請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94727
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭靜穎 | zh_TW |
dc.contributor.advisor | Ching-Ying Kuo | en |
dc.contributor.author | 陳明鋒 | zh_TW |
dc.contributor.author | Ming-Feng Chen | en |
dc.date.accessioned | 2024-08-16T17:46:50Z | - |
dc.date.available | 2024-08-17 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-12 | - |
dc.identifier.citation | 1. Bray, F., et al., Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024. 74(3): p. 229-263.
2. 衛生福利部統計處-113年死因統計結果分析. 3. Makki, J., Diversity of Breast Carcinoma: Histological Subtypes and Clinical Relevance. Clin Med Insights Pathol, 2015. 8: p. 23-31. 4. Yersal, O. and S. Barutca, Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J Clin Oncol, 2014. 5(3): p. 412-24. 5. Waks, A.G. and E.P. Winer, Breast Cancer Treatment: A Review. JAMA, 2019. 321(3): p. 288-300. 6. Lambert, J.M. and R.V. Chari, Ado-trastuzumab Emtansine (T-DM1): an antibody–drug conjugate (ADC) for HER2-positive breast cancer. Journal of Medicinal Chemistry, 2014. 57(16): p. 6949-6964. 7. Dai, X., et al., Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping. J Cancer, 2017. 8(16): p. 3131-3141. 8. Wang, J., et al., Biological subtype predicts locoregional recurrence after postmastectomy radiotherapy in Chinese breast cancer patients. Cancer Med, 2020. 9(7): p. 2427-2434. 9. Yin, L., et al., Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Research, 2020. 22: p. 1-13. 10. Seligson, J.M., et al., Sacituzumab govitecan-hziy: an antibody-drug conjugate for the treatment of refractory, metastatic, triple-negative breast cancer. Annals of Pharmacotherapy, 2021. 55(7): p. 921-931. 11. Liu, Y.P., et al., Molecular mechanisms of chemo- and radiotherapy resistance and the potential implications for cancer treatment. MedComm (2020), 2021. 2(3): p. 315-340. 12. Kavanagh, J.N., et al., DNA double strand break repair: a radiation perspective. Antioxid Redox Signal, 2013. 18(18): p. 2458-72. 13. Jiao, Y., F. Cao, and H. Liu, Radiation-induced Cell Death and Its Mechanisms. Health Physics, 2022. 123(5): p. 376–386. 14. Sia, J., et al., Molecular Mechanisms of Radiation-Induced Cancer Cell Death: A Primer. Front Cell Dev Biol, 2020. 8: p. 41. 15. He, M.Y., et al., Radiotherapy in triple-negative breast cancer: Current situation and upcoming strategies. Critical reviews in oncology/hematology, 2018. 131: p. 96-101. 16. Group, E.B.C.T.C., Effects of radiotherapy and surgery in early breast cancer. An overview of the randomized trials. N Engl J Med, 1995. 333(22): p. 1444-55. 17. Wu, Y., et al., Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer, 2023. 22(1): p. 96. 18. Buckley, A.M., et al., Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers. Nat Rev Gastroenterol Hepatol, 2020. 17(5): p. 298-313. 19. Shrivastav, M., L.P. De Haro, and J.A. Nickoloff, Regulation of DNA double-strand break repair pathway choice. Cell Res, 2008. 18(1): p. 134-47. 20. Harper, J.W. and S.J. Elledge, The DNA damage response: ten years after. Molecular cell, 2007. 28(5): p. 739-745. 21. Bartocci, C. and E.L. Denchi, Put a RING on it: regulation and inhibition of RNF8 and RNF168 RING finger E3 ligases at DNA damage sites. Frontiers in genetics, 2013. 4: p. 128. 22. Petrini, J.H. and T.H. Stracker, The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends in cell biology, 2003. 13(9): p. 458-462. 23. Helleday, T., et al., DNA double-strand break repair: From mechanistic understanding to cancer treatment. DNA Repair, 2007. 6(7): p. 923-935. 24. Davis, A.J. and D.J. Chen, DNA double strand break repair via non-homologous end-joining. Transl Cancer Res, 2013. 2(3): p. 130-143. 25. Dudáš, A. and M. Chovanec, DNA double-strand break repair by homologous recombination. Mutation Research/Reviews in Mutation Research, 2004. 566(2): p. 131-167. 26. Jeggo, P.A., L.H. Pearl, and A.M. Carr, DNA repair, genome stability and cancer: a historical perspective. Nature Reviews Cancer, 2016. 16(1): p. 35-42. 27. Li, L.-y., et al., DNA Repair Pathways in Cancer Therapy and Resistance. Frontiers in Pharmacology, 2021. 11: p. 629266. 28. Collins, A.R., The comet assay: principles, applications, and limitations. In situ detection of DNA damage: methods and protocols, 2002: p. 163-177. 29. Law, R.H.P., et al., An overview of the serpin superfamily. Genome Biology, 2006. 7(5): p. 216. 30. Booth, N.A., Fibrinolysis and thrombosis. Best Practice & Research Clinical Haematology, 1999. 12(3): p. 423-433. 31. Morrow, G.B. and N.J. Mutch, Past, Present, and Future Perspectives of Plasminogen Activator Inhibitor 1 (PAI-1). Semin Thromb Hemost, 2023. 49(3): p. 305-313. 32. Coffey, C.S., et al., The Association of the Metabolic Syndrome with PAI-1 and t-PA Levels. Cardiology Research and Practice, 2011. 2011: p. 541467. 33. Ma, L.J., et al., Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes, 2004. 53(2): p. 336-46. 34. Li, L., et al., Identification and validation of SERPINE1 as a prognostic and immunological biomarker in pan-cancer and in ccRCC. Front Pharmacol, 2023. 14: p. 1213891. 35. Chen, S., et al., SERPINE1 Overexpression Promotes Malignant Progression and Poor Prognosis of Gastric Cancer. J Oncol, 2022. 2022: p. 2647825. 36. Yang, J.-D., L. Ma, and Z. Zhu, SERPINE1 as a cancer-promoting gene in gastric adenocarcinoma: facilitates tumour cell proliferation, migration, and invasion by regulating EMT. Journal of Chemotherapy, 2019. 31(7-8): p. 408-418. 37. Che, Y., et al., Cisplatin-activated PAI-1 secretion in the cancer-associated fibroblasts with paracrine effects promoting esophageal squamous cell carcinoma progression and causing chemoresistance. Cell Death Dis, 2018. 9(7): p. 759. 38. Kang, J., et al., Plasminogen activator inhibitor-1 enhances radioresistance and aggressiveness of non-small cell lung cancer cells. Oncotarget, 2016. 7(17): p. 23961-74. 39. Mazzoccoli, G., et al., ARNTL2 and SERPINE1: potential biomarkers for tumor aggressiveness in colorectal cancer. Journal of Cancer Research and Clinical Oncology, 2012. 138(3): p. 501-511. 40. Wang, S., et al., SERPINE1 associated with remodeling of the tumor microenvironment in colon cancer progression: a novel therapeutic target. BMC Cancer, 2021. 21(1): p. 767. 41. Pavón, M.A., et al., uPA/uPAR and SERPINE1 in head and neck cancer: role in tumor resistance, metastasis, prognosis and therapy. Oncotarget, 2016. 7(35): p. 57351-57366. 42. Rømer, M.U., et al., Plasminogen Activator Inhibitor 1 Protects Fibrosarcoma Cells from Etoposide-Induced Apoptosis through Activation of the PI3K/Akt Cell Survival Pathway. Neoplasia, 2008. 10(10): p. 1083-1091. 43. Zhang, Q., L. Lei, and D. Jing, Knockdown of SERPINE1 reverses resistance of triple‑negative breast cancer to paclitaxel via suppression of VEGFA. Oncol Rep, 2020. 44(5): p. 1875-1884. 44. Whitley, B.R., et al., Phosphatidylinositol 3-kinase/Akt regulates the balance between plasminogen activator inhibitor-1 and urokinase to promote migration of SKOV-3 ovarian cancer cells. Gynecologic Oncology, 2007. 104(2): p. 470-479. 45. Su, Y.-H., et al., Obesity promotes radioresistance through SERPINE1-mediated aggressiveness and DNA repair of triple-negative breast cancer. Cell Death & Disease, 2023. 14(1): p. 53. 46. Gunn, A. and J.M. Stark, I-SceI-based assays to examine distinct repair outcomes of mammalian chromosomal double strand breaks. Methods Mol Biol, 2012. 920: p. 379-91. 47. Arnoult, N., et al., Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN. Nature, 2017. 549(7673): p. 548-552. 48. Gomes-Giacoia, E., et al., Targeting plasminogen activator inhibitor-1 inhibits angiogenesis and tumor growth in a human cancer xenograft model. Mol Cancer Ther, 2013. 12(12): p. 2697-708. 49. Elokdah, H., et al., Tiplaxtinin, a Novel, Orally Efficacious Inhibitor of Plasminogen Activator Inhibitor-1: Design, Synthesis, and Preclinical Characterization. Journal of Medicinal Chemistry, 2004. 47(14): p. 3491-3494. 50. Hennan, J.K., et al., Effect of tiplaxtinin (PAI‐039), an orally bioavailable PAI‐1 antagonist, in a rat model of thrombosis. Journal of Thrombosis and Haemostasis, 2008. 6(9): p. 1558-1564. 51. Kuo, L.J. and L.-X. Yang, γ-H2AX-a novel biomarker for DNA double-strand breaks. In vivo, 2008. 22(3): p. 305-309. 52. Sakamoto, H., et al., PAI-1 derived from cancer-associated fibroblasts in esophageal squamous cell carcinoma promotes the invasion of cancer cells and the migration of macrophages. Lab Invest, 2021. 101(3): p. 353-368. 53. Liu, Q., et al., Role of AKT signaling in DNA repair and clinical response to cancer therapy. Neuro-Oncology, 2014. 16(10): p. 1313-1323. 54. Toulany, M., et al., Akt promotes post-irradiation survival of human tumor cells through initiation, progression, and termination of DNA-PKcs-dependent DNA double-strand break repair. Mol Cancer Res, 2012. 10(7): p. 945-57. 55. Yue, X., et al., DNA-PKcs: A Multi-Faceted Player in DNA Damage Response. Front Genet, 2020. 11: p. 607428. 56. Hu, W., et al., Heterogeneous nuclear ribonucleoprotein L facilitates recruitment of 53BP1 and BRCA1 at the DNA break sites induced by oxaliplatin in colorectal cancer. Cell Death Dis, 2019. 10(8): p. 550. 57. Gorlatova, N.V., et al., Mechanism of Inactivation of Plasminogen Activator Inhibitor-1 by a Small Molecule Inhibitor*. Journal of Biological Chemistry, 2007. 282(12): p. 9288-9296. 58. Zhang, D., et al., Therapy-induced senescent tumor cell-derived extracellular vesicles promote colorectal cancer progression through SERPINE1-mediated NF-κB p65 nuclear translocation. Molecular Cancer, 2024. 23(1): p. 70. 59. Wang, D., et al., PAI-1 overexpression promotes invasion and migration of esophageal squamous carcinoma cells. Yi chuan= Hereditas, 2020. 42(3): p. 287-295. 60. Wyrzykowska, P., et al., Epidermal growth factor regulates PAI-1 expression via activation of the transcription factor Elk-1. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2010. 1799(9): p. 616-621. 61. Hsieh, A.C., M.L. Truitt, and D. Ruggero, Oncogenic AKTivation of translation as a therapeutic target. British Journal of Cancer, 2011. 105(3): p. 329-336. 62. Ruggero, D. and N. Sonenberg, The Akt of translational control. Oncogene, 2005. 24(50): p. 7426-7434. 63. Barbieri, M.A., et al., Protein Kinase B/akt and Rab5 Mediate Ras Activation of Endocytosis*. Journal of Biological Chemistry, 1998. 273(31): p. 19367-19370. 64. Simone, T.M., et al., SERPINE1: A Molecular Switch in the Proliferation-Migration Dichotomy in Wound-“Activated” Keratinocytes. Advances in Wound Care, 2014. 3(3): p. 281-290. 65. Placencio, V.R. and Y.A. DeClerck, Plasminogen Activator Inhibitor-1 in Cancer: Rationale and Insight for Future Therapeutic Testing. Cancer Res, 2015. 75(15): p. 2969-74. 66. Degryse, B., et al., The low density lipoprotein receptor-related protein is a motogenic receptor for plasminogen activator inhibitor-1. J Biol Chem, 2004. 279(21): p. 22595-604. 67. Tian, Y., et al., Extracellular Hsp90α and clusterin synergistically promote breast cancer epithelial-to-mesenchymal transition and metastasis via LRP1. J Cell Sci, 2019. 132(15). 68. Salama, Y., et al., The fibrinolytic factor tPA drives LRP1-mediated melanoma growth and metastasis. Faseb j, 2019. 33(3): p. 3465-3480. 69. Simone, T.M. and P.J. Higgins, Inhibition of SERPINE1 Function Attenuates Wound Closure in Response to Tissue Injury: A Role for PAI-1 in Re-Epithelialization and Granulation Tissue Formation. Journal of Developmental Biology, 2015. 3(1): p. 11-24. 70. Croucher, David R., et al., A structural basis for differential cell signalling by PAI-1 and PAI-2 in breast cancer cells. Biochemical Journal, 2007. 408(2): p. 203-210. 71. Helfricht, A., et al., Remodeling and spacing factor 1 (RSF1) deposits centromere proteins at DNA double-strand breaks to promote non-homologous end-joining. Cell Cycle, 2013. 12(18): p. 3070-82. 72. Adams, B.R., et al., ATM-independent, high-fidelity nonhomologous end joining predominates in human embryonic stem cells. Aging (Albany NY), 2010. 2(9): p. 582-96. 73. Daley, J.M. and P. Sung, 53BP1, BRCA1, and the Choice between Recombination and End Joining at DNA Double-Strand Breaks. Molecular and Cellular Biology, 2014. 34(8): p. 1380-1388. 74. Truong, L.N., et al., Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc Natl Acad Sci U S A, 2013. 110(19): p. 7720-5. 75. McVey, M. and S.E. Lee, MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends in Genetics, 2008. 24(11): p. 529-538. 76. Elstrodt, F., et al., BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants. Cancer research, 2006. 66(1): p. 41-45. 77. Chai, Y., et al., Homologous Recombination Deficiency (HRD) and BRCA 1/2 Gene Mutation for Predicting the Effect of Platinum-Based Neoadjuvant Chemotherapy of Early-Stage Triple-Negative Breast Cancer (TNBC): A Systematic Review and Meta-Analysis. J Pers Med, 2022. 12(2): p. 323. 78. Miyakis, S. and D.A. Spandidos, Allelic loss in breast cancer. Cancer Detect Prev, 2002. 26(6): p. 426-34. 79. Zhang, J., et al., SERPINE2/PN-1 regulates the DNA damage response and radioresistance by activating ATM in lung cancer. Cancer Letters, 2022. 524: p. 268-283. 80. Furuya, H., et al., PAI-1 is a potential transcriptional silencer that supports bladder cancer cell activity. Scientific Reports, 2022. 12(1): p. 12186. 81. Sishc, B.J. and A.J. Davis, The Role of the Core Non-Homologous End Joining Factors in Carcinogenesis and Cancer. Cancers (Basel), 2017. 9(7). 82. Wang, X., et al., LINP1 facilitates DNA damage repair through non-homologous end joining (NHEJ) pathway and subsequently decreases the sensitivity of cervical cancer cells to ionizing radiation. Cell Cycle, 2018. 17(4): p. 439-447. 83. Beskow, C., et al., Radioresistant cervical cancer shows upregulation of the NHEJ proteins DNA-PKcs, Ku70 and Ku86. British Journal of Cancer, 2009. 101(5): p. 816-821. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94727 | - |
dc.description.abstract | 乳癌可依其受體的表達分為不同分子亞型,三陰性乳癌因其荷爾蒙受體與HER2受體表現量低,缺乏有效的治療靶點,目前早期臨床治療仍以切除手術搭配化學治療或放射線治療為主,然而三陰性乳癌接受放射線治療後的局部復發率高,為目前亟需解決之問題。
SERPINE1(serpin family E member 1)是在肥胖者血液循環中經常升高的一種脂肪素,在某些癌症中也會高度表達,包括三陰性乳癌基因亞型中的basal b 亞型,並與癌症對治療的抗性相關聯。實驗室先前透過飲食誘導肥胖之三陰性乳癌同源小鼠模型,觀察到腫瘤和腫瘤微環境中的Serpine1都有所升高,且使用tiplaxtinin抑制Serpine1可以顯著降低腫瘤之放射線抗性,表明Serpine1會促進腫瘤放射線抗性。後續在細胞實驗中發現放射線照射會促進乳癌細胞內SERPINE1表現量上升且細胞核內的SERPINE1含量也會增加。除此之外,內源或外源性的SERPINE1都會促進DNA雙股斷裂修復,但仍不清楚其背後機制。 本篇研究透過DNA雙股斷裂修復試驗初步發現SERPINE1可能會促進非同源末端接合(NHEJ)修復,以提升細胞整體DNA雙股斷裂修復效率。另外為了探討細胞核中的SERPINE1是否位於DNA損傷處直接參與修復,透過免疫螢光染色發現放射線照射後SERPINE1並不會移動到損傷位點。透過西方墨點法分析γH2AX含量也發現rSERPINE1可以促進DNA雙股斷裂修復,若額外加入AKT抑制劑則可以部分消除此效果,代表SERPINE1可能會透過活化AKT訊息傳遞路徑來促進DNA雙股斷裂修復。為了更進一步研究SERPINE1在DNA雙股斷裂修復路徑的選擇中所扮演的角色,我們建立了帶有另一種DNA雙股斷裂修復報導基因(pLCN-DRR)之報導基因細胞株。現階段對於SERPINE1促進DNA雙股斷裂修復之機制仍未明瞭,後續我們將繼續研究SERPINE1對修復路徑選擇的影響以及其促進DNA雙股斷裂修復之機制。 | zh_TW |
dc.description.abstract | Breast cancer can be classified into different molecular subtypes based on its receptor expression. Triple-negative breast cancer (TNBC) lacks effective therapeutic targets due to the low expression of hormone receptors and HER2, so the mainstay of treatment for early TNBC is still surgery combined with chemotherapy or radiotherapy. However, the high local recurrence rate of TNBC after radiation therapy is a problem that needs to be solved urgently.
SERPINE1 (serpin family E member 1), an adipokine often found elevated in the circulation of obese individuals, is also highly expressed in certain cancers, including the basal b subtype of TNBC, and is associated with treatment resistance. In our diet-induced obesity syngeneic mouse model of TNBC, we observed an increase in Serpine1 levels in both the tumor and the tumor microenvironment. Moreover, inhibition of Serpine1 by tiplaxtinin significantly reduced tumor radioresistance, suggesting that Serpine1 plays a role in promoting radioresistance in tumors. In cell-based assays, we found that ionizing radiation induced the expression and nuclear localization of SERPINE1 in TNBC cells. Furthermore, both endogenous and exogenous SERPINE1 promoted DNA double-strand break (DSB) repair in breast cancer cells after exposure to ionizing radiation, but the underlying mechanism is still unclear. In this study, the DSB repair assay revealed that SERPINE1 may promote non-homologous end joining (NHEJ) to enhance the overall DNA DSB repair efficiency. In addition, we investigated whether SERPINE1 of the nucleus is located at the DSB site and directly participates in the repair. Immunofluorescence staining revealed that SERPINE1 was not localized to the DNA break site after IR. Analysis of γH2AX level by the Western blotting also showed that rSERPINE1 promoted DNA DSB repair, and this effect was partially reversed by the addition of AKT inhibitor, suggesting that SERPINE1 might promote DSB repair by activating the AKT signaling pathway. To further investigate the role of SERPINE1 in DSB repair pathway choice, we have established reporter cell lines with another DSB repair reporter gene (pLCN-DRR). The mechanism by which SERPINE1 promotes DSB repair is still unclear at this stage, and we will continue to investigate the repair pathway choice affected by SERPINE1 and the mechanism by which it promotes DNA DSB repair. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:46:45Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T17:46:50Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 縮寫表 vii 圖次 x 附圖次 xi 第一章、緒論 1 1.1 乳癌 1 1.2 三陰性乳癌 2 1.3 放射線治療 3 1.4 DNA雙股斷裂損傷反應與修復 4 1.5 SERPINE1 6 1.6 實驗室過往研究 8 第二章、研究目的 10 第三章、材料與方法 11 3.1 細胞培養 11 3.2 放射線照射 11 3.3 蛋白質萃取與定量 11 3.4 聚丙烯醯胺凝膠電泳與西方墨點法 12 3.5 免疫螢光染色 13 3.6 慢病毒載體製作與轉導 14 3.7 siRNA轉染 15 3.8 I-SceI-based DSB repair assay 15 3.9 pLCN-DSB repair reporter assay 16 3.10 流式細胞儀分析 16 3.11 細胞群落生成能力試驗 17 3.12 RNA萃取、cDNA合成與即時定量聚合酶連鎖反應 17 3.13 統計與分析 18 第四章、實驗結果 19 4.1 SERPINE1促進DNA雙股斷裂非同源性末端接合修復(NHEJ) 19 4.2 SERPINE1抑制劑Tiplaxtinin不影響DNA雙股斷裂修復路徑選擇 20 4.3 SERPINE1不與放射線照射後產生之DNA雙股斷裂位點共定位 21 4.4 SERPINE1活化AKT訊息傳遞路徑且誘導細胞內SERPINE1含量增加 22 4.5 SERPINE1促進DNA雙股斷裂修復的作用可能部分依賴AKT路徑 23 4.6 重組SERPINE1可能促進放射線照射後DNA-PKcs絲胺酸2056位點的磷酸化 23 4.7 重組SERPINE1不影響細胞在放射線照射後的群落形成能力 24 4.8 pLCN-DSB repair reporter細胞株之建立與驗證 25 第五章、結論與討論 28 圖 34 附圖 50 參考文獻 57 | - |
dc.language.iso | zh_TW | - |
dc.title | 探討SERPINE1在三陰性乳癌之DNA雙股斷裂修復中扮演的角色 | zh_TW |
dc.title | Investigating the Role of SERPINE1 in DNA Double-Strand Break Repair in Triple Negative Breast Cancer | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林亮音;楊雅倩;蘇剛毅;卓爾婕 | zh_TW |
dc.contributor.oralexamcommittee | Liang-In Lin;Ya-Chein Yang;Kang-Yi Su;Er-Chieh Cho | en |
dc.subject.keyword | SERPINE1,三陰性乳癌,DNA雙股斷裂修復, | zh_TW |
dc.subject.keyword | SERPINE1,Triple negative breast cancer,DNA double-strand break repair, | en |
dc.relation.page | 62 | - |
dc.identifier.doi | 10.6342/NTU202404138 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-12 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 醫學檢驗暨生物技術學系 | - |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。