Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94715
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江伯倫zh_TW
dc.contributor.advisorBor-Luen Chiangen
dc.contributor.author李宗翰zh_TW
dc.contributor.authorTsung-Han Leeen
dc.date.accessioned2024-08-16T17:41:07Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citation1. Jackson, D.J., et al., IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am J Respir Crit Care Med, 2014. 190(12): p. 1373-82.
2. Dunican, E.M. and J.V. Fahy, The role of type 2 inflammation in the pathogenesis of asthma exacerbations. Ann Am Thorac Soc, 2015. 12 Suppl 2(Suppl 2): p. S144-9.
3. Gordon, E.D., et al., Alternative splicing of interleukin-33 and type 2 inflammation in asthma. PNAS, 2016. 113(31): p. 8765-8770.
4. Werder, R.B., et al., Chronic IL-33 expression predisposes to virus-induced asthma exacerbations by increasing type 2 inflammation and dampening antiviral immunity. J Clin Immunol, 2018. 141(5): p. 1607-1619.e9.
5. Busse, W.W., et al., Understanding the key issues in the treatment of uncontrolled persistent asthma with type 2 inflammation. Eur Respir J, 2021. 58(2).
6. Maspero, J., et al., Type 2 inflammation in asthma and other airway diseases. ERJ Open Res, 2022. 8(3).
7. Papi, A., et al., Asthma. The Lancet, 2018. 391(10122): p. 783-800.
8. Athari, S.S., Targeting cell signaling in allergic asthma. Signal Transduct Target Ther, 2019. 4(1): p. 45.
9. Hammad, H. and B.N. Lambrecht, The basic immunology of asthma. Cell, 2021. 184(6): p. 1469-1485.
10. Xie, Y., et al., TH17 cells and corticosteroid insensitivity in severe asthma. J Clin Immunol, 2022. 149(2): p. 467-479.
11. Fanta, C.H., Asthma. NEJM, 2009. 360(10): p. 1002-1014.
12. Pizzichini, E., et al., Montelukast reduces airway eosinophilic inflammation in asthma: a randomized, controlled trial. Eur Respir J, 1999. 14(1): p. 12-8.
13. Minoguchi, K., et al., Reduction of eosinophilic inflammation in the airways of patients with asthma using montelukast. Chest, 2002. 121(3): p. 732-738.
14. Nelson, H.S., β-adrenergic bronchodilators. NEJM, 1995. 333(8): p. 499-507.
15. van der Velden, V.H.J., Glucocorticoids: mechanisms of action and anti-inflammatory potential in asthma. Mediators Inflamm, 1998. 7: p. 702547.
16. Chanez, P., et al., Effects of inhaled corticosteroids on pathology in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc, 2004. 1(3): p. 184-90.
17. Johnson, M., Beta2-adrenoceptors: mechanisms of action of beta2-agonists. Paediatr Respir Rev, 2001. 2(1): p. 57-62.
18. Green, S.A., et al., Influence of beta 2-adrenergic receptor genotypes on signal transduction in human airway smooth muscle cells. Am J Respir Cell Mol Biol, 1995. 13(1): p. 25-33.
19. Delmotte, P., et al., Mechanisms of airway smooth muscle relaxation induced by beta2-adrenergic agonists. Front Biosci, 2010. 15: p. 750-764.
20. Hancox, R.J., M.R. Sears, and D.R. Taylor, Polymorphism of the beta2-adrenoceptor and the response to long-term beta2-agonist therapy in asthma. Eur Respir J, 1998. 11(3): p. 589-93.
21. Kew, K.M., C. Mavergames, and J.A. Walters, Long-acting beta2-agonists for chronic obstructive pulmonary disease. Cochrane Database Syst Rev, 2013(10): p. Cd010177.
22. Devadason, S.G., M.L. Everard, and P.N. Le Souëf, Chapter 17 - Aerosol therapy and delivery systems, in pediatric respiratory medicine (Second Edition), L.M. Taussig and L.I. Landau, Editors. 2008, Mosby: Philadelphia. p. 235-240.
23. Aalbers, R., C. Vogelmeier, and P. Kuna, Achieving asthma control with ICS/LABA: A review of strategies for asthma management and prevention. Respira Med, 2016. 111: p. 1-7.
24. Kirkland, S.W., et al., Combined inhaled beta-agonist and anticholinergic agents for emergency management in adults with asthma. Cochrane Database Syst Rev, 2017. 1(1): p. Cd001284.
25. Adcock, I.M. and K. Ito, Molecular mechanisms of corticosteroid actions. Monaldi Arch Chest Dis, 2000. 55(3): p. 256-66.
26. Barnes, P.J., Molecular mechanisms of corticosteroids in allergic diseases. Allergy, 2001. 56(10): p. 928-36.
27. Aghai, Z.H., et al., Dexamethasone suppresses expression of nuclear factor-kappaB in the cells of tracheobronchial lavage fluid in premature neonates with respiratory distress. Pediatr Res, 2006. 59(6): p. 811-815.
28. Bhavsar, P., et al., Effect of p38 MAPK inhibition on corticosteroid suppression of cytokine release in severe asthma. Eur Respir J, 2010. 35(4): p. 750-6.
29. Yang, J., et al., Targeting cell death: Pyroptosis, ferroptosis, apoptosis and necroptosis in Osteoarthritis. Front Cell Dev Biol, 2021. 9: p. 789948.
30. Wang, Y. and T.-D. Kanneganti, From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput Struct Biotechnol J, 2021. 19: p. 4641-4657.
31. Gao, J., et al., PANoptosis: bridging apoptosis, pyroptosis, and necroptosis in cancer progression and treatment. Cancer Gene Ther, 2024.
32. Choudhury, S.M., et al., A comparative study of apoptosis, pyroptosis, necroptosis, and PANoptosis components in mouse and human cells. PLoS One, 2024. 19(2): p. e0299577.
33. Bertheloot, D., E. Latz, and B.S. Franklin, Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell & Mole Immunol, 2021. 18(5): p. 1106-1121.
34. Kalinichenko, S.G. and N.Y. Matveeva, Morphological characteristics of apoptosis and its significance in neurogenesis. Neurosci Behav Physiol, 2008. 38(4): p. 333-344.
35. Saraste, A. and K. Pulkki, Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res, 2000. 45(3): p. 528-37.
36. Phelouzat, M.-A., et al., Excessive apoptosis of mature T lymphocytes is a characteristic feature of human immune senescence. Mech Ageing Dev, 1996. 88(1): p. 25-38.
37. D'Arcy, M.S., Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int, 2019. 43(6): p. 582-592.
38. Cohen, J.J., et al., Apoptosis and programmed cell death in immunity. Annu Rev Immunol, 1992. 10: p. 267-93.
39. Nössing, C. and K.M. Ryan, 50 years on and still very much alive: ‘Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics’. Br J Cancer, 2023. 128(3): p. 426-431.
40. Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4): p. 495-516.
41. Green, D.R., The death receptor pathway of apoptosis. Cold Spring Harb Perspect Biol, 2022. 14(2).
42. Kumar, R., P.E. Herbert, and A.N. Warrens, An introduction to death receptors in apoptosis. Intern J Surg, 2005. 3(4): p. 268-277.
43. Kashyap, D., V.K. Garg, and N. Goel, Chapter Four - Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis, in Advances in Protein Chemistry and Structural Biology, R. Donev, Editor. 2021, Academic Press. p. 73-120.
44. Radogna, F., et al., Melatonin antagonizes the intrinsic pathway of apoptosis via mitochondrial targeting of Bcl-2. J Pineal Res, 2008. 44(3): p. 316-25.
45. Inoue, S., et al., Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. Cell Death & Differ, 2009. 16(7): p. 1053-1061.
46. Wu, C.C. and S.B. Bratton, Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxid Redox Signal, 2013. 19(6): p. 546-58.
47. Léveillé, F., et al., Suppression of the intrinsic apoptosis pathway by synaptic activity. J Neurosci, 2010. 30(7): p. 2623-35.
48. Reed, J.C., Bcl-2 family proteins. Oncogene, 1998. 17(25): p. 3225-3236.
49. Warren, C.F.A., M.W. Wong-Brown, and N.A. Bowden, BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis, 2019. 10(3): p. 177.
50. Kvansakul, M. and M.G. Hinds, The Bcl-2 family: structures, interactions and targets for drug discovery. Apoptosis, 2015. 20(2): p. 136-150.
51. Leber, B., J. Lin, and D.W. Andrews, Embedded together: The life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis, 2007. 12(5): p. 897-911.
52. Ku, B., et al., Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res, 2011. 21(4): p. 627-641.
53. Hardwick, J.M. and L. Soane, Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol, 2013. 5(2).
54. García-Sáez, A.J., The secrets of the Bcl-2 family. Cell Death & Differ, 2012. 19(11): p. 1733-1740.
55. Kumar, B.V., T.J. Connors, and D.L. Farber, Human T cell development, localization, and function throughout life. Immunity, 2018. 48(2): p. 202-213.
56. Dutta, A., B. Zhao, and P.E. Love, New insights into TCR β-selection. Trends Immunol, 2021. 42(8): p. 735-750.
57. Klein, L., et al., Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nature Rev Immunol, 2014. 14(6): p. 377-391.
58. Germain, R.N., T-cell development and the CD4–CD8 lineage decision. Nature Rev Immunol, 2002. 2(5): p. 309-322.
59. Künzli, M. and D. Masopust, CD4+ T cell memory. Nature Immunol, 2023. 24(6): p. 903-914.
60. Luckheeram, R.V., et al., CD4⁺T cells: differentiation and functions. Clin Dev Immunol, 2012. 2012: p. 925135.
61. Majchrzak, K., et al., Exploiting IL-17-producing CD4+ and CD8+ T cells to improve cancer immunotherapy in the clinic. Cancer Immunol Immunother, 2016. 65(3): p. 247-59.
62. Jankovic, D., Z. Liu, and W.C. Gause, Th1- and Th2-cell commitment during infectious disease: asymmetry in divergent pathways. Trends Immunol, 2001. 22(8): p. 450-7.
63. Romagnani, S., Th1 and Th2 in human diseases. Clin Immunol Immunopathol, 1996. 80(3 Pt 1): p. 225-35.
64. Allen, J.E. and T.E. Sutherland, Host protective roles of type 2 immunity: parasite killing and tissue repair, flip sides of the same coin. Semin Immunol, 2014. 26(4): p. 329-40.
65. Georas, S.N., et al., T-helper cell type-2 regulation in allergic disease. Euro Resp J, 2005. 26(6): p. 1119.
66. Fujiwara, D., et al., The anti-allergic effects of lactic acid bacteria are strain dependent and mediated by effects on both Th1/Th2 cytokine expression and balance. Int Arch Allergy Immunol, 2004. 135(3): p. 205-15.
67. Packard, K.A. and M.M. Khan, Effects of histamine on Th1/Th2 cytokine balance. Int Immunopharmacol, 2003. 3(7): p. 909-920.
68. Romagnani, S., Immunologic influences on allergy and the TH1/TH2 balance. J Allergy Clin Immunol, 2004. 113(3): p. 395-400.
69. Jiang, S., et al., Inhibition effect of blunting Notch signaling on food allergy through improving TH1/TH2 balance in mice. Ann Allergy Asthma Immunol, 2017. 118(1): p. 94-102.
70. Schnell, A., D.R. Littman, and V.K. Kuchroo, TH17 cell heterogeneity and its role in tissue inflammation. Nature Immunol, 2023. 24(1): p. 19-29.
71. Margelidon-Cozzolino, V., et al., Role of Th17 cytokines in airway remodeling in asthma and therapy perspectives. Front Allergy, 2022. 3: p. 806391.
72. Vivier, E., et al., Innate lymphoid cells: 10 years on. Cell, 2018. 174(5): p. 1054-1066.
73. Artis, D. and H. Spits, The biology of innate lymphoid cells. Nature, 2015. 517(7534): p. 293-301.
74. Ebbo, M., et al., Innate lymphoid cells: major players in inflammatory diseases. Nature Rev Immunol, 2017. 17(11): p. 665-678.
75. Spits, H., et al., Innate lymphoid cells--a proposal for uniform nomenclature. Nat Rev Immunol, 2013. 13(2): p. 145-9.
76. Constantinides, M.G., et al., A committed precursor to innate lymphoid cells. Nature, 2014. 508(7496): p. 397-401.
77. Eberl, G., et al., Innate lymphoid cells: A new paradigm in immunology. Science, 2015. 348(6237): p. aaa6566.
78. Delconte, R.B., et al., The helix-loop-helix protein ID2 governs NK cell fate by tuning their sensitivity to interleukin-15. Immunity, 2016. 44(1): p. 103-115.
79. Xu, W., et al., An Id2RFP-reporter mouse redefines innate lymphoid cell precursor potentials. Immunity, 2019. 50(4): p. 1054-1068.e3.
80. Dietz, C.P. and A. Luong, Innate lymphoid cells: the innate counterpart to T helper cells. Adv Otorhinolaryngol, 2016. 79: p. 58-68.
81. Padro Dietz, C. and A. Luong, Innate lymphoid cells: The innate counterpart to T helper cells. Adv Otorhinolaryngol, 2016. 79: p. 58-68.
82. Bernink, Jochem H., et al., Interleukin-12 and -23 control plasticity of CD127+ group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity, 2015. 43(1): p. 146-160.
83. Bal, S.M., et al., IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nature Immunol, 2016. 17(6): p. 636-645.
84. Ohne, Y., et al., IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nature Immunol, 2016. 17(6): p. 646-655.
85. Kiessling, R., et al., Natural killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Euro J Immunol, 1975. 5(2): p. 117-121.
86. Fuchs, A., et al., Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity, 2013. 38(4): p. 769-81.
87. Hazenberg, M.D. and H. Spits, Human innate lymphoid cells. Blood, 2014. 124(5): p. 700-709.
88. Zhang, Y. and B. Huang, The dvelopment and diversity of ILCs, NK cells and their relevance in health and diseases. Adv Exp Med Biol, 2017. 1024: p. 225-244.
89. Fuchs, A., ILC1s in tissue inflammation and infection. Front Immunol, 2016. 7.
90. Weizman, O.-E., et al., ILC1 confer early host protection at initial sites of viral infection. Cell, 2017. 171(4): p. 795-808.e12.
91. Romero-Suárez, S., et al., The central nervous system contains ILC1s that differ from NK cells in the response to inflammation. Front Immunol, 2019. 10: p. 2337.
92. Mjösberg, J.M., et al., Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nature Immunol, 2011. 12(11): p. 1055-1062.
93. Licona-Limón, P., et al., TH2, allergy and group 2 innate lymphoid cells. Nature Immunol, 2013. 14(6): p. 536-542.
94. Drake, L.Y. and H. Kita, Group 2 innate lymphoid cells in the lung. Adv Immunol, 2014. 124: p. 1-16.
95. Fort, M.M., et al., IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity, 2001. 15(6): p. 985-95.
96. Hurst, S.D., et al., New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J Immunol, 2002. 169(1): p. 443-53.
97. Walker, J.A. and A.N. McKenzie, Development and function of group 2 innate lymphoid cells. Curr Opin Immunol, 2013. 25(2): p. 148-55.
98. Herbert, D.R., B. Douglas, and K. Zullo, Group 2 innate lymphoid cells (ILC2): Type 2 immunity and helminth immunity. Int J Mol Sci, 2019. 20(9).
99. Fonseca, W., et al., Role of ILC2 in viral-induced lung pathogenesis. Front Immunol, 2021. 12: p. 675169.
100. McKenzie, A.N., Type-2 innate lymphoid cells in asthma and allergy. Ann Am Thorac Soc, 2014. 11 Suppl 5(Suppl 5): p. S263-70.
101. Zheng, H., et al., The role of type 2 innate lymphoid cells in allergic diseases. Front Immunol, 2021. 12.
102. Eberl, G., et al., An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nature Immunol, 2004. 5(1): p. 64-73.
103. Barrow, A.D., C.J. Martin, and M. Colonna, The natural cytotoxicity receptors in health and disease. Front Immunol, 2019. 10: p. 909.
104. Mebius, R.E., P. Rennert, and I.L. Weissman, Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity, 1997. 7(4): p. 493-504.
105. Strober, W., The LTi cell, an immunologic chameleon. Immunity, 2010. 33(5): p. 650-2.
106. Schroeder, J.-H., et al., T-Bet controls cellularity of intestinal group 3 innate lymphoid cells. Front Immunol, 2021. 11.
107. Killig, M., T. Glatzer, and C. Romagnani, Recognition strategies of group 3 innate lymphoid cells. Front Immunol, 2014. 5.
108. Sonnenberg, G.F., et al., CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity, 2011. 34(1): p. 122-134.
109. Withers, D.R. and M.R. Hepworth, Group 3 innate lymphoid cells: Communications hubs of the intestinal immune system. Front Immunol, 2017. 8: p. 1298.
110. Zhou, W. and G.F. Sonnenberg, Activation and suppression of group 3 innate lymphoid cells in the gut. Trends Immunol, 2020. 41(8): p. 721-733.
111. Carlos, D., et al., NOD2 deficiency promotes intestinal CD4+ T lymphocyte imbalance, metainflammation, and aggravates type 2 diabetes in murine model. Front Immunol, 2020. 11.
112. Riding, A.M., et al., Group 3 innate lymphocytes make a distinct contribution to type 17 immunity in bladder defence. iScience, 2022. 25(7): p. 104660.
113. Heijink, I.H. and A.J.M. Van Oosterhout, Strategies for targeting T-cells in allergic diseases and asthma. Pharmacology & Therapeutics, 2006. 112(2): p. 489-500.
114. McMahon, A.W., et al., Age and risks of FDA-approved long-acting β₂-adrenergic receptor agonists. Pediatrics, 2011. 128(5): p. e1147-54.
115. Nwaru, B.I., et al., Overuse of short-acting β(2)-agonists in asthma is associated with increased risk of exacerbation and mortality: a nationwide cohort study of the global SABINA programme. Eur Respir J, 2020. 55(4).
116. Panina-Bordignon, P., et al., Beta2-agonists prevent Th1 development by selective inhibition of interleukin 12. J Clin Invest, 1997. 100(6): p. 1513-9.
117. Huang, M.T., et al., β2‐agonist exerts differential effects on the development of cord blood T cells but not on peripheral blood T cells. Pediatr Allergy Immunol, 2001. 12(1): p. 17-20.
118. Taves, M.D. and J.D. Ashwell, Glucocorticoids in T cell development, differentiation and function. Nature Rev Immunol, 2021. 21(4): p. 233-243.
119. Daniel, P.T., et al., Expression of the death gene Bik/Nbk promotes sensitivity to drug-induced apoptosis in corticosteroid-resistant T-cell lymphoma and prevents tumor growth in severe combined immunodeficient mice. Blood, 1999. 94(3): p. 1100-7.
120. Herold, M.J., K.G. McPherson, and H.M. Reichardt, Glucocorticoids in T cell apoptosis and function. Cell and Mole Life Sci, 2006. 63(1): p. 60-72.
121. Distelhorst, C.W., Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death & Differ, 2002. 9(1): p. 6-19.
122. Moriyama, S., et al., β2-adrenergic receptor–mediated negative regulation of group 2 innate lymphoid cell responses. Science, 2018. 359(6379): p. 1056-1061.
123. Yu, Q.N., et al., ILC2 frequency and activity are inhibited by glucocorticoid treatment via STAT pathway in patients with asthma. Allergy, 2018. 73(9): p. 1860-1870.
124. Bouillet, P., et al., BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature, 2002. 415(6874): p. 922-926.
125. Strasser, A., et al., Positive and negative selection of T cells in T-cell receptor transgenic mice expressing a bcl-2 transgene. PNAS, 1994. 91(4): p. 1376-1380.
126. Mittelstadt, P.R., J.P. Monteiro, and J.D. Ashwell, Thymocyte responsiveness to endogenous glucocorticoids is required for immunological fitness. J Clin Invest, 2012. 122(7): p. 2384-2394.
127. Zubiaga, A.M., E. Munoz, and B.T. Huber, IL-4 and IL-2 selectively rescue Th cell subsets from glucocorticoid-induced apoptosis. J Immunol, 1992. 149(1): p. 107-112.
128. Banuelos, J., et al., BCL-2 protects human and mouse Th17 cells from glucocorticoid-induced apoptosis. Allergy, 2016. 71(5): p. 640-50.
129. Leyton, L., et al., Thy-1/CD90 a Bidirectional and Lateral Signaling Scaffold. Front Cell Dev Biol, 2019. 7: p. 132.
130. Barman, T.K., et al., Viral PB1-F2 and host IFN-γ guide ILC2 and T cell activity during influenza virus infection. Proc Natl Acad Sci U S A, 2022. 119(8).
131. Jonckheere, A.C., et al., Innate lymphoid cells are required to induce airway hyperreactivity in a murine neutrophilic asthma model. Front Immunol, 2022. 13: p. 849155.
132. Peng, V., et al., Whole-genome profiling of DNA methylation and hydroxymethylation identifies distinct regulatory programs among innate lymphocytes. Nat Immunol, 2022. 23(4): p. 619-631.
133. Schroeder, J.H., et al., CD90 is not constitutively expressed in functional innate lymphoid cells. Front Immunol, 2023. 14: p. 1113735.
134. Schneider, C., et al., Tissue-resident group 2 Innate lymphoid cells differentiate by layered ontogeny and in situ perinatal priming. Immunity, 2019. 50(6): p. 1425-1438.e5.
135. Ghaedi, M. and F. Takei, Innate lymphoid cell development. J Clin Immunol, 2021. 147(5): p. 1549-1560.
136. Asaoka, M., H. Kabata, and K. Fukunaga, Heterogeneity of ILC2s in the Lungs. Front Immunol, 2022. 13: p. 918458.
137. D'Souza, S.S., et al., Compartmentalized effects of aging on group 2 innate lymphoid cell development and function. Aging Cell, 2019. 18(6): p. e13019.
138. Cephus, J.Y., et al., Testosterone attenuates group 2 innate lymphoid cell-mediated airway inflammation. Cell Rep, 2017. 21(9): p. 2487-2499.
139. Seehus, C.R., et al., Alternative activation generates IL-10 producing type 2 innate lymphoid cells. Nature Commun, 2017. 8(1): p. 1900.
140. Morita, H., et al., Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. J Clin Immunol, 2019. 143(6): p. 2190-2201.e9.
141. Schneider, C., et al., Tissue-resident group 2 innate lymphoid cells differentiate by layered ontogeny and in situ perinatal priming. Immunity, 2019. 50(6): p. 1425-1438.e5.
142. Ghaedi, M. and F. Takei, Innate lymphoid cell development. J Clin Immunol, 2021. 147(5): p. 1549-1560.
143. Asaoka, M., H. Kabata, and K. Fukunaga, Heterogeneity of ILC2s in the lungs. Front Immunol, 2022. 13: p. 918458.
144. D'Souza, S.S., et al., Compartmentalized effects of aging on group 2 innate lymphoid cell development and function. Aging Cell, 2019. 18(6): p. e13019.
145. Cephus, J.Y., et al., Testosterone attenuates group 2 innate lymphoid cell-mediated airway inflammation. Cell Rep, 2017. 21(9): p. 2487-2499.
146. Seehus, C.R., et al., Alternative activation generates IL-10 producing type 2 innate lymphoid cells. Nature Commun, 2017. 8(1): p. 1900.
147. Morita, H., et al., Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. J Clin Immunol, 2019. 143(6): p. 2190-2201.e9.
148. Kang, J. and M. Coles, IL-7: the global builder of the innate lymphoid network and beyond, one niche at a time. Semin Immunol, 2012. 24(3): p. 190-7.
149. Sheikh, A. and N. Abraham, Interleukin-7 Receptor Alpha in Innate Lymphoid Cells: More Than a Marker. Front Immunol, 2019. 10: p. 2897.
150. Chetoui, N., et al., Interleukin-7 promotes the survival of human CD4+ effector/memory T cells by up-regulating Bcl-2 proteins and activating the JAK/STAT signalling pathway. Immunol, 2010. 130(3): p. 418-26.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94715-
dc.description.abstract氣喘是一種由異常的第二型免疫反應引起的呼吸系統過敏性疾病。在氣喘發作時,過敏原或化學毒性分子等會破壞並誘導氣道上皮細胞釋放危險信號。這些元素還可以被固有層中的樹突狀細胞吸收,並促進輔助型T細胞2型(Th2)的生成。除此之外,組織駐留的第二型固有淋巴細胞(ILC2)也可以被危險信號激活,並釋放第二型細胞激素以招募嗜酸性粒細胞、產生黏液和促進平滑肌收縮。皮質類固醇是一種強效的糖皮質激素受體激動劑,用於抗發炎以抑制氣喘發作。儘管如此,這些藥物在臨床治療中會引發強烈的副作用。先前的研究表明,皮質類固醇可以誘導T細胞的凋亡。然而,皮質類固醇誘導的不同免疫細胞亞群的凋亡機制尚未被探討。在此,我們闡明了Dexamethasone調節第二型免疫反應相關風險的機制。首先,我們證明了Dexamethasone可以抑制Th1和Th2細胞中第一型和第二型細胞因子的產生。另外,我們發現,與Th1和Th0細胞相比,Th2細胞可以通過上調Bcl-2抗凋亡基因表達來抵抗Dexamethasone誘導的細胞凋亡現象以啟動抗凋亡反應。另一方面,ILC2仍然是第二型免疫反應中的關鍵淋巴細胞,我們檢測了小鼠肺部中的ILC和ILC2群體,發現ILC2是小鼠肺部中主要的ILC亞群。除此之外,不同性別的小鼠肺部組織駐留的ILC和ILC2也表現出不同的群體分佈。最終,我們發現Dexamethasone可抑制ILC2的二型細胞激素分泌能力,但並未在ILC2中誘導出明顯的凋亡現象。總而言之,第二型免疫細胞對Dexamethasone誘導的細胞凋亡具有抗性,這一現象表明Dexamethasone可能會影響第一型和第二型免疫之間的平衡。zh_TW
dc.description.abstractAsthma is an allergic disease caused by abnormal type two immunity in the respiratory system. During the asthma attack, the allergen or chemical toxin sabotages and induces the release of danger signals by airway epithelial cells. These elements can also be taken up by dendritic cells in the lamina propria and promote the generation of T-helper 2 cells (Th2). In addition, tissue-resident type 2 innate lymphoid cells (ILC2) can be activated by danger signals and release type two cytokines for eosinophil recruitment, mucus production, and smooth muscle contraction. Corticosteroids are strong glucocorticoid receptor agonists used for anti-inflammatory purposes to suppress asthma attacks. Still, these medications trigger strong side effects during clinical treatment. Previous studies show that corticosteroids can induce the apoptotic phenomenon in T cells. However, the mechanism of the corticosteroid-induced apoptotic phenomenon in different immune cell subsets remains unexplored. Here, we elucidate the mechanism by which dexamethasone modulates the risks associated with type 2 immune responses. First, we demonstrated that dexamethasone can inhibit both type one and type two cytokine production in Th1 and Th2 cells. In addition, we found that Th2 cells can resist dexamethasone-induced cell apoptosis compared to Th1 and Th0 cells through up-regulating the Bcl-2 anti-apoptotic gene expression to engage the anti-apoptotic response. On the other hand, the ILC2 is still a key lymphocyte for the type 2 immune response, we checked the ILC and ILC2 population in the murine lung and found that ILC2 is a dominant ILC subset in the murine lung. Additionally, the lung-resident ILC and ILC2 present different populations in different genders of the naïve mice. Finally, we found that although dexamethasone could inhibit the type 2 cytokine production of ILC2, it did not induce a significant apoptotic phenomenon on ILC2. In summary, the type 2 immune cells were resistant to dexamethasone-induced cell apoptosis, this phenomenon suggests that the balance between the type 1 and type 2 immunity might impacted by the dexamethasone.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:41:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:41:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
論文口試委員審定書 i
Acknowledgment ii
中文摘要 iv
Abstract v
Contents vi
Figure contents x
Chapter 1. Introduction 1
Part1. Background 2
1. Asthma 2
1-1. Asthma drugs 3
1-2. β2-agonists 3
1-3. Corticosteroid 4
2. Apoptosis 5
2-1 Extrinsic pathway (death receptor pathway) 6
2-2 Intrinsic pathway (mitochondrial pathway) 6
2-3 Bcl-2(B cell lymphoma 2) protein family in mitochondrial cell apoptosis 7
3. CD4+ T cells 8
3-1 Th1 cells 8
3-2 Th2 cells 9
3-3 Th17 cells 10
4. Innate lymphoid cells 10
4-1. Group one innate lymphoid cells 11
4-2. Group two innate lymphoid cells 12
4-3. Group three innate lymphoid cells 13
5. The effect of asthma drugs on T cells 13
5-1 β2-agonists and the T cells 14
5-2 Corticosteroid and the T cells 14
6. The effect of asthma drugs on ILCs 15
Part2. Statement of the motives 15
Part3. Study aims 17
Chapter2. Materials and Methods 18
Part1. Material 19
1. Animals 19
2. Medium (buffer preparation and cell culture) 19
3. Reagent and buffer 21
4. Antibody 23
5. Cytokine 24
6. Enzyme-linked immunosorbent assay (ELISA) 24
7. Quantitative polymerase chain reaction 26
8. Instrument and software 28
9. Asthma drugs 28
10. Others 28
Part2. Methods 29
1. Murine lung cell isolation 29
2. Murine splenocyte isolation 29
3. Surface marker staining 29
4. CD4+ T cell isolation 30
5. Cell sorting 30
6. T cell differentiation 30
7. ILC2 culture 31
8. Steroid treatment 31
9. β2-agonist treatment 31
10. MTT assay 31
11. Enzyme-linked immunosorbent assay (ELISA) 32
12. Cell apoptosis assay 32
13. RNA extraction 32
14. Reverse transcription polymerase chain reaction 33
15. Real-time PCR 33
16. Statistical analysis 33
Chapter 3. Results 34
1. The CD4+ T cell isolation and differentiation 35
2. Dexamethasone inhibited the CD4+ T cell cytokine production 35
3. The Th2 cells resistant to Dexamethasone-induced cell apoptosis 35
4. The Th2 cells' anti-apoptotic gene expression level upregulated after dexamethasone treatment 36
5. The Th1 but not Th2 cell proliferated gene expression level decreased after dexamethasone treatment 37
6. The IL-4 could not completely rescue the CD4+ T cell survival from dexamethasone-induced cell apoptosis 38
7. The IL-4 could not induce the complete anti-apoptotic gene expression of the CD4+ T cells in the dexamethasone treatment 38
8. The dexamethasone-induced cell proliferated gene down-regulation cannot be reversed by IL-4 treatment 39
9. The IL-12 and IL-4 both rescued the CD4+ T cells in dexamethasone-induced cell apoptosis 39
10. The anti-apoptotic gene of CD4+ T cell up-regulated by IL-4 but not 40
IL-12 in dexamethasone treatment 40
10. The characterization and population of innate lymphoid cells (ILCs) 40
11. The effect of dexamethasone on the ILC2 41
Chapter 4. Discussion 42
Figures 49
References 86
Supplement 100
-
dc.language.isoen-
dc.subject細胞凋亡zh_TW
dc.subjectBcl-2家族zh_TW
dc.subject先天性淋巴球zh_TW
dc.subjectTh2zh_TW
dc.subjectTh1zh_TW
dc.subjectDexamethasonezh_TW
dc.subjectTh1en
dc.subjectTh2en
dc.subjectILCen
dc.subjectApoptosisen
dc.subjectBcl-2 familyen
dc.subjectDexamethasoneen
dc.title類固醇對過敏相關免疫細胞凋亡的影響zh_TW
dc.titleThe Effect of Corticosteroid on Apoptotic Phenomenon of Immune Cells Related to Allergyen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee柯俊榮;莊雅惠zh_TW
dc.contributor.oralexamcommitteeChun-Jung Ko;Ya-Hui Chuangen
dc.subject.keywordTh1,Th2,先天性淋巴球,細胞凋亡,Bcl-2家族,Dexamethasone,zh_TW
dc.subject.keywordTh1,Th2,ILC,Apoptosis,Bcl-2 family,Dexamethasone,en
dc.relation.page102-
dc.identifier.doi10.6342/NTU202403523-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-07-
dc.contributor.author-college醫學院-
dc.contributor.author-dept免疫學研究所-
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf11.81 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved