. Tavares, C. Tregidgo, C. Turnbull, M. Welland, S. Wood, C. Snow, E. Williams, S. Leigh, R. E. Foulger, L. C. Daugherty, O. Niblock, I. U. S. Leong, C. F. Wright, J. Davies, C. Crichton, J. Welch, K. Woods, L. Abulhoul, P. Aurora, D. Bockenhauer, A. Broomfield, M. A. Cleary, T. Lam, M. Dattani, E. Footitt, V. Ganesan, S. Grunewald, S. Compeyrot-Lacassagne, F. Muntoni, C. Pilkington, R. Quinlivan, N. Thapar, C. Wallis, L. R. Wedderburn, A. Worth, T. Bueser, C. Compton, C. Deshpande, H. Fassihi, E. Haque, L. Izatt, D. Josifova, S. Mohammed, L. Robert, S. Rose, D. Ruddy, R. Sarkany, G. Say, A. C. Shaw, A. Wolejko, B. Habib, G. Burns, S. Hunter, R. J. Grocock, S. J. Humphray, P. N. Robinson, M. Haendel, M. A. Simpson, S. Banka, J. Clayton-Smith, S. Douzgou, G. Hall, H. B. Thomas, R. T. O'Keefe, M. Michaelides, A. T. Moore, S. Malka, N. Pontikos, A. C. Browning, V. Straub, G. S. Gorman, R. Horvath, R. Quinton, A. M. Schaefer, P. Yu-Wai-Man, D. M. Turnbull, R. McFarland, R. W. Taylor, E. O'Connor, J. Yip, K. Newland, H. R. Morris, J. Polke, N. W. Wood, C. Campbell, C. Camps, K. Gibson, N. Koelling, T. Lester, A. H. Nemeth, C. Palles, S. Patel, N. B. A. Roy, A. Sen, J. Taylor, P. Cacheiro, J. O. Jacobsen, E. G. Seaby, V. Davison, L. Chitty, A. Douglas, K. Naresh, D. McMullan, S. Ellard, I. K. Temple, A. D. Mumford, G. Wilson, P. Beales, M. Bitner-Glindzicz, G. Black, J. R. Bradley, P. Brennan, J. Burn, P. F. Chinnery, P. Elliott, F. Flinter, H. Houlden, M. Irving, W. Newman, S. Rahman, J. A. Sayer, J. C. Taylor, A. R. Webster, A. O. M. Wilkie, W. H. Ouwehand, F. L. Raymond, J. Chisholm, S. Hill, D. Bentley, R. H. Scott, T. Fowler, A. Rendon, and M. Caulfield. 100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care - Preliminary Report. N Engl J Med. 2021 Nov 11;385 (20):1868-1880. Isik, E., H. Demirbilek, J. A. Houghton, S. Ellard, S. E. Flanagan, and K. Hussain. Congenital Hyperinsulinism and Evolution to Sulfonylurearesponsive Diabetes Later in Life due to a Novel Homozygous p.L171F ABCC8 Mutation. J Clin Res Pediatr Endocrinol. 2019 Feb 20;11 (1):82-87. Kaiser-Rogers, K. A., D. E. McFadden, C. A. Livasy, J. Dansereau, R. Jiang, J. F. Knops, L. Lefebvre, K. W. Rao, and W. P. Robinson. Androgenetic/biparental mosaicism causes placental mesenchymal dysplasia. J Med Genet. 2006 Feb;43 (2):187-192. Kalish, J. M., K. E. Boodhansingh, T. R. Bhatti, A. Ganguly, L. K. Conlin, S. A. Becker, S. Givler, L. Mighion, A. A. Palladino, N. S. Adzick, D. D. De Leon, C. A. Stanley, and M. A. Deardorff. Congenital hyperinsulinism in children with paternal 11p uniparental isodisomy and Beckwith-Wiedemann syndrome. J Med Genet. 2016 Jan;53 (1):53-61. Kalish, J. M., L. K. Conlin, T. R. Bhatti, H. A. Dubbs, M. C. Harris, K. Izumi, S. Mostoufi-Moab, S. Mulchandani, S. Saitta, L. J. States, D. T. Swarr, A. B. Wilkens, E. H. Zackai, K. Zelley, M. S. Bartolomei, K. E. Nichols, A. A. Palladino, N. B. Spinner, and M. A. Deardorff. Clinical features of three girls with mosaic genome-wide paternal uniparental isodisomy. Am J Med Genet A. 2013 Aug;161A (8):1929-1939. Kapoor, R. R., S. E. Flanagan, V. B. Arya, J. P. Shield, S. Ellard, and K. Hussain. Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism. Eur J Endocrinol. 2013 Apr;168 (4):557-564. Kapoor, R. R., S. E. Flanagan, P. Fulton, A. Chakrapani, B. Chadefaux, T. Ben-Omran, I. Banerjee, J. P. Shield, S. Ellard, and K. Hussain. Hyperinsulinism-hyperammonaemia syndrome: novel mutations in the GLUD1 gene and genotype-phenotype correlations. Eur J Endocrinol. 2009a Nov;161 (5):731-735. Kapoor, R. R., S. E. Flanagan, C. T. James, J. McKiernan, A. M. Thomas, S. C. Harmer, J. P. Shield, A. Tinker, S. Ellard, and K. Hussain. Hyperinsulinaemic hypoglycaemia and diabetes mellitus due to dominant ABCC8/KCNJ11 mutations. Diabetologia. 2011 Oct;54 (10):2575-2583. Kapoor, R. R., C. James, S. E. Flanagan, S. Ellard, S. Eaton, and K. Hussain. 3-Hydroxyacyl-coenzyme A dehydrogenase deficiency and hyperinsulinemic hypoglycemia: characterization of a novel mutation and severe dietary protein sensitivity. J Clin Endocrinol Metab. 2009b Jul;94 (7):2221-2225. Kapoor, R. R., J. Locke, K. Colclough, J. Wales, J. J. Conn, A. T. Hattersley, S. Ellard, and K. Hussain. Persistent hyperinsulinemic hypoglycemia and maturity-onset diabetes of the young due to heterozygous HNF4A mutations. Diabetes. 2008 Jun;57 (6):1659-1663. Khawash, P., K. Hussain, S. E. Flanagan, S. Chatterjee, and D. Basak. Nifedipine in Congenital Hyperinsulinism - A Case Report. J Clin Res Pediatr Endocrinol. 2015 Jun;7 (2):151-154. Kubota, T., K. Wakui, T. Nakamura, H. Ohashi, Y. Watanabe, M. Yoshino, T. Kida, N. Okamoto, M. Matsumura, K. Muroya, T. Ogata, Y. Goto, and Y. Fukushima. The proportion of cells with functional X disomy is associated with the severity of mental retardation in mosaic ring X Turner syndrome females. Cytogenet Genome Res. 2002;99 (1-4):276-284. Kuhnen, P., J. Marquard, A. Ernert, T. Meissner, K. Raile, G. Wannenmacher, and O. Blankenstein. Long-term lanreotide treatment in six patients with congenital hyperinsulinism. Horm Res Paediatr. 2012;78 (2):106-112. Kuhnen, P., R. Matthae, V. Arya, K. Hauptmann, K. Rothe, S. Wachter, M. Singer, W. Mohnike, T. Eberhard, K. Raile, L. M. Lauffer, R. Iakoubov, K. Hussain, and O. Blankenstein. Occurrence of giant focal forms of congenital hyperinsulinism with incorrect visualization by (18) F DOPA-PET/CT scanning. Clin Endocrinol (Oxf). 2014 Dec;81 (6):847-854. Kulke, M. H., E. K. Bergsland, and J. C. Yao. Glycemic control in patients with insulinoma treated with everolimus. N Engl J Med. 2009 Jan 8;360 (2):195-197. LaFranchi, S. Hypoglycemia of infancy and childhood. Pediatr Clin North Am. 1987 Aug;34 (4):961-982. Laje, P., A. A. Palladino, T. R. Bhatti, L. J. States, C. A. Stanley, and N. S. Adzick. Pancreatic surgery in infants with Beckwith-Wiedemann syndrome and hyperinsulinism. J Pediatr Surg. 2013a Dec;48 (12):2511-2516. Laje, P., L. J. States, H. Zhuang, S. A. Becker, A. A. Palladino, C. A. Stanley, and N. S. Adzick. Accuracy of PET/CT Scan in the diagnosis of the focal form of congenital hyperinsulinism. J Pediatr Surg. 2013b Feb;48 (2):388-393. Laver, T. W., M. N. Weedon, R. Caswell, K. Hussain, S. Ellard, and S. E. Flanagan. Analysis of large-scale sequencing cohorts does not support the role of variants in UCP2 as a cause of hyperinsulinaemic hypoglycaemia. Hum Mutat. 2017 Oct;38 (10):1442-1444. Le Quan Sang, K. H., J. B. Arnoux, A. Mamoune, C. Saint-Martin, C. Bellanne-Chantelot, V. Valayannopoulos, A. Brassier, H. Kayirangwa, V. Barbier, C. Broissand, J. R. Fabreguettes, B. Charron, J. C. Thalabard, and P. de Lonlay. Successful treatment of congenital hyperinsulinism with long-acting release octreotide. Eur J Endocrinol. 2012 Feb;166 (2):333-339. Lee, K. P. K., J. Chen, and R. MacKinnon. Molecular structure of human KATP in complex with ATP and ADP. Elife. 2017 Dec 29;6:e32481. Leventopoulos, G., S. Kitsiou-Tzeli, K. Kritikos, S. Psoni, A. Mavrou, E. Kanavakis, and H. Fryssira. A clinical study of Sotos syndrome patients with review of the literature. Pediatr Neurol. 2009 May;40 (5):357-364. Levitt Katz, L. E., M. S. Satin-Smith, P. Collett-Solberg, P. S. Thornton, L. Baker, C. A. Stanley, and P. Cohen. Insulin-like growth factor binding protein-1 levels in the diagnosis of hypoglycemia caused by hyperinsulinism. J Pediatr. 1997 Aug;131 (2):193-199. Li, C., C. A. Juliana, Y. Yuan, M. Li, M. Lu, P. Chen, K. E. Boodhansingh, N. M. Doliba, T. R. Bhatti, N. S. Adzick, C. A. Stanley, and D. D. De Leon. Phenotypic Characterization of Congenital Hyperinsulinism Due to Novel Activating Glucokinase Mutations. Diabetes. 2023 Dec 1;72 (12):1809-1819. Li, L., X. Geng, and P. Drain. Open state destabilization by ATP occupancy is mechanism speeding burst exit underlying KATP channel inhibition by ATP. J Gen Physiol. 2002 Jan;119 (1):105-116. Lin, Y. W., C. MacMullen, A. Ganguly, C. A. Stanley, and S. L. Shyng. A novel KCNJ11 mutation associated with congenital hyperinsulinism reduces the intrinsic open probability of beta-cell ATP-sensitive potassium channels. J Biol Chem. 2006 Feb 3;281 (5):3006-3012. Lopes-Pacheco, M. CFTR Modulators: The Changing Face of Cystic Fibrosis in the Era of Precision Medicine. Front Pharmacol. 2020 Feb 21:10:1662. Lord, K., and D. D. De Leon. Monogenic hyperinsulinemic hypoglycemia: current insights into the pathogenesis and management. Int J Pediatr Endocrinol. 2013 Feb 6;2013 (1):3. Macmullen, C. M., Q. Zhou, K. E. Snider, P. H. Tewson, S. A. Becker, A. R. Aziz, A. Ganguly, S. L. Shyng, and C. A. Stanley. Diazoxide-unresponsive congenital hyperinsulinism in children with dominant mutations of the beta-cell sulfonylurea receptor SUR1. Diabetes. 2011 Jun;60 (6):1797-1804. Maria, G., D. Antonia, A. Michael, M. Kate, E. Sian, F. E. Sarah, D. Mehul, and S. Pratik. Sirolimus: Efficacy and Complications in Children With Hyperinsulinemic Hypoglycemia: A 5-Year Follow-Up Study. J Endocr Soc. 2019 Apr 1;3 (4):699-713. Marthinet, E., A. Bloc, Y. Oka, Y. Tanizawa, B. Wehrle-Haller, V. Bancila, J. M. Dubuis, J. Philippe, and V. M. Schwitzgebel. Severe congenital hyperinsulinism caused by a mutation in the Kir6.2 subunit of the adenosine triphosphate-sensitive potassium channel impairing trafficking and function. J Clin Endocrinol Metab. 2005 Sep;90 (9):5401-5406. Masue, M., H. Nishibori, S. Fukuyama, A. Yoshizawa, S. Okamoto, R. Doi, S. Uemoto, T. Tokumi, T. Kasai, and T. Yorifuji. Diagnostic accuracy of [(1)(8)F]-fluoro-L-dihydroxyphenylalanine positron emission tomography scan for persistent congenital hyperinsulinism in Japan. Clin Endocrinol (Oxf). 2011 Sep;75 (3):342-346. Matschinsky, F. M., M. A. Magnuson, D. Zelent, T. L. Jetton, N. Doliba, Y. Han, R. Taub, and J. Grimsby. The network of glucokinase-expressing cells in glucose homeostasis and the potential of glucokinase activators for diabetes therapy. Diabetes. 2006 Jan;55 (1):1-12. Matsumoto, N., and N. Niikawa. Kabuki make-up syndrome: a review. Am J Med Genet C Semin Med Genet. 2003 Feb 15;117C (1):57-65. Matsuo, M., S. Trapp, Y. Tanizawa, N. Kioka, T. Amachi, Y. Oka, F. M. Ashcroft, and K. Ueda. Functional analysis of a mutant sulfonylurea receptor, SUR1-R1420C, that is responsible for persistent hyperinsulinemic hypoglycemia of infancy. J Biol Chem. 2000 Dec 29;275 (52):41184-41191. Matsuo, T., K. Ihara, M. Ochiai, T. Kinjo, Y. Yoshikawa, K. Kojima-Ishii, M. Noda, H. Mizumoto, M. Misaki, K. Minagawa, K. Tominaga, and T. Hara. Hyperinsulinemic hypoglycemia of infancy in Sotos syndrome. Am J Med Genet A. 2013 Jan;161A (1):34-37. Mattick, J. S., M. Dinger, N. Schonrock, and M. Cowley. Whole genome sequencing provides better diagnostic yield and future value than whole exome sequencing. Med J Aust. 2018 Aug 3;209 (5):197-199. McClenaghan, N. H., P. R. Flatt, and A. J. Ball. Actions of glucagon-like peptide-1 on KATP channel-dependent and -independent effects of glucose, sulphonylureas and nateglinide. J Endocrinol. 2006 Sep;190 (3):889-896. McDermott, H., E. Baple, S. Ellard, and S. Naik. Rapid exome sequencing in acutely unwell children – providing new diagnostic options in intensive care settings. Arch Dis Child. 2021 Oct;106(Suppl 1):A368-A369.. McGlacken-Byrne, S. M., C. P. Hawkes, S. E. Flanagan, S. Ellard, C. M. McDonnell, and N. P. Murphy. The evolving course of HNF4A hyperinsulinaemic hypoglycaemia--a case series. Diabet Med. 2014 Jan;31 (1):e1-5. McKinlay, C. J. D., J. M. Alsweiler, N. S. Anstice, N. Burakevych, A. Chakraborty, J. G. Chase, G. D. Gamble, D. L. Harris, R. J. Jacobs, Y. Jiang, N. Paudel, R. J. San Diego, B. Thompson, T. A. Wouldes, J. E. Harding, H. Children With and Their Later Development Study Team. Association of Neonatal Glycemia With Neurodevelopmental Outcomes at 4.5 Years. JAMA Pediatr. 2017 Oct 1;171 (10):972-983. Meder, U., G. Bokodi, L. Balogh, A. Korner, M. Szabo, S. Pruhova, and A. J. Szabo. Severe Hyperinsulinemic Hypoglycemia in a Neonate: Response to Sirolimus Therapy. Pediatrics. 2015 Nov;136 (5):e1369-1372. Meissner, T., B. Friedmann, J. G. Okun, M. A. Schwab, T. Otonkoski, T. Bauer, P. Bartsch, and E. Mayatepek. Massive insulin secretion in response to anaerobic exercise in exercise-induced hyperinsulinism. Horm Metab Res. 2005 Nov;37 (11):690-694. Meissner, T., J. Marquard, N. Cobo-Vuilleumier, M. Maringa, P. Rodriguez-Bada, M. A. Garcia-Gimeno, E. Baixeras, J. Weber, K. Olek, P. Sanz, E. Mayatepek, and A. L. Cuesta-Munoz. Diagnostic difficulties in glucokinase hyperinsulinism. Horm Metab Res. 2009 Apr;41 (4):320-326. Meissner, T., T. Otonkoski, R. Feneberg, B. Beinbrech, S. Apostolidou, I. Sipila, F. Schaefer, and E. Mayatepek. Exercise induced hypoglycaemic hyperinsulinism. Arch Dis Child. 2001 Mar;84 (3):254-257. Meissner, T., U. Wendel, P. Burgard, S. Schaetzle, and E. Mayatepek. Long-term follow-up of 114 patients with congenital hyperinsulinism. Eur J Endocrinol. 2003 Jul;149 (1):43-51. Menni, F., P. de Lonlay, C. Sevin, G. Touati, C. Peigne, V. Barbier, C. Nihoul-Fekete, J. M. Saudubray, and J. J. Robert. Neurologic outcomes of 90 neonates and infants with persistent hyperinsulinemic hypoglycemia. Pediatrics. 2001 Mar;107 (3):476-479. Michot, C., C. Corsini, D. Sanlaville, C. Baumann, A. Toutain, N. Philip, T. Busa, M. Holder, L. Faivre, S. Odent, M. A. Delrue, M. Till, M. L. Jacquemont, M. P. Cordier, A. Goldenberg, E. Sanchez, E. Alix, S. Poisson, H. Kayirangwa, D. Lacombe, B. Gilbert-Dussardier, A. Pelet, J. Roume, A. Jacquette, B. Isidor, F. Giuliano, L. Burglen, M. Fradin, E. Schaefer, Y. Alembick, B. Doray, A. Moncla, D. Heron, M. Willems, L. Pinson, K. H. Le Quan Sang, M. Le Merrer, V. Cormier-Daire, P. Sarda, J. Amiel, S. Lyonnet, and D. Genevieve. Finger creases lend a hand in Kabuki syndrome. Eur J Med Genet. 2013 Oct;56 (10):556-560. Miyake, N., E. Koshimizu, N. Okamoto, S. Mizuno, T. Ogata, T. Nagai, T. Kosho, H. Ohashi, M. Kato, G. Sasaki, H. Mabe, Y. Watanabe, M. Yoshino, T. Matsuishi, J. Takanashi, V. Shotelersuk, M. Tekin, N. Ochi, M. Kubota, N. Ito, K. Ihara, T. Hara, H. Tonoki, T. Ohta, K. Saito, M. Matsuo, M. Urano, T. Enokizono, A. Sato, H. Tanaka, A. Ogawa, T. Fujita, Y. Hiraki, S. Kitanaka, Y. Matsubara, T. Makita, M. Taguri, M. Nakashima, Y. Tsurusaki, H. Saitsu, K. Yoshiura, N. Matsumoto, and N. Niikawa. MLL2 and KDM6A mutations in patients with Kabuki syndrome. Am J Med Genet A. 2013 Sep;161A (9):2234-2243. Mohnike, K., O. Blankenstein, A. Pfuetzner, S. Potzsch, E. Schober, S. Steiner, O. T. Hardy, A. Grimberg, and W. M. van Waarde. Long-term non-surgical therapy of severe persistent congenital hyperinsulinism with glucagon. Horm Res. 2008;70 (1):59-64. Mohnike, W., W. Barthlen, K. Mohnike, and O. Blankenstein. Positron emission tomography/computed tomography diagnostics by means of fluorine-18-L-dihydroxyphenylalanine in congenital hyperinsulinism. Semin Pediatr Surg. 2011 Feb;20 (1):23-27. Molven, A., G. E. Matre, M. Duran, R. J. Wanders, U. Rishaug, P. R. Njolstad, E. Jellum, and O. Sovik. Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation. Diabetes. 2004 Jan;53 (1):221-227. Mussa, A., S. Russo, A. De Crescenzo, N. Chiesa, C. Molinatto, A. Selicorni, L. Richiardi, L. Larizza, M. C. Silengo, A. Riccio, and G. B. Ferrero. Prevalence of Beckwith-Wiedemann syndrome in North West of Italy. Am J Med Genet A. 2013 Oct;161A (10):2481-2486. Nally, L. M., N. Bondy, J. Doiev, B. A. Buckingham, and D. M. Wilson. A Feasibility Study to Detect Neonatal Hypoglycemia in Infants of Diabetic Mothers Using Real-Time Continuous Glucose Monitoring. Diabetes Technol Ther. 2019 Apr;21 (4):170-176. Nessa, A., Q. H. Aziz, A. M. Thomas, S. C. Harmer, A. Tinker, and K. Hussain. Molecular mechanisms of congenital hyperinsulinism due to autosomal dominant mutations in ABCC8. Hum Mol Genet. 2015 Sep 15;24 (18):5142-5153. Ng, S. B., A. W. Bigham, K. J. Buckingham, M. C. Hannibal, M. J. McMillin, H. I. Gildersleeve, A. E. Beck, H. K. Tabor, G. M. Cooper, H. C. Mefford, C. Lee, E. H. Turner, J. D. Smith, M. J. Rieder, K. Yoshiura, N. Matsumoto, T. Ohta, N. Niikawa, D. A. Nickerson, M. J. Bamshad, and J. Shendure. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010 Sep;42 (9):790-793. Ni, J., J. Ge, M. Zhang, K. Hussain, Y. Guan, R. Cheng, L. Xi, Z. Zheng, S. Ren, and F. Luo. Genotype and phenotype analysis of a cohort of patients with congenital hyperinsulinism based on DOPA-PET CT scanning. Eur J Pediatr. 2019 Aug;178 (8):1161-1169. Niikawa, N., Y. Kuroki, T. Kajii, N. Matsuura, S. Ishikiriyama, H. Tonoki, N. Ishikawa, Y. Yamada, M. Fujita, H. Umemoto, and et al. Kabuki make-up (Niikawa-Kuroki) syndrome: a study of 62 patients. Am J Med Genet. 1988 Nov;31 (3):565-589. Numakura, C., Y. Hashimoto, T. Daitsu, K. Hayasaka, T. Mitsui, and T. Yorifuji. Two patients with HNF4A-related congenital hyperinsulinism and renal tubular dysfunction: A clinical variation which includes transient hepatic dysfunction. Diabetes Res Clin Pract. 2015 Jun;108 (3):e53-55. Ohkubo, K., M. Nagashima, Y. Naito, T. Taguchi, S. Suita, N. Okamoto, H. Fujinaga, K. Tsumura, K. Kikuchi, and J. Ono. Genotypes of the pancreatic beta-cell K-ATP channel and clinical phenotypes of Japanese patients with persistent hyperinsulinaemic hypoglycaemia of infancy. Clin Endocrinol (Oxf). 2005 Apr;62 (4):458-465. Otonkoski, T., H. Jiao, N. Kaminen-Ahola, I. Tapia-Paez, M. S. Ullah, L. E. Parton, F. Schuit, R. Quintens, I. Sipila, E. Mayatepek, T. Meissner, A. P. Halestrap, G. A. Rutter, and J. Kere. Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic beta cells. Am J Hum Genet. 2007 Sep;81 (3):467-474. Otonkoski, T., N. Kaminen, J. Ustinov, R. Lapatto, T. Meissner, E. Mayatepek, J. Kere, and I. Sipila. Physical exercise-induced hyperinsulinemic hypoglycemia is an autosomal-dominant trait characterized by abnormal pyruvate-induced insulin release. Diabetes. 2003 Jan;52 (1):199-204. Otonkoski, T., K. Nanto-Salonen, M. Seppanen, R. Veijola, H. Huopio, K. Hussain, P. Tapanainen, O. Eskola, R. Parkkola, K. Ekstrom, Y. Guiot, J. Rahier, M. Laakso, R. Rintala, P. Nuutila, and H. Minn. Noninvasive diagnosis of focal hyperinsulinism of infancy with [18F]-DOPA positron emission tomography. Diabetes. 2006 Jan;55 (1):13-18. Pal, P., and B. G. Miller. Activating mutations in the human glucokinase gene revealed by genetic selection. Biochemistry. 2009 Feb 10;48 (5):814-816. Palladino, A. A., M. J. Bennett, and C. A. Stanley. Hyperinsulinism in infancy and childhood: when an insulin level is not always enough. Clin Chem. 2008 Feb;54 (2):256-263. Park, S. E., S. E. Flanagan, K. Hussain, S. Ellard, C. H. Shin, and S. W. Yang. Characterization of ABCC8 and KCNJ11 gene mutations and phenotypes in Korean patients with congenital hyperinsulinism. Eur J Endocrinol. 2011 Jun;164 (6):919-926. Partridge, C. J., D. J. Beech, and A. Sivaprasadarao. Identification and pharmacological correction of a membrane trafficking defect associated with a mutation in the sulfonylurea receptor causing familial hyperinsulinism. J Biol Chem. 2001 Sep 21;276 (38):35947-35952. Pearson, E. R., S. F. Boj, A. M. Steele, T. Barrett, K. Stals, J. P. Shield, S. Ellard, J. Ferrer, and A. T. Hattersley. Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. PLoS Med. 2007 Apr;4 (4):e118. Peranteau, W. H., S. M. Bathaii, B. Pawel, O. Hardy, A. Alavi, C. A. Stanley, and N. S. Adzick. Multiple ectopic lesions of focal islet adenomatosis identified by positron emission tomography scan in an infant with congenital hyperinsulinism. J Pediatr Surg. 2007 Jan;42 (1):188-192. Pietzner, V., J. F. Weigel, D. Wand, A. Merkenschlager, and M. K. Bernhard. Low-level hyperinsulinism with hypoglycemic spells in an infant with mosaic Turner syndrome and mild Kabuki-like phenotype: a case report and review of the literature. J Pediatr Endocrinol Metab. 2014 Jan;27 (1-2):165-170. Pinney, S. E., K. Ganapathy, J. Bradfield, D. Stokes, A. Sasson, K. Mackiewicz, K. Boodhansingh, N. Hughes, S. Becker, S. Givler, C. Macmullen, D. Monos, A. Ganguly, H. Hakonarson, and C. A. Stanley. Dominant form of congenital hyperinsulinism maps to HK1 region on 10q. Horm Res Paediatr. 2013;80 (1):18-27. Pinney, S. E., C. MacMullen, S. Becker, Y. W. Lin, C. Hanna, P. Thornton, A. Ganguly, S. L. Shyng, and C. A. Stanley. Clinical characteristics and biochemical mechanisms of congenital hyperinsulinism associated with dominant KATP channel mutations. J Clin Invest. 2008 Aug;118 (8):2877-2886. Prentki, M., F. M. Matschinsky, and S. R. Madiraju. Metabolic signaling in fuel-induced insulin secretion. Cell Metab. 2013 Aug 6;18 (2):162-185. Puljung, M. C. Cryo-electron microscopy structures and progress toward a dynamic understanding of K(ATP) channels. J Gen Physiol. 2018 May 7;150 (5):653-669. Quintens, R., N. Hendrickx, K. Lemaire, and F. Schuit. Why expression of some genes is disallowed in beta-cells. Biochem Soc Trans. 2008 Jun;36 (Pt 3):300-305. Rahier, J., C. Sempoux, J. C. Fournet, F. Poggi, F. Brunelle, C. Nihoul-Fekete, J. M. Saudubray, and F. Jaubert. Partial or near-total pancreatectomy for persistent neonatal hyperinsulinaemic hypoglycaemia: the pathologist's role. Histopathology. 1998 Jan;32 (1):15-19. Rahman, S. A., A. Nessa, and K. Hussain. Molecular mechanisms of congenital hyperinsulinism. J Mol Endocrinol. 2015 Apr;54 (2):R119-129. Rasmussen, A. G., M. Melikian, E. Globa, S. Detlefsen, L. Rasmussen, H. Petersen, K. Brusgaard, A. H. Rasmussen, M. B. Mortensen, and H. T. Christesen. The difficult management of persistent, non-focal congenital hyperinsulinism: A retrospective review from a single, tertiary center. Pediatr Diabetes. 2020 May;21 (3):441-455. Rayannavar, A., O. U. Elci, L. Mitteer, and D. D. De Leon. Continuous Glucose Monitoring Systems: Are They Useful for Evaluating Glycemic Control in Children with Hyperinsulinism? Horm Res Paediatr. 2019;92 (5):319-327. Reed, R. C., L. Beischel, J. Schoof, J. Johnson, M. L. Raff, and R. P. Kapur. Androgenetic/biparental mosaicism in an infant with hepatic mesenchymal hamartoma and placental mesenchymal dysplasia. Pediatr Dev Pathol. 2008 Sep-Oct;11 (5):377-383. Ribeiro, M. J., P. De Lonlay, T. Delzescaux, N. Boddaert, F. Jaubert, S. Bourgeois, F. Dolle, C. Nihoul-Fekete, A. Syrota, and F. Brunelle. Characterization of hyperinsulinism in infancy assessed with PET and 18F-fluoro-L-DOPA. J Nucl Med. 2005 Apr;46 (4):560-566. Robinson, W. P., J. L. Lauzon, A. M. Innes, K. Lim, S. Arsovska, and D. E. McFadden. Origin and outcome of pregnancies affected by androgenetic/biparental chimerism. Hum Reprod. 2007 Apr;22 (4):1114-1122. Rozenkova, K., J. Malikova, A. Nessa, L. Dusatkova, L. Bjorkhaug, B. Obermannova, P. Dusatkova, J. Kytnarova, I. Aukrust, L. A. Najmi, B. Rypackova, Z. Sumnik, J. Lebl, P. R. Njolstad, K. Hussain, and S. Pruhova. High Incidence of Heterozygous ABCC8 and HNF1A Mutations in Czech Patients With Congenital Hyperinsulinism. J Clin Endocrinol Metab. 2015 Dec;100 (12):E1540-1549. Ruotsalainen, U., H. Suhonen-Polvi, E. Eronen, A. Kinnala, J. Bergman, M. Haaparanta, M. Teras, O. Solin, and U. Wegelius. Estimated radiation dose to the newborn in FDG-PET studies. J Nucl Med. 1996 Feb;37 (2):387-393. Salvatore, T., and D. Giugliano. Pharmacokinetic-pharmacodynamic relationships of Acarbose. Clin Pharmacokinet. 1996 Feb;30 (2):94-106. Sang, Y., Z. Xu, M. Liu, J. Yan, Y. Wu, C. Zhu, and G. Ni. Mutational analysis of ABCC8, KCNJ11, GLUD1, HNF4A and GCK genes in 30 Chinese patients with congenital hyperinsulinism. Endocr J. 2014;61 (9):901-910. Sathirapongsasuti, J. F., H. Lee, B. A. Horst, G. Brunner, A. J. Cochran, S. Binder, J. Quackenbush, and S. F. Nelson. Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV. Bioinformatics. 2011 Oct 1;27 (19):2648-2654. Sayed, S., D. R. Langdon, S. Odili, P. Chen, C. Buettger, A. B. Schiffman, M. Suchi, R. Taub, J. Grimsby, F. M. Matschinsky, and C. A. Stanley. Extremes of clinical and enzymatic phenotypes in children with hyperinsulinism caused by glucokinase activating mutations. Diabetes. 2009 Jun;58 (6):1419-1427. Schrander-Stumpel, C. T., L. Spruyt, L. M. Curfs, T. Defloor, and J. J. Schrander. Kabuki syndrome: Clinical data in 20 patients, literature review, and further guidelines for preventive management. Am J Med Genet A. 2005 Jan 30;132A (3):234-243. Sempoux, C., C. Capito, C. Bellanne-Chantelot, V. Verkarre, P. de Lonlay, Y. Aigrain, C. Fekete, Y. Guiot, and J. Rahier. Morphological mosaicism of the pancreatic islets: a novel anatomopathological form of persistent hyperinsulinemic hypoglycemia of infancy. J Clin Endocrinol Metab. 2011 Dec;96 (12):3785-3793. Sempoux, C., Y. Guiot, F. Jaubert, and J. Rahier. Focal and diffuse forms of congenital hyperinsulinism: the keys for differential diagnosis. Endocr Pathol. 2004 Fall;15 (3):241-246. Senniappan, S., R. E. Brown, and K. Hussain. Sirolimus in severe hyperinsulinemic hypoglycemia. N Engl J Med. 2014 Jun 19;370 (25):2448-2449. Shah, P., S. A. Rahman, H. Demirbilek, M. Guemes, and K. Hussain. Hyperinsulinaemic hypoglycaemia in children and adults. Lancet Diabetes Endocrinol. 2017 Sep;5 (9):729-742. Shimono, D., S. Fujimoto, E. Mukai, M. Takehiro, K. Nabe, R. G. Radu, M. Shimodahira, R. Kominato, Y. Aramaki, Y. Nishi, S. Funakoshi, Y. Yamada, and Y. Seino. ATP enhances exocytosis of insulin secretory granules in pancreatic islets under Ca2+-depleted condition. Diabetes Res Clin Pract. 2005 Sep;69 (3):216-223. Shyng, S., T. Ferrigni, and C. G. Nichols. Regulation of KATP channel activity by diazoxide and MgADP. Distinct functions of the two nucleotide binding folds of the sulfonylurea receptor. J Gen Physiol. 1997 Dec;110 (6):643-654. Shyng, S. L., T. Ferrigni, J. B. Shepard, A. Nestorowicz, B. Glaser, M. A. Permutt, and C. G. Nichols. Functional analyses of novel mutations in the sulfonylurea receptor 1 associated with persistent hyperinsulinemic hypoglycemia of infancy. Diabetes. 1998 Jul;47 (7):1145-1151. Snider, K. E., S. Becker, L. Boyajian, S. L. Shyng, C. MacMullen, N. Hughes, K. Ganapathy, T. Bhatti, C. A. Stanley, and A. Ganguly. Genotype and phenotype correlations in 417 children with congenital hyperinsulinism. J Clin Endocrinol Metab. 2013 Feb;98 (2):E355-363. Stanescu, D. E., N. Hughes, B. Kaplan, C. A. Stanley, and D. D. De Leon. Novel presentations of congenital hyperinsulinism due to mutations in the MODY genes: HNF1A and HNF4A. J Clin Endocrinol Metab. 2012 Oct;97 (10):E2026-2030. Stanley, C. A., and L. Baker. Hyperinsulinism in infants and children: diagnosis and therapy. Adv Pediatr. 1976;23:315-355. Stanley, C. A., J. Fang, K. Kutyna, B. Y. Hsu, J. E. Ming, B. Glaser, and M. Poncz. Molecular basis and characterization of the hyperinsulinism/hyperammonemia syndrome: predominance of mutations in exons 11 and 12 of the glutamate dehydrogenase gene. HI/HA Contributing Investigators. Diabetes. 2000 Apr;49 (4):667-673. Stanley, C. A., Y. K. Lieu, B. Y. Hsu, A. B. Burlina, C. R. Greenberg, N. J. Hopwood, K. Perlman, B. H. Rich, E. Zammarchi, and M. Poncz. Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med. 1998 May 7;338 (19):1352-1357. Stanley, C. A., P. S. Thornton, A. Ganguly, C. MacMullen, P. Underwood, P. Bhatia, L. Steinkrauss, L. Wanner, R. Kaye, E. Ruchelli, M. Suchi, and N. S. Adzick. Preoperative evaluation of infants with focal or diffuse congenital hyperinsulinism by intravenous acute insulin response tests and selective pancreatic arterial calcium stimulation. J Clin Endocrinol Metab. 2004 Jan;89 (1):288-296. States, L. J., J. C. Davis, S. M. Hamel, S. A. Becker, and H. Zhuang. (18)F-6-Fluoro-l-Dopa PET/CT Imaging of Congenital Hyperinsulinism. J Nucl Med. 2021 Jul;62 (Suppl 2):51S-56S. Subbarayan, A., and K. Hussain. Hypoglycemia in Kabuki syndrome. Am J Med Genet A. 2014 Feb;164A (2):467-471. Taneja, T. K., J. Mankouri, R. Karnik, S. Kannan, A. J. Smith, T. Munsey, H. B. Christesen, D. J. Beech, and A. Sivaprasadarao. Sar1-GTPase-dependent ER exit of KATP channels revealed by a mutation causing congenital hyperinsulinism. Hum Mol Genet. 2009 Jul 1;18 (13):2400-2413. Taschenberger, G., A. Mougey, S. Shen, L. B. Lester, S. LaFranchi, and S. L. Shyng. Identification of a familial hyperinsulinism-causing mutation in the sulfonylurea receptor 1 that prevents normal trafficking and function of KATP channels. J Biol Chem. 2002 May 10;277 (19):17139-17146. Tatton-Brown, K., J. Douglas, K. Coleman, G. Baujat, T. R. Cole, S. Das, D. Horn, H. E. Hughes, I. K. Temple, F. Faravelli, D. Waggoner, S. Turkmen, V. Cormier-Daire, A. Irrthum, N. Rahman, and C. Childhood Overgrowth. Genotype-phenotype associations in Sotos syndrome: an analysis of 266 individuals with NSD1 aberrations. Am J Hum Genet. 2005 Aug;77 (2):193-204. Tegtmeyer, L. C., S. Rust, M. van Scherpenzeel, B. G. Ng, M. E. Losfeld, S. Timal, K. Raymond, P. He, M. Ichikawa, J. Veltman, K. Huijben, Y. S. Shin, V. Sharma, M. Adamowicz, M. Lammens, J. Reunert, A. Witten, E. Schrapers, G. Matthijs, J. Jaeken, D. Rymen, T. Stojkovic, P. Laforet, F. Petit, O. Aumaitre, E. Czarnowska, M. Piraud, T. Podskarbi, C. A. Stanley, R. Matalon, P. Burda, S. Seyyedi, V. Debus, P. Socha, J. Sykut-Cegielska, F. van Spronsen, L. de Meirleir, P. Vajro, T. DeClue, C. Ficicioglu, Y. Wada, R. A. Wevers, D. Vanderschaeghe, N. Callewaert, R. Fingerhut, E. van Schaftingen, H. H. Freeze, E. Morava, D. J. Lefeber, and T. Marquardt. Multiple phenotypes in phosphoglucomutase 1 deficiency. N Engl J Med. 2014 Feb 6;370 (6):533-542. Thornton, P. S., C. A. Alter, L. E. Katz, L. Baker, and C. A. Stanley. Short- and long-term use of octreotide in the treatment of congenital hyperinsulinism. J Pediatr. 1993 Oct;123 (4):637-643. Thornton, P. S., C. MacMullen, A. Ganguly, E. Ruchelli, L. Steinkrauss, A. Crane, L. Aguilar-Bryan, and C. A. Stanley. Clinical and molecular characterization of a dominant form of congenital hyperinsulinism caused by a mutation in the high-affinity sulfonylurea receptor. Diabetes. 2003 Sep;52 (9):2403-2410. Tinto, N., A. Zagari, M. Capuano, A. De Simone, V. Capobianco, G. Daniele, M. Giugliano, R. Spadaro, A. Franzese, and L. Sacchetti. Glucokinase gene mutations: structural and genotype-phenotype analyses in MODY children from South Italy. PLoS One. 2008 Apr 2;3 (4):e1870. Toda, N., K. Ihara, K. Kojima-Ishii, M. Ochiai, K. Ohkubo, Y. Kawamoto, Y. Kohno, S. Kumasaka, A. Kawase, Y. Ueno, T. Futatani, T. Miyazawa, Y. Nagaoki, S. Nakata, M. Misaki, H. Arai, M. Kawai, M. Sato, Y. Yada, N. Takahashi, A. Komatsu, K. Maki, S. Watabe, Y. Sumida, M. Kuwashima, H. Mizumoto, K. Sato, and T. Hara. Hyperinsulinemic hypoglycemia in Beckwith-Wiedemann, Sotos, and Kabuki syndromes: A nationwide survey in Japan. Am J Med Genet A. 2017 Feb;173 (2):360-367. Tornovsky, S., A. Crane, K. E. Cosgrove, K. Hussain, J. Lavie, M. Heyman, Y. Nesher, N. Kuchinski, E. Ben-Shushan, O. Shatz, E. Nahari, T. Potikha, D. Zangen, Y. Tenenbaum-Rakover, L. de Vries, J. Argente, R. Gracia, H. Landau, A. Eliakim, K. Lindley, M. J. Dunne, L. Aguilar-Bryan, and B. Glaser. Hyperinsulinism of infancy: novel ABCC8 and KCNJ11 mutations and evidence for additional locus heterogeneity. J Clin Endocrinol Metab. 2004 Dec;89 (12):6224-6234. Treglia, G., P. Mirk, A. Giordano, and V. Rufini. Diagnostic performance of fluorine-18-dihydroxyphenylalanine positron emission tomography in diagnosing and localizing the focal form of congenital hyperinsulinism: a meta-analysis. Pediatr Radiol. 2012 Nov;42 (11):1372-1379. Tung, J. Y., K. Boodhansingh, C. A. Stanley, and D. D. De Leon. Clinical heterogeneity of hyperinsulinism due to HNF1A and HNF4A mutations. Pediatr Diabetes. 2018 Aug;19 (5):910-916. Vajravelu, M. E., J. Chai, B. Krock, S. Baker, D. Langdon, C. Alter, and D. D. De Leon. Congenital Hyperinsulinism and Hypopituitarism Attributable to a Mutation in FOXA2. J Clin Endocrinol Metab. 2018 Mar 1;103 (3):1042-1047. van der Steen, I., M. E. van Albada, K. Mohnike, H. T. Christesen, S. Empting, M. Salomon-Estebanez, A. Greve Rasmussen, A. Verrijn Stuart, A. A. A. van der Linde, I. Banerjee, and A. M. Boot. A Multicenter Experience with Long-Acting Somatostatin Analogues in Patients with Congenital Hyperinsulinism. Horm Res Paediatr. 2018;89 (2):82-89. Wakeling, M. N., N. D. L. Owens, J. R. Hopkinson, M. B. Johnson, J. A. L. Houghton, A. Dastamani, C. S. Flaxman, R. C. Wyatt, T. I. Hewat, J. J. Hopkins, T. W. Laver, R. van Heugten, M. N. Weedon, E. De Franco, K. A. Patel, S. Ellard, N. G. Morgan, E. Cheesman, I. Banerjee, A. T. Hattersley, M. J. Dunne, C. International Congenital Hyperinsulinism, S. J. Richardson, and S. E. Flanagan. Non-coding variants disrupting a tissue-specific regulatory element in HK1 cause congenital hyperinsulinism. Nat Genet. 2022 Nov;54 (11):1615-1620. Walsh, S. B., R. Unwin, R. Kleta, W. Van't Hoff, P. Bass, K. Hussain, S. Ellard, and D. Bockenhauer. Fainting Fanconi syndrome clarified by proxy: a case report. BMC Nephrol. 2017 Jul 11;18 (1):230. Wang, M., J. X. Wu, D. Ding, and L. Chen. Structural insights into the mechanism of pancreatic K(ATP) channel regulation by nucleotides. Nat Commun. 2022 May 19;13 (1):2770. Welters, A., C. Lerch, S. Kummer, J. Marquard, B. Salgin, E. Mayatepek, and T. Meissner. Long-term medical treatment in congenital hyperinsulinism: a descriptive analysis in a large cohort of patients from different clinical centers. Orphanet J Rare Dis. 2015 Nov 25;10:150. White, M., G. McGillivray, S. M. White, and M. R. Zacharin. First report of congenital adrenal cysts and pheochromocytoma in a patient with mosaic genome-wide paternal uniparental disomy. Am J Med Genet A. 2016 Dec;170 (12):3352-3355. White, S. M., E. M. Thompson, A. Kidd, R. Savarirayan, A. Turner, D. Amor, M. B. Delatycki, M. Fahey, A. Baxendale, S. White, E. Haan, K. Gibson, J. L. Halliday, and A. Bankier. Growth, behavior, and clinical findings in 27 patients with Kabuki (Niikawa-Kuroki) syndrome. Am J Med Genet A. 2004 Jun 1;127A (2):118-127. Win, M., R. Beckett, L. Thomson, A. Thankamony, and K. Beardsall. Continuous Glucose Monitoring in the Management of Neonates With Persistent Hypoglycemia and Congenital Hyperinsulinism. J Clin Endocrinol Metab. 2022 Jan 1;107 (1):e246-e253. Xu, A., J. Cheng, H. Sheng, Z. Wen, Y. Lin, Z. Zhou, C. Zeng, Y. Shao, C. Li, L. Liu, and X. Li. Clinical Management and Gene Mutation Analysis of Children with Congenital Hyperinsulinism in South China. J Clin Res Pediatr Endocrinol. 2019 Nov 22;11 (4):400-409. Xu, Z. D., P. P. Hui, W. Zhang, Q. Zeng, L. Zhang, M. Liu, J. Yan, Y. J. Wu, and Y. M. Sang. Analysis of clinical and genetic characteristics of Chinese children with congenital hyperinsulinemia that is spontaneously relieved. Endocrine. 2021 Apr;72 (1):116-123. Yan, F., C. W. Lin, E. Weisiger, E. A. Cartier, G. Taschenberger, and S. L. Shyng. Sulfonylureas correct trafficking defects of ATP-sensitive potassium channels caused by mutations in the sulfonylurea receptor. J Biol Chem. 2004 Mar 19;279 (12):11096-11105. Yan, F. F., J. Casey, and S. L. Shyng. Sulfonylureas correct trafficking defects of disease-causing ATP-sensitive potassium channels by binding to the channel complex. J Biol Chem. 2006 Nov 3;281 (44):33403-33413. Yan, F. F., Y. W. Lin, C. MacMullen, A. Ganguly, C. A. Stanley, and S. L. Shyng. Congenital hyperinsulinism associated ABCC8 mutations that cause defective trafficking of ATP-sensitive K+ channels: identification and rescue. Diabetes. 2007 Sep;56 (9):2339-2348. Yap, K. L., A. E. K. Johnson, D. Fischer, P. Kandikatla, J. Deml, V. Nelakuditi, S. Halbach, G. S. Jeha, L. C. Burrage, O. Bodamer, V. C. Benavides, A. M. Lewis, S. Ellard, P. Shah, D. Cody, A. Diaz, A. Devarajan, L. Truong, S. A. W. Greeley, D. D. De Leo-Crutchlow, A. C. Edmondson, S. Das, P. Thornton, D. Waggoner, and D. Del Gaudio. Congenital hyperinsulinism as the presenting feature of Kabuki syndrome: clinical and molecular characterization of 9 affected individuals. Genet Med. 2019 Jan;21 (1):233-242. Zani, A., S. A. Nah, O. Ron, G. Totonelli, D. Ismail, V. V. Smith, M. Ashworth, O. Blankenstein, W. Mohnike, P. De Coppi, S. Eaton, K. Hussain, and A. Pierro. The predictive value of preoperative fluorine-18-L-3,4-dihydroxyphenylalanine positron emission tomography-computed tomography scans in children with congenital hyperinsulinism of infancy. J Pediatr Surg. 2011 Jan;46 (1):204-208. Zdravkovic, M., M. Kruse, K. L. Rost, J. Moss, and A. Kecskes. The effects of NN414, a SUR1/Kir6.2 selective potassium channel opener in subjects with type 2 diabetes. Exp Clin Endocrinol Diabetes. 2007 Jun;115 (6):405-406. Zeiad, R., E. C. Ferren, D. D. Young, S. J. De Lancy, D. Dedousis, L. A. Schillaci, R. W. Redline, S. T. Saab, M. Crespo, T. R. Bhatti, A. M. Ackermann, J. K. Bedoyan, and J. R. Wood. A Novel Homozygous Missense Mutation in the YARS Gene: Expanding the Phenotype of YARS Multisystem Disease. J Endocr Soc. 2021 Jan 2;5(2):bvaa196. Zerangue, N., B. Schwappach, Y. N. Jan, and L. Y. Jan. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron. 1999 Mar;22 (3):537-548. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94735 | - |
dc.description.abstract | 先天性高胰島素血症是一群具多種臨床表現和遺傳機轉的疾病,其特徵是低血糖時仍有失調性持續分泌胰島素的現象。目前至少有 12 個基因已被證明與單基因性先天性高胰島素血症相關,其中ABCC8 和 KCNJ11 基因上的致病性變異是最重要的病因。在胰臟 β 細胞中,ATP 敏感鉀離子 (KATP) 通道在血中葡萄糖濃度變化導致細胞膜電位改變和胰島素釋放的一連串步驟中發揮關鍵作用。 KATP 通道由四個形成孔道的鉀離子通道亞基 (Kir6.2) 和四個磺醯尿素(sulfonylureas) 受體 1 (SUR1) 亞基組成,分別由 KCNJ11 和 ABCC8 基因編碼。目前已知先天性高胰島素血症在組織學上可分為瀰漫型、局部型或非典型。
瀰漫型先天性高胰島素血症者通常與 ABCC8 和 KCNJ11 基因的隱性功能喪失變異有關,他們通常對diazoxide沒有反應,需要廣泛的胰臟切除術來改善低血糖。染色體 11p15.5 區域是一個印記中心,包含母系表達的腫瘤抑制基因 H19 和 CDKN1C 以及父系表達的生長因子基因 IGF2,局部型先天性高胰島素血症通常是由父系遺傳的單一等位基因 KATP 通道致病變異合併體細胞性母源染色體11p15 區域缺失引起的,臨床上難以區分的瀰漫型和局部型形式可以透過使用氟18 L-3,4-二羥基苯丙胺酸正子斷層掃描 (18F-FDOPA PET) 掃描來確定,手術切除局部型病變即可治癒患者。過去報告ABCC8 和 KCNJ11 基因的顯性突變,以及其他先天性高胰島素血症相關基因的致病變異,臨床表現常為輕度對diazoxide治療有反應的先天性高胰島素血症。由於台灣缺乏對先天性高胰島素血症的研究,我們旨在描述台灣先天性高胰島素血症兒童的臨床表現並闡明其遺傳病因,並分析其基因型與表型相關性。 我們對 13 名被診斷出患有最嚴重對diazoxide治療無反應的兒童進行了研究,所有患者在藥物治療失敗後均接受了胰臟切除術,我們的研究首次展示了台灣先天性高胰島素血症兒童的臨床特徵和長期結果,我們的結果表明,出生時為巨嬰和低血糖神經性症狀是診斷先天性高胰島素血症的重要臨床線索,低血糖發生的年齡反映了先天性高胰島素血症的嚴重程度,另外,低血糖期間 I/G 比值 >0.3–0.5 作為先天性高胰島素血症的診斷標準,並不像先前報導的那麼可靠,因此,謹慎的做法是對低血糖發作期間所有可檢測到血中胰島素濃度的患者進行檢查,以防止先天性高胰島素血症的延遲診斷。 我們結合了桑格式定序與全外顯子定序 (WES) 方法,發現 KATP 通道中的致病性變異是 13 名台灣兒童對diazoxide無反應先天性高胰島素血症的最常見致病原因,我們證明 13名病患中最常出現的ABCC8 基因p.T1042Qfs*75 變異是台灣的奠基者突變,我們並針對病患中發現的三個罕見SUR1 蛋白變異做功能性研究,發現 p.L366F會造成KATP 通道門控缺陷而p.R797Q 和 p.R1393C會造成KATP 通道運輸缺陷,這樣的缺失是造成病患對diazoxide無反應的原因,我們的研究也證實GCK 基因的 p.I211F 變異會導致對diazoxide治療無反應的先天性高胰島素血症,攜帶p.I211F 變異的患者需要胰臟切除手術,才能維持正常血糖。 已知多個症候群也與先天性高胰島素血症有關。Beckwith-Wiedemann 症候群 (BWS) 是一種過度生長和容易出現胚胎性腫瘤的症候群,是最常見與先天性高胰島素血症相關的症候群, BWS 與表觀遺傳或基因組異常有關,這些異常會改變染色體 11p15.5 上印記基因的表達。我們提出了一個罕見的病例,這個病患由於胎盤間質發育不良而被懷疑為 BWS,儘管病患外觀並沒有明顯 BWS 的特徵,如出生時巨嬰、巨舌症、單側肥大或臍膨出現象,其周邊血DNA中BWS 關鍵區域的甲基化模式也並未發現異常,在她兩個月大時出現巨大的胰臟母細胞瘤並伴有高胰島素性低血糖後,我們進行的分子研究顯示鑲嵌性父系全基因組單倍體導致嬰兒胰臟母細胞瘤,因此病患符合BWS 類群的診斷。我們的結果強調了雄性細胞鑲嵌體與非典型 BWS 和高胰島素性低血糖之間關聯的重要性。 自2015 年以後,本院開始可以進行18F-FDOPA PET 掃描辨別臨床上diazoxide無反應的先天性高胰島素血症患者的局部病變,我們報告了兩名患者均存在父系遺傳的單一等位基因 ABCC8 致病性變異,且胰臟組織存在鑲嵌性染色體 11p15.5 區域父系單親二倍體,兩位病患的18F-FDOPA PET 掃描結果均低估了局部病變的範圍,待收集更多病例,未來將進一步研究分析18F-FDOPA PET診斷局部型先天性高胰島素血症的價值。我們也將繼續應用次世代定序的方法於基因診斷,特別是全基因組定序來識別那些具有未知遺傳病因的患者,由此基礎,可以開發個人化的治療方法和發展新的治療藥物,使先天性高胰島素血症患者能有更好的預後。 | zh_TW |
dc.description.abstract | Congenital hyperinsulinism (CHI) is a group of clinically and genetically heterogeneous disorders characterized by dysregulated insulin secretion during hypoglycemia. At least twelve genes have been proved to be associated with monogenic CHI and pathogenic variants in ABCC8 and KCNJ11 genes account for the most important underlying etiology. In pancreatic β cells, the ATP-sensitive potassium (KATP) channel plays a critical role in coupling changes in the plasma glucose concentration to electrical excitability and insulin release. The KATP channel consists of four subunits of the pore-forming potassium channel subunit (Kir6.2) and four sulfonylurea receptor 1 (SUR1) subunits, which are encoded by KCNJ11 and ABCC8 genes, respectively. CHI can be histologically characterized into diffuse, focal or atypical forms. Patients with diffuse CHI is generally associated with recessive loss-of-function variants in the ABCC8 and KCNJ11 genes. They are usually unresponsive to diazoxide, and extensive pancreatectomy is required to ameliorate hypoglycemia. Chromosome 11p15.5 region is an imprinting center that harbors maternally expressed tumor suppressors, H19 and CDKN1C, and a paternally expressed growth factor gene, IGF2. Focal CHI is usually caused by paternally inherited monoallelic KATP channel mutation with somatic loss of the maternal 11p15 region. The clinically indistinguishable diffuse and focal forms can be determined by scanning using fluorine 18 L-3, 4- dihydroxyphenyalanine positron emission tomography (18F-FDOPA PET) and removal of the focal lesion provides cure for the patient. Dominant mutations in ABCC8 and KCNJ11 genes, as well as disease-causing variants in other CHI-related genes, have been frequently associated with mild and diazoxide-responsive CHI. Because the study of CHI is lacking in Taiwan, we aim to describe the clinical manifestations and to elucidate genetic etiologies of Taiwanese children with CHI and analyze their genotype-phenotype correlations.
Thirteen children diagnosed with the most severe diazoxide-unresponsive CHI were studied. All received pancreatectomy after failure of initial medical treatment. Our study demonstrates clinical characteristics and long-term outcome of Taiwanese children with CHI for the first time. Our results showed that macrosomia and irritability of the nervous system were important clinical clues to the diagnosis of CHI. The result indicated the age at onset of hypoglycemia reflects the severity of CHI. Our data showed that the I/G ratio >0.3–0.5 during hypoglycemia, used as a diagnostic criterion of CHI, was not so reliable as previously reported. Therefore, it is prudent to work up on patients with detectable serum insulin levels during the episode of hypoglycemia in order to prevent delayed diagnosis of CHI. By combining the Sanger sequencing with whole exome sequencing (WES), we found that pathogenic variants in the KATP channel were the most common underlying cause of diazoxide-unresponsive CHI in thirteen Taiwanese children. We demonstrated that the high frequency of the p.T1042Qfs*75 variant in the ABCC8 gene is likely due to a founder effect in Taiwan. Our study demonstrated that patients carrying three rare SUR1 mutants with diazoxide-unresponsive phenotype are due to KATP channel gating defect (p.L366F) or trafficking defect (p.R797Q and p.R1393C). Our study also confirmed that the p.I211F variant of the GCK gene results in diazoxide-unresponsive CHI. The result suggests additional management, including near-total pancreatectomy, may be required to maintain euglycemia in patients with the p.I211F variant. A variety of syndromes are also known to be associated with CHI. Beckwith-Wiedemann syndrome (BWS), an overgrowth and embryonic tumors predisposition syndrome, is the most frequent syndromic condition associated with CHI. BWS is linked to epigenetic or genomic abnormalities that alter the expression of imprinted genes on chromosome 11p15.5. We present a rare case in whom BWS was first suspected because of placental mesenchymal dysplasia although no stigmata characteristic of BWS such as macrosomia, macroglossia, hemi-hypertrophy, or omphalocele was noted. The peripheral blood methylation pattern over BWS critical region was normal. Molecular study done after she developed massive pancreatoblastoma with hyperinsulinemic hypoglycemia revealed mosaic paternal haploidy associated with pancreatoblastoma which was compatible with the diagnosis of BWS spectrum. Our result highlights the importance of the association of androgenetic cell mosaicism with atypical BWS and hyperinsulinemic hypoglycemia. 18F-FDOPA PET scan has been implemented to identify focal lesion in diazoxide-unresponsive CHI patients in our hospital since 2015. Two patients had molecular study confirmed paternally inherited monoallelic ABCC8 pathogenic variant with mosaic somatic paternal uniparental isodisomy over chromosome 11p15.5 region. Their surgical pathology revealed more extensive focal islet change than 18F-FDOPA PET image showed. Further study for analysis of the diagnostic value of 18F-FDOPA PET for focal CHI will be done. We will continue to apply next generation sequencing-based approach for genetic diagnosis, especially whole genome sequencing to identify those with unknown genetic etiology. Accordingly, personalized approach to treatment and novel therapy can be developed in a hope to improve better outcome in children with CHI. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:53:05Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T17:53:05Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 III 英文摘要 IV 第一章 緒論 1 1.1 胰島β細胞分泌胰島素的機轉 1 1.2 先天性高胰島素血症 2 1.3 與症候群相關的先天性高胰島素血症 16 1.4 研究範疇與假說 21 第二章 研究方法與材料 22 2.1 台灣地區先天性高胰島素血症的臨床表徵與長期預後 22 2.2 先天性高胰島素血症的遺傳變異分析及功能驗證 22 2.3 局部型先天性高胰島素血症的氟18多巴正子電腦斷層造影應用及遺傳變異分析 27 2.4 罕見先天性胰臟母細胞瘤病例遺傳變異研究 28 第三章 結果 30 3.1 台灣地區先天性高胰島素血症的臨床表徵與長期預後 30 3.2 先天性高胰島素血症的遺傳變異分析及功能驗證 32 3.3 局部型先天性高胰島素血症的氟18多巴正子電腦斷層造影應用及遺傳變異分析 36 3.4 罕見先天性胰臟母細胞瘤病例遺傳變異研究 38 第四章 討論 42 4.1 台灣地區先天性高胰島素血症的臨床表徵與長期預後 42 4.2 先天性高胰島素血症的遺傳變異分析及功能驗證 45 4.3 局部型先天性高胰島素血症的氟18多巴正子電腦斷層造影應用及遺傳變異分析 51 4.4 罕見先天性胰臟母細胞瘤病例遺傳變異研究 56 第五章 展望 62 第六章 論文英文簡述 73 參考文獻 85 圖一~圖二十四 110 表一~表十三 136 附錄:博士班修業期間所發表之相關論文清冊 150 | - |
dc.language.iso | zh_TW | - |
dc.title | 台灣兒童先天性高胰島素血症之研究 | zh_TW |
dc.title | Congenital Hyperinsulinism in Taiwanese Children | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.coadvisor | 陳沛隆 | zh_TW |
dc.contributor.coadvisor | Pei-Lung Chen | en |
dc.contributor.oralexamcommittee | 楊偉勛;李燕晉;楊世斌;林建銘 | zh_TW |
dc.contributor.oralexamcommittee | Wei-Shiung Yang ;Yann-Jinn Lee;Shi-Bing Yang;Chien-Ming Lin | en |
dc.subject.keyword | 先天性高胰島素血症,ATP敏感性鉀離子通道,全外顯子定序,膜片鉗,Beckwith-Wiedemann氏症候群,18F-FDOPA PET, | zh_TW |
dc.subject.keyword | Congenital hyperinsulinism,ATP-sensitive potassium channel,whole exome sequencing,patch clamp,Beckwith-Wiedemann syndrome,18F-FDOPA PET, | en |
dc.relation.page | 150 | - |
dc.identifier.doi | 10.6342/NTU202401114 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-06-17 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 臨床醫學研究所 | - |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。