請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94733完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝松蒼 | zh_TW |
| dc.contributor.advisor | Sung-Tsang Hsieh | en |
| dc.contributor.author | 許婷元 | zh_TW |
| dc.contributor.author | Ting-Yuan Sheu | en |
| dc.date.accessioned | 2024-08-16T17:52:06Z | - |
| dc.date.available | 2024-08-19 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-09 | - |
| dc.identifier.citation | 1.Planté-Bordeneuve, V., & Said, G. (2011). Familial amyloid polyneuropathy. The Lancet. Neurology, 10(12), 1086–1097. https://doi.org/10.1016/S1474-4422(11)70246-0
2.Ando, Y., Coelho, T., Berk, J. L., Cruz, M. W., Ericzon, B. G., Ikeda, S., Lewis, W. D., Obici, L., Planté-Bordeneuve, V., Rapezzi, C., Said, G., & Salvi, F. (2013). Guideline of transthyretin-related hereditary amyloidosis for clinicians. Orphanet journal of rare diseases, 8, 31. https://doi.org/10.1186/1750-1172-8-31 3.Tseng, W. H., Huang, H. W., Li, C. C., Chang, C. S., Chan, W. P., Lin, K. P., & Wu, C. H. (2023). Natural history and survival rate of familial amyloidosis with polyneuropathy: A nationwide databank. Annals of clinical and translational neurology, 10(5), 779–786. https://doi.org/10.1002/acn3.51765 4.Hou X, Aguilar M-I, Small DH. (2007). Transthyretin and familial amyloidotic polyneuropathy: recent progress in understanding the molecular mechanism of neurodegeneration. FEBS J., 1637-1650. doi:10.1111/j.1742-4658.2007.05712.x. 5.Benson, M. D., & Kincaid, J. C. (2007). The molecular biology and clinical features of amyloid neuropathy. Muscle & nerve, 36(4), 411–423. https://doi.org/10.1002/mus.20821 6.Hellman, U., Alarcon, F., Lundgren, H. E., Suhr, O. B., Bonaiti-Pellié, C., & Planté-Bordeneuve, V. (2008). Heterogeneity of penetrance in familial amyloid polyneuropathy, ATTR Val30Met, in the Swedish population. Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis, 15(3), 181–186. https://doi.org/10.1080/13506120802193720 7.謝松蒼(2011)。類澱粉神經病變。Acta Neurologica Taiwanica,20(2),155-160。https://doi.org/10.29819/ANT.201106.0012 8.Leonardi, L., Adam, C., Beaudonnet, G., Beauvais, D., Cauquil, C., Not, A., Morassi, O., Benmalek, A., Trassard, O., Echaniz-Laguna, A., Adams, D., & Labeyrie, C. (2022). Skin amyloid deposits and nerve fiber loss as markers of neuropathy onset and progression in hereditary transthyretin amyloidosis. European journal of neurology, 29(5), 1477–1487. https://doi.org/10.1111/ene.15268 9.Chao, C. C., Huang, C. M., Chiang, H. H., Luo, K. R., Kan, H. W., Yang, N. C., Chiang, H., Lin, W. M., Lai, S. M., Lee, M. J., Shun, C. T., & Hsieh, S. T. (2015). Sudomotor innervation in transthyretin amyloid neuropathy: Pathology and functional correlates. Annals of neurology, 78(2), 272–283. https://doi.org/10.1002/ana.24438 10.Obayashi, K., & Ando, Y. (2012). Focus on autonomic dysfunction in familial amyloidotic polyneuropathy (FAP). Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis, 19 Suppl 1, 28–29. https://doi.org/10.3109/13506129.2012.673514 11.Berg AM, Anderson JJ, Chipkin SR, Lee VK, Skinner M, Cohens AS and Simms RW (1994). Autonomic neuropathy in AL (Primary amyloidosis and its effect on survival. Amyloid Int J Exp Clin Invest 1, 39-46) 12.Ando, Y., & Suhr, O. B. (1998). Autonomic dysfunction in familial amyloidotic polyneuropathy (FAP). Amyloid, 5(4), 288–300.https://doi.org/10.3109/13506129809007303 13.Hohenschurz-Schmidt, D. J., Calcagnini, G., Dipasquale, O., Jackson, J. B., Medina, S., O'Daly, O., O'Muircheartaigh, J., de Lara Rubio, A., Williams, S. C. R., McMahon, S. B., Makovac, E., & Howard, M. A. (2020). Linking Pain Sensation to the Autonomic Nervous System: The Role of the Anterior Cingulate and Periaqueductal Gray Resting-State Networks. Frontiers in neuroscience, 14, 147. https://doi.org/10.3389/fnins.2020.00147 14.Mokhtar, M., & Singh, P. (2023). Neuroanatomy, Periaqueductal Gray. In StatPearls. StatPearls Publishing. 15.Keay, K. A., & Bandler, R. (2001). Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neuroscience and biobehavioral reviews, 25(7-8), 669–678. https://doi.org/10.1016/s0149-7634(01)00049-5 16.Whitford, T. J., Kubicki, M., & Shenton, M. E. (2011). Diffusion tensor imaging, structural connectivity, and schizophrenia. Schizophrenia research and treatment, 2011, 709523. https://doi.org/10.1155/2011/709523 17.Mori, S., & van Zijl, P. C. (2002). Fiber tracking: principles and strategies - a technical review. NMR in biomedicine, 15(7-8), 468–480. https://doi.org/10.1002/nbm.781 18.Chao, C. C., Tseng, M. T., Hsieh, P. C., Lin, C. J., Huang, S. L., Hsieh, S. T., & Chiang, M. C. (2022). Brain Mechanisms of Pain and Dysautonomia in Diabetic Neuropathy: Connectivity Changes in Thalamus and Hypothalamus. The Journal of clinical endocrinology and metabolism, 107(3), e1167–e1180. https://doi.org/10.1210/clinem/dgab754 19.Gibbons, C. H., Illigens, B. M., Wang, N., & Freeman, R. (2009). Quantification of sweat gland innervation: a clinical-pathologic correlation. Neurology, 72(17), 1479–1486. https://doi.org/10.1212/WNL.0b013e3181a2e8b8 20.Deng, X., Feng, X., Li, S., Gao, Y., Yu, B., & Li, G. (2015). Influence of the hypothalamic paraventricular nucleus (PVN) on heart rate variability (HRV) in rat hearts via electronic lesion. Bio-medical materials and engineering, 26 Suppl 1, S487–S495. https://doi.org/10.3233/BME-151338 21.Sletten, D. M., Suarez, G. A., Low, P. A., Mandrekar, J., & Singer, W. (2012). COMPASS 31: a refined and abbreviated Composite Autonomic Symptom Score. Mayo Clinic proceedings, 87(12), 1196–1201. https://doi.org/10.1016/j.mayocp.2012.10.013 22.Sletten, D. M., Suarez, G. A., & Low, P. A. (2012b). COMPASS 31: A Refined and Abbreviated Composite Autonomic Symptom Score. Mayo Clinic Proceedings, 87(12), 1196–1201. 23.Benarroch, E.E. (2009). Central Regulation of Autonomic Function. In: Binder, M.D., Hirokawa, N., Windhorst, U. (eds) Encyclopedia of Neuroscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29678-2_904 24.Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38(1):95-113. 25.Friebel, U., Eickhoff, S. B., & Lotze, M. (2011). Coordinate-based meta-analysis of experimentally induced and chronic persistent neuropathic pain. NeuroImage, 58(4), 1070–1080. https://doi.org/10.1016/j.neuroimage.2011.07.022 26.Mutso, A. A., Radzicki, D., Baliki, M. N., Huang, L., Banisadr, G., Centeno, M. V., Radulovic, J., Martina, M., Miller, R. J., & Apkarian, A. V. (2012). Abnormalities in hippocampal functioning with persistent pain. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(17), 5747–5756. https://doi.org/10.1523/JNEUROSCI.0587-12.2012. 27.Beissner, F., Meissner, K., Bär, K. J., & Napadow, V. (2013). The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. The Journal of neuroscience : the official journal of the Society for Neuroscience, 33(25), 10503–10511. https://doi.org/10.1523/JNEUROSCI.1103-13.2013 28.Ravits J. M. (1997). AAEM minimonograph #48: autonomic nervous system testing. Muscle & nerve, 20(8), 919–937. https://doi.org/10.1002/(sici)1097-4598(199708)20:8<919::aid-mus1>3.0.co;2-9 29.Stein, P. K., Bosner, M. S., Kleiger, R. E., & Conger, B. M. (1994). Heart rate variability: a measure of cardiac autonomic tone. American heart journal, 127(5), 1376–1381. https://doi.org/10.1016/0002-8703(94)90059-0 30.Fisher, V. L., & Tahrani, A. A. (2017). Cardiac autonomic neuropathy in patients with diabetes mellitus: current perspectives. Diabetes, metabolic syndrome and obesity : targets and therapy, 10, 419–434. https://doi.org/10.2147/DMSO.S129797 31.Verrotti, A., Prezioso, G., Scattoni, R., & Chiarelli, F. (2014). Autonomic neuropathy in diabetes mellitus. Frontiers in endocrinology, 5, 205. https://doi.org/10.3389/fendo.2014.00205 32.Kinoshita, O., Hongo, M., Saikawa, Y., Katsuyama, T., Tanaka, M., Takeda, M., Yamamoto, H., Isobe, M., & Sekiguchi, M. (1997). Heart rate variability in patients with familial amyloid polyneuropathy. Pacing and clinical electrophysiology : PACE, 20(12 Pt 1), 2949–2953. https://doi.org/10.1111/j.1540-8159.1997.tb05465.x 33.Oka, H. (2017). Heart Rate Variability and Neurological Disorders. In: Iwase, S., Hayano, J., Orimo, S. (eds) Clinical Assessment of the Autonomic Nervous System. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56012-8_11 34.Wu, D., Wang, S., Stein, J. F., Aziz, T. Z., & Green, A. L. (2014). Reciprocal interactions between the human thalamus and periaqueductal gray may be important for pain perception. Experimental brain research, 232(2), 527–534. https://doi.org/10.1007/s00221-013-3761-4 35.Kim, D. J., Lim, M., Kim, J. S., & Chung, C. K. (2021). Structural and functional thalamocortical connectivity study in female fibromyalgia. Scientific reports, 11(1), 23323. https://doi.org/10.1038/s41598-021-02616-1 36.LeDoux J. E. (2000). Emotion circuits in the brain. Annual review of neuroscience, 23, 155–184. https://doi.org/10.1146/annurev.neuro.23.1.155 37.Xue, M., Shi, W. T., Zhou, S. B., Li, Y. N., Wu, F. Y., Chen, Q. Y., Liu, R. H., Zhou, Z. X., Zhang, Y. X., Chen, Y. X., Xu, F., Bi, G. Q., Li, X. H., Lu, J. S., & Zhuo, M. (2022). Mapping thalamic-anterior cingulate monosynaptic inputs in adult mice. Molecular pain, 18, 17448069221087034. https://doi.org/10.1177/17448069221087034 38.Çakar, A., Durmuş-Tekçe, H., & Parman, Y. (2019). Familial Amyloid Polyneuropathy. Noro psikiyatri arsivi, 56(2), 150–156. https://doi.org/10.29399/npa.23502 39.Lovick T. A. (1992). Inhibitory modulation of the cardiovascular defence response by the ventrolateral periaqueductal grey matter in rats. Experimental brain research, 89(1), 133–139. https://doi.org/10.1007/BF00229010 40.Bandler, R., Carrive, P., & Zhang, S. P. (1991). Integration of somatic and autonomic reactions within the midbrain periaqueductal grey: viscerotopic, somatotopic and functional organization. Progress in brain research, 87, 269–305. https://doi.org/10.1016/s0079-6123(08)63056-3 41.Ruffinazzi, M., Dusi, V. (2021). Central Nervous System Management of Autonomic Cardiovascular Control. In: Govoni, S., Politi, P., Vanoli, E. (eds) Brain and Heart Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-90305-7_65-1 42.Durmuş, H., Çakar, A., Demirci, H., Alaylioglu, M., Gezen-Ak, D., Dursun, E., & Gülşen Parman, Y. (2021). An Exploratory Study of Cognitive Involvement in Hereditary Transthyretin Amyloidosis. Acta neurologica Scandinavica, 144(6), 640–646. https://doi.org/10.1111/ane.13507 43.Chang, K., Yang, W. K., Li, W. T., Yeh, T. Y., Jao, C. H., Lin, J. R., Lin, C. C., Jeng, Y. M., Chao, C. C., & Hsieh, S. T. (2022). Distinct Patterns of Amyloid Pathology in Autopsies of Transthyretin S77Y and A97S Amyloidosis: Significance of Symptomatology and Cell Biology. Journal of neuropathology and experimental neurology, 81(5), 363–376. https://doi.org/10.1093/jnen/nlac022 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94733 | - |
| dc.description.abstract | 家族性澱粉樣多發性神經病變是一種罕見且致命的遺傳性疾病,由甲狀腺素運載蛋白突變引起,使澱粉樣蛋白沉積在多個器官中而造成多系統疾病,特別是神經系統的損害。自主神經症狀和小纖維神經受損的感覺異常是台灣家族性澱粉樣多發性神經病變患者的早期表現。過去研究大部分是探討臨床症狀與周邊神經機制的關係,但漸漸發現了周邊神經損傷後中樞系統也跟著發生改變。近年來學者使用糖尿病神經病變作為小纖維神經病變模型,發現了病理機制、臨床功能和大腦網路之間的關係,顯示小纖維神經病變並不是純粹的周邊神經系統疾病,而是和中樞神經系統息息相關。因此我們的研究目的是使用機率擴散纖維束成像技術來研究的大腦結構連接變化與臨床症狀的關聯,並在家族性澱粉樣多發性神經病變患者和健康成年人之間的大腦連結性進行組間比較。 研究結果發現心律變異度與腦部造影改變之間存在顯著關聯。大腦導水管周圍灰質與額葉、丘腦、海馬迴、島葉和扣帶回之間的結構性連結和心律變異度呈現正相關,顯示自主神經系統調節越差則導水管周圍灰質結構性連結越低。丘腦與額葉和前扣帶皮層區域之間的結構性連結和 COMPASS31 總分之間呈現負相關,顯示自主神經症狀越多則丘腦結構性連結越低。此外於組間比較中,大腦導水管周圍灰質、杏仁核、下視丘和前島葉結構性連結較低。這些發現暗示大腦結構連接與周圍損傷有關,並可能為我們提供非侵入性生物標記或相關治療的未來候選。 | zh_TW |
| dc.description.abstract | Familial amyloid polyneuropathy (FAP) is a group of uncommon, life-threatening hereditary disease due to mutation of transthyretin, causing deposition of amyloid proteins in various organ systems with multisystem disorders, particularly the nervous system. In Taiwan, FAP patients often exhibit early symptoms of small-fiber sensory neuropathy and autonomic dysfunction. Past studies mostly link clinical symptoms to peripheral mechanism, but maladaptive plasticity in the central nervous system following peripheral nerve injury was been found also. Recently, researchers used diabetic neuropathy as a small fiber neuropathy model and found connections among the pathology, clinical function, and brain network, suggesting that SFN is not a pure peripheral nervous system disorder. Our aim is to use probabilistic diffusion tractography to investigate the brain structural connectivity changes correlated with clinical symptoms and examine group comparisons between patients with FAP and healthy adults. Current results showed that a significant association was found between R-R interval variation (RRIV) and brain imaging alterations. A positive correlation was found between the RRIV and SC between the periaqueductal gray (PAG) with frontal, thalamus, hippocampus, insula, and cingulate, indicating that poorer regulation of the autonomic nervous system (ANS) was associated with decreased PAG SC. Negative correlation was found between the COMPASS 31 sum score and SC between the thalamus with the frontal and anterior cingulate cortex(ACC) region, indicating that poorer subjective symptoms was associated with decreased thalamic SC. Furthermore, lower SC was found in PAG, amygdala, hypothalamus, and anterior insula between groups. These findings suggest that brain structural connectivity was correlated with peripheral injury and might provide us a candidate non-invasive biomarker or related treatment in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:52:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:52:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝………………………………………………………………………………….......i
中文摘要……………………………………………………………………………..ii-iii 英文摘要……………………………………………………………………………...iv-v 1. INTRODUCTION…………………………………………………………............1-8 1.1 Background of FAP…………………………………………………….………..1 1.2 Pathology of FAP…………………………………………….………………..1-2 1.3 Diagnosis of FAP……………………………………………...…………………2 1.4 Clinical symptoms of FAP…………………………………….………………2-3 1.5 Brain regions related to ANS and pain……………………………...…………3-5 1.6 Introduction of diffusion tensor imaging………………………………………5-6 1.7 Peripheral sensitization to CNS dysfunction in SFN disease………….………6-7 1.8 Peripheral sensitization and its clinical correlations in FAP……...……………..7 1.9 Purpose of this study…………………………………………………..………7-8 2. METHODS……………………………………………………………………….9-16 2.1 Participants………………………………………………………..……………..9 2.2 Image acquisition and preprocessing……………………………..………….9-11 2.3 Probabilistic tractography…………………………………………………..11-12 2.4 Regions of interest for structural connectivity…………...…………………12-13 2.5 Composite Autonomic Symptom Score 31…………………………………….14 2.6 Autonomic clinical symptoms sum score……………………………………....14 2.7 Autonomic Function Tests…………………...……………………………...14-15 2.8 Statistical Analysis………………………………………………………….15-16 3. RESULTS………………………………………………………………….…...17-23 3.1 Clinical presentations of FAP...………………………………………….……..17 3.2 Structural connectivity alterations in FAP.………………………...….……17-21 3.3 Altered PAG connectivity in FAP and its clinical associations………..…..21-23 4. DISCUSSION…………………………………………………………………..24-30 4.1 Impact of reduced structural connectivity in FAP……………….…………24-25 4.2 Association between autonomic regulation and structural connectivity in FAP..26 4.3 Reduced connectivity between thalamus and PAG in chronic pain conditions..27 4.4 HRV alterations in diabetes and FAP: indicators of disease severity and prognosis………………………………………………………………………..27 4.5 Association of subjective ANS symptoms with reduced brain connectivity.28-29 4.6 Comparative analysis of structural connectivity in SFN and FAP …....……….29 4.7 Lack of correlation between IENFd and structural connectivity in FAP: implications for future research…......……………........................................29-30 4.8 Summary………………………………………………………………………..30 5. REFERENCE…………………………………………………………………...31-39 6. LIST OF FIGURES………………………………………………………….….40-50 7. LIST OF TABLES………………………………………………………………51-58 8. ABBREVIATIONS…………………………………………………………….…..59 | - |
| dc.language.iso | en | - |
| dc.subject | 機率擴散纖維束成像技術 | zh_TW |
| dc.subject | 家族性澱粉樣多發性神經病變 | zh_TW |
| dc.subject | 大腦導水管周圍灰質 | zh_TW |
| dc.subject | 結構性連結 | zh_TW |
| dc.subject | 心律變異度 | zh_TW |
| dc.subject | Familial amyloid polyneuropathy | en |
| dc.subject | Diffusion tensor imaging | en |
| dc.subject | R-R interval variation | en |
| dc.subject | Periaqueductal gray | en |
| dc.subject | Probablistic tractography | en |
| dc.title | 家族性澱粉樣多發性神經病變自主神經功能障礙的結構連結改變 | zh_TW |
| dc.title | Altered structural connectivity underlying dysautonomia in familial amyloid polyneuropathy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 曾明宗 | zh_TW |
| dc.contributor.coadvisor | Ming-Tsung Tseng | en |
| dc.contributor.oralexamcommittee | 姚皓傑 | zh_TW |
| dc.contributor.oralexamcommittee | Hau-Jie Yao | en |
| dc.subject.keyword | 家族性澱粉樣多發性神經病變,機率擴散纖維束成像技術,心律變異度,結構性連結,大腦導水管周圍灰質, | zh_TW |
| dc.subject.keyword | Familial amyloid polyneuropathy,Diffusion tensor imaging,Probablistic tractography,Periaqueductal gray,R-R interval variation, | en |
| dc.relation.page | 59 | - |
| dc.identifier.doi | 10.6342/NTU202404047 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 腦與心智科學研究所 | - |
| 顯示於系所單位: | 腦與心智科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 886.21 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
