請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94708
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 薛承輝 | zh_TW |
dc.contributor.advisor | Chun-Hway Hsueh | en |
dc.contributor.author | 顏振宇 | zh_TW |
dc.contributor.author | Jhen-Yu Yen | en |
dc.date.accessioned | 2024-08-16T17:38:47Z | - |
dc.date.available | 2024-08-31 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-10 | - |
dc.identifier.citation | [1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6(5) (2004) 299–303.
[2] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Multi‐principal‐element alloys with improved oxidation and wear resistance for thermal spray coating, Adv. Eng. Mater. 6(1–2) (2004) 74–78. [3] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng., A 375–377 (2004) 213–218. [4] J.W. Yeh, Alloy design strategies and future trends in high-entropy alloys, JOM 65 (2013) 1759–1771. [5] J.W. Yeh, Recent progress in high entropy alloys, Ann. Chim. Sci. Mat 31(6) (2006) 633–648. [6] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater. 61(13) (2013) 4887–4897. [7] H.Q. Song, F. Tian, Q.M. Hu, L. Vitos, Y.D. Wang, J. Shen, N.X. Chen, Local lattice distortion in high-entropy alloys, Phys. Rev. Mater. 1(2) (2017) 023404. [8] B.X. Cao, C. Wang, T. Yang, C.T. Liu, Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures, Scr. Mater. 187 (2020) 250–255. [9] Z.G. Wu, H.B. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater. 81 (2014) 428–441. [10] G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater. 128 (2017) 292–303. [11] Y. Wang, B. Liu, K. Yan, M. Wang, S. Kabra, Y. Chiu, D. Dye, P.D. Lee, Y. Liu, B. Cai, Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction, Acta Mater. 154 (2018) 79–89. [12] N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M.T. Chen, H. Matsunoshita, K. Tanaka, H. Inui, E.P. George, Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy, Sci. Rep. 6(1) (2016) 35863. [13] L. Remy, A. Pineau, Twinning and strain-induced F.C.C. → H.C.P. transformation in the Fe–Mn–Cr–C system, Mater. Sci. Eng. 28(1) (1977) 99–107. [14] B.C. De Cooman, Y. Estrin, S.K. Kim, Twinning-induced plasticity (TWIP) steels, Acta Mater. 142 (2018) 283–362. [15] K.T. Park, Tensile deformation of low-density Fe–Mn–Al–C austenitic steels at ambient temperature, Scr. Mater. 68(6) (2013) 375–379. [16] J.D. Yoo, K.T. Park, Microband-induced plasticity in a high Mn–Al–C light steel, Mater. Sci. Eng., A 496(1–2) (2008) 417–424. [17] J.D. Yoo, S.W. Hwang, K.T. Park, Origin of extended tensile ductility of a Fe–28Mn–10Al–1C steel, Metall. Mater. Trans. A 40 (2009) 1520–1523. [18] L.L. Wei, G.H. Gao, J. Kim, R.D.K. Misra, C.G. Yang, X.J. Jin, Ultrahigh strength-high ductility 1 GPa low density austenitic steel with ordered precipitation strengthening phase and dynamic slip band refinement, Mater. Sci. Eng., A 838 (2022) 142829. [19] W.C. Chang, C.H. Hsueh, Strengthening of CoCrNi medium entropy alloy with Ti additions, Intermetallics 163 (2023) 108072. [20] Y.S. Lin, Y.C. Lu, C.H. Hsueh, Strengthening of CoCrNi medium entropy alloy with gadolinium additions, Vacuum 211 (2023) 111969. [21] D.D. Zhang, J.Y. Zhang, J. Kuang, G. Liu, J. Sun, Superior strength-ductility synergy and strain hardenability of Al/Ta co-doped NiCoCr twinned medium entropy alloy for cryogenic applications, Acta Mater. 220 (2021) 117288. [22] R.B. Chang, W. Fang, J.H. Yan, H.Y. Yu, X. Bai, J. Li, S.Y. Wang, S.J. Zheng, F.X. Yin, Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations, J. Mater. Sci. Technol. 62 (2021) 25–33. [23] G. Sheng, C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. Nat. Sci.: Mater. Int. 21(6) (2011) 433–446. [24] X. Li, Z.T. Li, Z.G. Wu, S.J. Zhao, W.D. Zhang, H.B. Bei, Y.F. Gao, Strengthening in Al-, Mo- or Ti-doped CoCrFeNi high entropy alloys: A parallel comparison, J. Mater. Sci. Technol. 94 (2021) 264–274. [25] S. Qiu, G.P. Zheng, Z.B. Jiao, Alloying effects on phase stability, mechanical properties, and deformation behavior of CoCrNi-based medium-entropy alloys at low temperatures, Intermetallics 140 (2022) 107399. [26] J.X. Yan, J.Y. Qin, J.H. Liu, H. Chen, Y.H. Huang, M. Liu, C.H. Xia, F. Wang, X.D. Cui, J.B. Yang, Composition design study of strong and ductile Mo-alloyed CoCrNi medium-entropy alloys, J. Mater. Sci. Technol. 186 (2024) 37–47. [27] Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature 534(7606) (2016) 227–230. [28] M.N. Hasan, Y.F. Liu, X.H. An, J. Gu, M. Song, Y. Cao, Y.S. Li, Y.T. Zhu, X.Z. Liao, Simultaneously enhancing strength and ductility of a high-entropy alloy via gradient hierarchical microstructures, Int. J. Plast. 123 (2019) 178–195. [29] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345(6201) (2014) 1153–1158. [30] B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H.B. Bei, Z.G. Wu, E.P. George, R.O. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures, Nat. Commun. 7(1) (2016) 10602. [31] Y. Fu, J. Li, H. Luo, C.W. Du, X.G. Li, Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys, J. Mater. Sci. Technol. 80 (2021) 217–233. [32] Y.Y. Zhao, H.W. Chen, Z.P. Lu, T.G. Nieh, Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4 high-entropy alloy, Acta Mater. 147 (2018) 184–194. [33] H. Hamdi, H.R. Abedi, Y. Zhang, A review study on thermal stability of high entropy alloys: Normal/abnormal resistance of grain growth, J. Alloys Compd. 960 (2023) 170826. [34] T.T. Zuo, M. Zhang, P.K. Liaw, Y. Zhang, Novel high entropy alloys of FexCo1-xNiMnGa with excellent soft magnetic properties, Intermetallics 100 (2018) 1–8. [35] C. Jung, K. Kang, A. Marshal, K.G. Pradeep, J.B. Seol, H.M. Lee, P.P. Choi, Effects of phase composition and elemental partitioning on soft magnetic properties of AlFeCoCrMn high entropy alloys, Acta Mater. 171 (2019) 31–39. [36] H.N. Kim, S.J. Nam, A. Roh, M.W. Son, M.H. Ham, J.H. Kim, H.J. Choi, Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films, Int. J. Refract. Met. Hard Mater. 80 (2019) 286–291. [37] Y. Zhang, T.T. Zuo, Y.Q. Cheng, P.K. Liaw, High-entropy alloys with high saturation magnetization, electrical resistivity and malleability, Sci. Rep. 3(1) (2013) 1455. [38] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics 18(9) (2010) 1758–1765. [39] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19(5) (2011) 698–706. [40] A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams, JOM 66 (2014) 1984–1992. [41] X.F. Gao, R.R. Chen, T. Liu, H.Z. Fang, G. Qin, Y.Q. Su, J.J. Guo, High-entropy alloys: a review of mechanical properties and deformation mechanisms at cryogenic temperatures, J. Mater. Sci. 57(12) (2022) 6573–6606. [42] J.W. Yeh, Y.L. Chen, S.J. Lin, S.K. Chen, High-entropy alloys–a new era of exploitation, Mater. Sci. Forum 560 (2007) 1–9. [43] J.W. Yeh, Physical metallurgy of high-entropy alloys, JOM 67(10) (2015) 2254–2261. [44] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid‐solution phase formation rules for multi‐component alloys, Adv. Eng. Mater. 10(6) (2008) 534–538. [45] C.J. Tong, Y.L. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, C.H. Tsau, S.Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A 36 (2005) 881–893. [46] C.W. Tsai, Y.L. Chen, M.H. Tsai, J.W. Yeh, T.T. Shun, S.K. Chen, Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi, J. Alloys Compd. 486(1–2) (2009) 427–435. [47] W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy, Scr. Mater. 68(7) (2013) 526–529. [48] C.M. Cao, J. Xu, W. Tong, Y.X. Hao, P. Gu, L.M. Peng, Creep behaviour and microstructural evolution of AlxCrMnFeCoNi high-entropy alloys, Mater. Sci. Technol. 35(10) (2019) 1283–1290. [49] C.L. Lu, S.Y. Lu, J.W. Yeh, W.K. Hsu, Thermal expansion and enhanced heat transfer in high‐entropy alloys, J. Appl. Crystallogr. 46(3) (2013) 736–739. [50] J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Mater. Chem. Phys. 103(1) (2007) 41–46. [51] S. Ranganathan, Alloyed pleasures: Multimetallic cocktails, Curr. Sci. 85(5) (2003) 1404–1406. [52] N.D. Stepanov, N.Y. Yurchenko, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, Effect of Al on structure and mechanical properties of AlxNbTiVZr (x= 0, 0.5, 1, 1.5) high entropy alloys, Mater. Sci. Technol. 31(10) (2015) 1184–1193. [53] K.K. Tseng, Y.C. Yang, C.C. Juan, T.S. Chin, C.W. Tsai, J.W. Yeh, A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35, Sci. China: Technol. Sci. 61 (2018) 184–188. [54] R. Li, J.C. Gao, K. Fan, Study to microstructure and mechanical properties of Mg containing high entropy alloys, Mater. Sci. Forum 650 (2010) 265–271. [55] C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh, H.C. Shih, Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments, Corros. Sci. 50(7) (2008) 2053–2060. [56] Y.L. Chou, J.W. Yeh, H.C. Shih, The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments, Corros. Sci. 52(8) (2010) 2571–2581. [57] X.W. Qiu, Y.P. Zhang, C.G. Liu, Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings, J. Alloys Compd. 585 (2014) 282–286. [58] X.Y. Gu, Y.X. Zhuang, D. Huang, Corrosion behaviors related to the microstructural evolutions of as-cast Al0.3CoCrFeNi high entropy alloy with addition of Si and Ti elements, Intermetallics 147 (2022) 107600. [59] D.H. Xiao, P.F. Zhou, W.Q. Wu, H.Y. Diao, M.C. Gao, M. Song, P.K. Liaw, Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi–(Cr, Ti) high entropy alloys, Mater. Des. 116 (2017) 438–447. [60] O.N. Senkov, C.F. Woodward, Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy, Mater. Sci. Eng., A 529 (2011) 311–320. [61] O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J. Mater. Sci. 47 (2012) 4062–4074. [62] J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Mater. 62 (2014) 105–113. [63] D.H. Lee, M.P. Agustianingrum, N. Park, N. Tsuji, Synergistic effect by Al addition in improving mechanical performance of CoCrNi medium-entropy alloy, J. Alloys Compd. 800 (2019) 372–378. [64] M. Karimzadeh, M. Malekan, H. Mirzadeh, L. Li, N. Saini, Effects of titanium addition on the microstructure and mechanical properties of quaternary CoCrFeNi high entropy alloy, Mater. Sci. Eng., A 856 (2022) 143971. [65] J.Y. He, S.K. Makineni, W.J. Lu, Y.Y. Shang, Z.P. Lu, Z.M. Li, B. Gault, On the formation of hierarchical microstructure in a Mo-doped NiCoCr medium-entropy alloy with enhanced strength-ductility synergy, Scr. Mater. 175 (2020) 1–6. [66] Z.G. Wu, W. Guo, K. Jin, J.D. Poplawsky, Y.F. Gao, H.B. Bei, Enhanced strength and ductility of a tungsten-doped CoCrNi medium-entropy alloy, J. Mater. Res. 33(19) (2018) 3301–3309. [67] R.B. Chang, W. Fang, X. Bai, C.Q. Xia, X. Zhang, H.Y. Yu, B.X. Liu, F.X. Yin, Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys, J. Alloys Compd. 790 (2019) 732–743. [68] D.F. Xu, X.D. Wang, F.S. Yu, M.L. Wang, Y.P. Lu, Ta-doping induces heterogeneous microstructures in CoCrNi medium-entropy alloy to achieve excellent strength-ductility combination, Mater. Sci. Eng., A 885 (2023) 145600. [69] D.F. Xu, H.T. Zhang, M.L. Wang, Y.P. Lu, X.H. Chen, Z. Ren, Enhanced strength-ductility synergy in a Ta-doped CoCrNi medium-entropy alloy with a dual heterogeneous structure, Mater. Sci. Eng., A 860 (2022) 144293. [70] H. Zhang, Y.G. Tong, S.H. Cao, Y.L. Hu, X.X. Ji, Q. Tang, L.W. Yang, X.C. Zhang, M.Y. Hua, Outstanding yield strength of CoCrNiTa0.1 medium entropy alloy under the synergistic regulated with nanoprecipitation and grain refining, J. Alloys Compd. 919 (2022) 165715. [71] H. Zhang, Y.G. Tong, X.X. Ji, H.F. Huang, L.W. Yang, Y.L. Hu, X.C. Zhang, M.Y. Hua, S.H. Cao, Effect of Tantalum content on microstructure and mechanical properties of CoCrNiTax medium entropy alloys, Mater. Sci. Eng., A 847 (2022) 143322. [72] L.J. Zhang, M.D. Zhang, Z. Zhou, J.T. Fan, P. Cui, P.F. Yu, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, Effects of rare-earth element, Y, additions on the microstructure and mechanical properties of CoCrFeNi high entropy alloy, Mater. Sci. Eng., A 725 (2018) 437–446. [73] Y.Y. Zhao, J.F. Wang, S. Zhou, X.D. Wang, Effects of rare earth addition on microstructure and mechanical properties of a Fe–15Mn–1.5Al–0.6C TWIP steel, Mater. Sci. Eng., A 608 (2014) 106–113. [74] C. Wang, T.H. Li, Y.C. Liao, C.L. Li, J.S.C. Jang, C.H. Hsueh, Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping, Mater. Sci. Eng., A 764 (2019) 138192. [75] L.Y. Guo, Y.C. Lu, C.H. Hsueh, Effects of Erbium Addition on Microstructure and Mechanical Properties of CoCrNi Medium Entropy Alloy, J. Mater. Eng. Perform. 33(10) (2023) 4856–4866. [76] J.B. Seol, J.W. Bae, Z.M. Li, J.C. Han, J.G. Kim, D. Raabe, H.S. Kim, Boron doped ultrastrong and ductile high-entropy alloys, Acta Mater. 151 (2018) 366–376. [77] I. Moravcik, V. Hornik, P. Minárik, L. Li, I. Dlouhy, M. Janovska, D. Raabe, Z.M. Li, Interstitial doping enhances the strength-ductility synergy in a CoCrNi medium entropy alloy, Mater. Sci. Eng., A 781 (2020) 139242. [78] D.E. Jodi, N. Choi, J.H. Park, N. Park, Mechanical performance improvement by nitrogen addition in N–CoCrNi compositionally complex alloys, Metall. Mater. Trans. A 51 (2020) 3228–3237. [79] I. Moravcik, H. Hadraba, L.L. Li, I. Dlouhy, D. Raabe, Z.M. Li, Yield strength increase of a CoCrNi medium entropy alloy by interstitial nitrogen doping at maintained ductility, Scr. Mater. 178 (2020) 391–397. [80] H. Chang, T.W. Zhang, S.G. Ma, D. Zhao, R.L. Xiong, T. Wang, Z.Q. Li, Z.H. Wang, Novel Si-added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility trade-off, Mater. Des. 197 (2021) 109202. [81] Z.J. Li, L. Chen, P.X. Fu, H.H. Su, P.Q. Dai, Q.H. Tang, The effect of Si addition on the heterogeneous grain structure and mechanical properties of CrCoNi medium entropy alloy, Mater. Sci. Eng., A 852 (2022) 143655. [82] C.H. Zhu, L.J. Xu, M.J. Liu, M.Y. Guo, S.Z. Wei, A review on improving mechanical properties of high entropy alloy: interstitial atom doping, J. Mater. Res. Technol. 24 (2023) 7832–7851. [83] Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy, Acta Mater. 138 (2017) 72–82. [84] Z. Li, P.C. Zhao, T.W. Lu, K. Feng, Y.G. Tong, B.H. Sun, N. Yao, Y. Xie, B.L. Han, X.C. Zhang, Effects of post annealing on the microstructure, precipitation behavior, and mechanical property of a (CoCrNi)94Al3Ti3 medium-entropy alloy fabricated by laser powder bed fusion, J. Mater. Sci. Technol. 135 (2023) 142–155. [85] R.C. Pan, D. Fan, Y.L. Bian, X.J. Zhao, N.B. Zhang, L. Lu, Y. Cai, S.N. Luo, Effect of minor elements Al and Ti on dynamic deformation and fracture of CoCrNi-based medium-entropy alloys, Mater. Sci. Eng., A 884 (2023) 145535. [86] Y. Xie, P.C. Zhao, Y.G. Tong, J.P. Tan, B.H. Sun, Y. Cui, R.Z. Wang, X.C. Zhang, S.T. Tu, Precipitation and heterogeneous strengthened CoCrNi-based medium entropy alloy with excellent strength-ductility combination from room to cryogenic temperatures, Sci. China: Technol. Sci. 65(8) (2022) 1780–1797. [87] X.L. Huang, L.P. Huang, H.L. Peng, Y. Liu, B. Liu, S. Li, Enhancing strength-ductility synergy in a casting non-equiatomic NiCoCr-based high-entropy alloy by Al and Ti combination addition, Scr. Mater. 200 (2021) 113898. [88] X.S. Liu, M.D. Zhang, Y.M. Ma, W.Q. Dong, R. Li, Y. Lu, Y.F. Zhang, P.F. Yu, Y.P. Gao, G. Li, Achieving ultrahigh strength in CoCrNi-based medium-entropy alloys with synergistic strengthening effect, Mater. Sci. Eng., A 776 (2020) 139028. [89] D.D. Zhang, H. Wang, J.Y. Zhang, H. Xue, G. Liu, J. Sun, Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping, J. Mater. Sci. Technol. 87 (2021) 184–195. [90] D.D. Zhang, J.Y. Zhang, J. Kuang, G. Liu, J. Sun, The B2 phase-driven microstructural heterogeneities and twinning enable ultrahigh cryogenic strength and large ductility in NiCoCr-based medium-entropy alloy, Acta Mater. 233 (2022) 117981. [91] D.D. Zhang, J. Kuang, H. Xue, J.Y. Zhang, G. Liu, J. Sun, A strong and ductile NiCoCr-based medium-entropy alloy strengthened by coherent nanoparticles with superb thermal-stability, J. Mater. Sci. Technol. 132 (2023) 201–212. [92] H. Chang, T.W. Zhang, S.G. Ma, D. Zhao, T.X. Bai, K. Wang, Z.Q. Li, Z.H. Wang, Strengthening and strain hardening mechanisms in precipitation-hardened CrCoNi medium entropy alloys, J. Alloys Compd. 896 (2022) 162962. [93] L. Zhang, L. Zhang, H. Wang, J.B. Li, J.L. Man, Z.D. Xu, J.X. Yu, G. Wan, W. Wang, B.L. Wu, Evolution of the microstructure and mechanical properties of an sigma-hardened high-entropy alloy at different annealing temperatures, Mater. Sci. Eng., A 831 (2022) 142140. [94] J.X. Chen, T. Li, Y.Y. Tan, Y. Chen, H.Y. Wang, L.H. Dai, Tailoring nanoprecipitates to achieve ultrahigh strength (CoCrNi)94.5W3Ta2.5 medium-entropy alloys, Mater. Sci. Eng., A 892 (2024) 146046. [95] G.A. He, C.X. He, X.F. Sheng, H.X. Huang, Q. Peng, S.H. Xu, Z.Q. Fu, C. Huang, Deciphering the effect of W and Mo co-additions on recrystallization behavior and strengthening mechanism of CrCoNi medium entropy alloy, J. Alloys Compd. 923 (2022) 166404. [96] R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, 2008. [97] S.L. Shang, C.L. Zacherl, H.Z. Fang, Y. Wang, Y. Du, Z.K. Liu, Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys, J. Phys.: Condens.Matter 24(50) (2012) 505403. [98] Y.C. Dou, H. Luo, Y. Jiang, X.H. Tang, Effects of alloying elements on the stacking fault energies of Ni58Cr32Fe10 alloys: a first-principle study, Metals 9(11) (2019) 1163. [99] S.N. Chan, C.H. Hsueh, Effects of La addition on the microstructure and mechanical properties of CoCrNi medium entropy alloy, J. Alloys Compd. 894 (2022) 162401. [100] X.W. Hong, C.H. Hsueh, Effects of yttrium addition on microstructures and mechanical properties of CoCrNi medium entropy alloy, Intermetallics 140 (2022) 107405. [101] I. Basu, J.T.M. De Hosson, Strengthening mechanisms in high entropy alloys: fundamental issues, Scr. Mater. 187 (2020) 148–156. [102] W.D. Li, D. Xie, D.Y. Li, Y. Zhang, Y.F. Gao, P.K. Liaw, Mechanical behavior of high-entropy alloys, Prog. Mater. Sci. 118 (2021) 100777. [103] Z.G. Wu, Y.F. Gao, H.B. Bei, Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys, Acta Mater. 120 (2016) 108–119. [104] C. Varvenne, A. Luque, W.A. Curtin, Theory of strengthening in fcc high entropy alloys, Acta Mater. 118 (2016) 164–176. [105] L.L. Li, R.D. Kamachali, Z.M. Li, Z.F. Zhang, Grain boundary energy effect on grain boundary segregation in an equiatomic high-entropy alloy, Phys. Rev. Mater. 4(5) (2020) 053603. [106] Q.Q. Ding, X.Q. Fu, D.K. Chen, H.B. Bei, B. Gludovatz, J.X. Li, Z. Zhang, E.P. George, Q. Yu, T. Zhu, Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium-to high-entropy alloys at cryogenic temperatures, Mater. Today 25 (2019) 21–27. [107] G.E. Dieter, D. Bacon, Mechanical metallurgy, McGraw-hill, New York, 1976. [108] Q.H. Fang, L. Li, J. Li, H.Y. Wu, Z.W. Huang, B. Liu, Y. Liu, P.K. Liaw, A statistical theory of probability-dependent precipitation strengthening in metals and alloys, J. Mech. Phys. Solids 122 (2019) 177–189. [109] N. Ali, L.Q. Zhang, D.M. Liu, H.W. Zhou, K. Sanaullah, C.J. Zhang, J.H. Chu, Y. Nian, J.J. Cheng, Strengthening mechanisms in high entropy alloys: A review, Mater. Today Commun. 33 (2022) 104686. [110] T.H. Courtney, Mechanical behavior of materials, second ed., Waveland Press, New York, 2005. [111] R.K. Ham, The determination of dislocation densities in thin films, Philos. Mag. 6(69) (1961) 1183–1184. [112] G.K. Williamson, R.E. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum, Philos. Mag. 1(1) (1956) 34–46. [113] R.E. Smallman, K.H. Westmacott, Stacking faults in face-centred cubic metals and alloys, Philos. Mag. 2(17) (1957) 669–683. [114] H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, Mechanism-based strain gradient plasticity—I. Theory, J. Mech. Phys. Solids 47(6) (1999) 1239–1263. [115] L.P. Kubin, A. Mortensen, Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues, Scr. Mater. 48(2) (2003) 119–125. [116] D.J.H. Cockayne, I.L.F. Ray, M.J. Whelan, Investigations of dislocation strain fields using weak beams, Philos. Mag. 20(168) (1969) 1265–1270. [117] L.M. Brown, The self-stress of dislocations and the shape of extended nodes, Philos. Mag. 10(105) (1964) 441–466. [118] X. Sun, S. Lu, R.W. Xie, X.H. An, W. Li, T.L. Zhang, C.X. Liang, X.D. Ding, Y.Z. Wang, H.L. Zhang, Can experiment determine the stacking fault energy of metastable alloys?, Mater. Des. 199 (2021) 109396. [119] H.Y. He, M. Naeem, F. Zhang, Y.L. Zhao, S. Harjo, T. Kawasaki, B. Wang, X.L. Wu, S. Lan, Z.D. Wu, Stacking fault driven phase transformation in CrCoNi medium entropy alloy, Nano Lett. 21(3) (2021) 1419–1426. [120] O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application, Int. J. Plast. 16(10–11) (2000) 1391–1409. [121] O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships, Curr. Opin. Solid State Mater. Sci. 15(4) (2011) 141–168. [122] H.H. Zhi, C. Zhang, S. Antonov, H.Y. Yu, T. Guo, Y.J. Su, Investigations of dislocation-type evolution and strain hardening during mechanical twinning in Fe–22Mn–0.6C twinning-induced plasticity steel, Acta Mater. 195 (2020) 371–382. [123] D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed–Akbari, T. Hickel, F. Roters, D. Raabe, Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments, Acta Mater. 61(2) (2013) 494–510. [124] F. Liu, W.J. Dan, W.G. Zhang, Strain hardening model of twinning induced plasticity steel at different temperatures, Mater. Des. 65 (2015) 737–742. [125] J. Tu, W.H. Yang, K. Xu, Z.M. Zhou, Y.C. Dou, Y.L. Wang, Effect of Ta content on stacking fault energy and microstructure characteristics of (VCoNi)100-XTaX (X = 0, 0.05, 0.5 and 1) medium entropy alloy, Mater. Lett. 305 (2021) 130770. [126] H.W. Deng, M.M. Wang, Z.M. Xie, T. Zhang, X.P. Wang, Q.F. Fang, Y. Xiong, Enhancement of strength and ductility in non-equiatomic CoCrNi medium-entropy alloy at room temperature via transformation-induced plasticity, Mater. Sci. Eng., A 804 (2021) 140516. [127] M. Soleimani, A. Kalhor, H. Mirzadeh, Transformation-induced plasticity (TRIP) in advanced steels: a review, Mater. Sci. Eng., A 795 (2020) 140023. [128] J.W. Bae, J.B. Seol, J. Moon, S.S. Sohn, M.J. Jang, H.Y. Um, B.J. Lee, H.S. Kim, Exceptional phase-transformation strengthening of ferrous medium-entropy alloys at cryogenic temperatures, Acta Mater. 161 (2018) 388–399. [129] Y. Ma, M.X. Yang, F.P. Yuan, X.L. Wu, Deformation induced hcp nano-lamella and its size effect on the strengthening in a CoCrNi medium-entropy alloy, J. Mater. Sci. Technol. 82 (2021) 122–134. [130] X.L. Ma, C.X. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, Y.T. Zhu, Mechanical properties of copper/bronze laminates: Role of interfaces, Acta Mater. 116 (2016) 43–52. [131] D. Huang, Y.X. Zhuang, Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening, J. Mater. Sci. Technol. 108 (2022) 125–132. [132] Z.F. He, N. Jia, D.C. Ma, H.L. Yan, Z.M. Li, D. Raabe, Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures, Mater. Sci. Eng., A 759 (2019) 437–447. [133] A.K. Chandan, S. Tripathy, B. Sen, M. Ghosh, S.G. Chowdhury, Temperature dependent deformation behavior and stacking fault energy of Fe40Mn40Co10Cr10 alloy, Scr. Mater. 199 (2021) 113891. [134] D.G. You, G.H. Yang, Y.H. Choa, J.K. Kim, Crack-resistant σ/FCC interfaces in the Fe40Mn40Co10Cr10 high entropy alloy with the dispersed σ-phase, Mater. Sci. Eng., A 831 (2022) 142039. [135] Y. Han, H.B. Li, H. Feng, K. Li, Y.Z. Tian, Z.H. Jiang, Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying, J. Mater. Sci. Technol. 65 (2021) 210–215. [136] J.Y. He, F.P. Yuan, M.X. Yang, S.H. Jiao, X.L. Wu, Superior mechanical properties and deformation mechanisms of heterogeneous laminates under dynamic shear loading, Mater. Sci. Eng., A 756 (2019) 492–501. [137] J.Y. He, F.P. Yuan, M.X. Yang, L.l. Zhou, S.H. Jiao, X.L. Wu, Exceptional tensile properties under cryogenic temperature in heterogeneous laminates induced by non-uniform martensite transformation and strain delocalization, Mater. Sci. Eng., A 791 (2020) 139780. [138] J.W. Brooks, M.H. Loretto, R.E. Smallman, Direct observations of martensite nuclei in stainless steel, Acta Metall. 27(12) (1979) 1839–1847. [139] V.L. Stout, M.D. Gibbons, Gettering of gas by titanium, J. Appl. Phys. 26(12) (1955) 1488–1492. [140] F. Yakuphanoglu, M. Okutan, K. Korkmaz, The electrical conductivity and microstructure properties of Ni-doped TiO2 ceramic, J. Alloys Compd. 450(1–2) (2008) 39–43. [141] P. Villars, L.D. Calvert, Pearson's Handbook of Crystallographic Data for Intermediate Phases, American Society of Metals, Cleveland, OH, 1985. [142] K.H.J. Buschow, P.G. Van Engen, R. Jongebreur, Magneto-optical properties of metallic ferromagnetic materials, J. Magn. Magn. Mater. 38(1) (1983) 1–22. [143] Z.Z. Niu, Y.Z. Wang, C. Geng, J. Xu, Y. Wang, Microstructural evolution, mechanical and corrosion behaviors of as-annealed CoCrFeNiMox (x = 0, 0.2, 0.5, 0.8, 1) high entropy alloys, J. Alloys Compd. 820 (2020) 153273. [144] H. Okamoto, Supplemental Literature Review of Binary Phase Diagrams: Au–Ce, B–Pr, Bi–Gd, Bi–Ho, Cd–Sr, Ga–Ti, Gd–Pb, Gd–Ti, Mg–Mn, Mn–Nd, Nd–Ni, and Ni–Ti, J. Phase Equilib. Diffus. 36 (2015) 390–401. [145] M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, J.W. Yeh, Criterion for sigma phase formation in Cr-and V-containing high-entropy alloys, Mater. Res. Lett. 1(4) (2013) 207–212. [146] Y. Dong, Y.P. Lu, L. Jiang, T.M. Wang, T.J. Li, Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys, Intermetallics 52 (2014) 105–109. [147] Y.P. Lu, Y. Dong, L. Jiang, T.M. Wang, T.J. Li, Y. Zhang, A criterion for topological close-packed phase formation in high entropy alloys, Entropy 17(4) (2015) 2355–2366. [148] M.H. Tsai, K.C. Chang, J.H. Li, R.C. Tsai, A.H. Cheng, A second criterion for sigma phase formation in high-entropy alloys, Mater. Res. Lett. 4(2) (2016) 90–95. [149] M.S. Mehranpour, H. Shahmir, A. Derakhshandeh, M. Nili-Ahmadabadi, Significance of Ti addition on precipitation in CoCrFeNiMn high-entropy alloy, J. Alloys Compd. 888 (2021) 161530. [150] H. Shahmir, M. Nili-Ahmadabadi, A. Shafiee, M. Andrzejczuk, M. Lewandowska, T.G. Langdon, Effect of Ti on phase stability and strengthening mechanisms of a nanocrystalline CoCrFeMnNi high-entropy alloy, Mater. Sci. Eng., A 725 (2018) 196–206. [151] J.Y. Wang, B.S. Zhang, Y.Q. Yu, Z.J. Zhang, S.S. Zhu, Z.Z. Wang, Ti content effect on microstructure and mechanical properties of plasma-cladded CoCrFeMnNiTix high-entropy alloy coatings, Surf. Topogr.: Metrol. Prop. 8(1) (2020) 015004. [152] D.H. Chung, H.J. Kwon, C. Eze, W.C. Kim, Y.S. Na, Influence of Ti addition on the strengthening and toughening effect in CoCrFeNiTix multi principal element alloys, Metals 11(10) (2021) 1511. [153] A. Wilson, Formation and effect of topologically close-packed phases in nickel-base superalloys, Mater. Sci. Technol. 33(9) (2017) 1108–1118. [154] A. Takeuchi, A. Inoue, Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys, Mater. Trans., JIM 41(11) (2000) 1372–1378. [155] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans. 46(12) (2005) 2817–2829. [156] S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys. 109(10) (2011). [157] M. Morinaga, N. Yukawa, H. Adachi, H. Ezaki, New PHACOMP and its applications to alloy design, Superalloys Proc. Int. Symp., 5th (1984) 523–532. [158] W. Martienssen, H. Warlimont, Handbook of Condensed Matter and Materials Data, Springer, Berlin, 2005. [159] Y.J. Jing, H.B. Yang, Y.L. Shang, H.P. Xiong, The design of a new Ti–Zr–Cu–Ni–Ag brazing filler metal for brazing of titanium alloys, Weld. World 65 (2021) 2231–2237. [160] P.H. Qiao, J.Y. Xie, Y. Jiang, P.J. Tang, B. Liang, Y.L. Lu, J.M. Gong, Mechanical properties of σ-phase and its effect on the mechanical properties of austenitic stainless steel, Coatings 12(12) (2022) 1917. [161] Y.G. Tong, H. Zhang, H.F. Huang, L.W. Yang, Y.L. Hu, X.B. Liang, M.Y. Hua, J. Zhang, Strengthening mechanism of CoCrNiMox high entropy alloys by high-throughput nanoindentation mapping technique, Intermetallics 135 (2021) 107209. [162] Y.W. Pan, A.P. Dong, Y. Zhou, D.F. Du, D.H. Wang, G.L. Zhu, B.D. Sun, Enhanced strength-ductility synergy in a novel V-containing γ''-strengthened CoCrNi-based multi-component alloy, Mater. Sci. Eng., A 816 (2021) 141289. [163] L. Zhang, X.H. Du, L. Zhang, W.P. Li, Y.X. Liang, J.X. Yu, N.F. Zou, G. Wan, Y. Tang, G.S. Duan, Achieving ultra-high strength in a precipitation-hardened CoCrNi-based medium-entropy alloy with partially recrystallized microstructure and heterogeneous grains, Vacuum 188 (2021) 110169. [164] Y.A. Chen, D.Z. Li, R.F. Xie, H.T. Lu, Dual precipitates and heterogeneous fine-grain structure induced strength-ductility synergy in a CoCrNi-based medium-entropy alloy, Mater. Sci. Eng., A 867 (2023) 144504. [165] P. Zhang, Q. Lei, X.B. Yuan, X.F. Sheng, D. Jiang, Y.P. Li, Z. Li, Microstructure and mechanical properties of a Cu–Fe–Nb alloy with a high product of the strength times the elongation, Mater. Today Commun. 25 (2020) 101353. [166] B. Liu, Q. Lei, L.Q. Xie, M.P. Wang, Z. Li, Microstructure and mechanical properties of high product of strength and elongation Al–Zn–Mg–Cu–Zr alloys fabricated by spray deposition, Mater. Des. 96 (2016) 217–223. [167] G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Mater. 118 (2016) 152–163. [168] Z.H. Lai, Y.H. Sun, Y.T. Lin, J.F. Tu, H.W. Yen, Mechanism of twinning induced plasticity in austenitic lightweight steel driven by compositional complexity, Acta Mater. 210 (2021) 116814. [169] K.F. Lin, S.C. Chen, H.W. Yen, H.C. Lin, Mechanical performance of a novel low-cost Fe–25Mn–5Co–12.5Cr–5Ni–2.5Si (in at.%) medium-entropy alloy, Mater. Sci. Eng., A 892 (2024) 146032. [170] Y. Ma, F.P. Yuan, M.X. Yang, P. Jiang, E. Ma, X.L. Wu, Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures, Acta Mater. 148 (2018) 407–418. [171] J. Miao, C.E. Slone, T.M. Smith, C. Niu, H.B. Bei, M. Ghazisaeidi, G.M. Pharr, M.J. Mills, The evolution of the deformation substructure in a Ni–Co–Cr equiatomic solid solution alloy, Acta Mater. 132 (2017) 35–48. [172] I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, The effect of grain size and grain orientation on deformation twinning in a Fe–22 wt.% Mn–0.6 wt.% C TWIP steel, Mater. Sci. Eng., A 527(15) (2010) 3552–3560. [173] H. Chang, T.W. Zhang, Z.Q. Li, J.Y. Ma, J.J. Wang, D. Zhao, S.G. Ma, Z.H. Wang, Cryogenic mechanical behavior and FCC → HCP phase transformation mechanism in a Si-added CrCoNi medium-entropy alloy under quasi-static and dynamic tension, Mater. Des. 244 (2024) 113131. [174] C.E. Slone, S. Chakraborty, J. Miao, E.P. George, M.J. Mills, S.R. Niezgoda, Influence of deformation induced nanoscale twinning and FCC-HCP transformation on hardening and texture development in medium-entropy CrCoNi alloy, Acta Mater. 158 (2018) 38–52. [175] S. Sato, E.P. Kwon, M. Imafuku, K. Wagatsuma, S. Suzuki, Microstructural characterization of high-manganese austenitic steels with different stacking fault energies, Mater. Charact. 62(8) (2011) 781–788. [176] X.H. An, S.D. Wu, Z.G. Wang, Z.F. Zhang, Significance of stacking fault energy in bulk nanostructured materials: insights from Cu and its binary alloys as model systems, Prog. Mater. Sci. 101 (2019) 1–45. [177] J.C. Williams, R.G. Baggerly, N.E. Paton, Deformation behavior of HCP Ti–Al alloy single crystals, Metall. Mater. Trans. A 33 (2002) 837–850. [178] Z.J. Zhang, H.W. Sheng, Z.J. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao, R.O. Ritchie, Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy, Nat. Commun. 8(1) (2017) 14390. [179] L.L. Zhu, S.X. Qu, X. Guo, J. Lu, Analysis of the twin spacing and grain size effects on mechanical properties in hierarchically nanotwinned face-centered cubic metals based on a mechanism-based plasticity model, J. Mech. Phys. Solids 76 (2015) 162–179. [180] W. Guo, Z. Pei, X. Sang, J.D. Poplawsky, S. Bruschi, J. Qu, D. Raabe, H.B. Bei, Shape-preserving machining produces gradient nanolaminate medium entropy alloys with high strain hardening capability, Acta Mater. 170 (2019) 176–186. [181] S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing, Scr. Mater. 134 (2017) 33–36. [182] G.P.M. Leyson, W.A. Curtin, L.G. Hector Jr, C.F. Woodward, Quantitative prediction of solute strengthening in aluminium alloys, Nat. Mater. 9(9) (2010) 750–755. [183] M. Schneider, E.P. George, T.J. Manescau, T. Záležák, J. Hunfeld, A. Dlouhý, G. Eggeler, G. Laplanche, Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CrCoNi medium-entropy alloy, Int. J. Plast. 124 (2020) 155–169. [184] E.O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc., London, Sect. B 64(9) (1951) 747. [185] N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 (1953) 25–28. [186] A.S. Argon, Physics of strength and plasticity, MIT press, Massachusetts, 1969. [187] G.B. Olson, M. Cohen, A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation, Metall. Trans. A 7 (1976) 1897–1904. [188] T.L. Achmad, W.X. Fu, H. Chen, C. Zhang, Z.G. Yang, Computational thermodynamic and first-principles calculation of stacking fault energy on ternary Co-based alloys, Comput. Mater. Sci. 143 (2018) 112–117. [189] Y.K. Lee, C.S. Choi, Driving force for γ → ε martensitic transformation and stacking fault energy of γ in Fe–Mn binary system, Metall. Mater. Trans. A 31 (2000) 355–360. [190] S.J. Zhao, G.M. Stocks, Y.W. Zhang, Stacking fault energies of face-centered cubic concentrated solid solution alloys, Acta Mater. 134 (2017) 334–345. [191] C.N. Niu, C.R. LaRosa, J.S. Miao, M.J. Mills, M. Ghazisaeidi, Magnetically-driven phase transformation strengthening in high entropy alloys, Nat. Commun. 9(1) (2018) 1363. [192] S.M. Lee, S.J. Lee, S. Lee, J.H. Nam, Y.K. Lee, Tensile properties and deformation mode of Si-added Fe–18Mn–0.6C steels, Acta Mater. 144 (2018) 738–747. [193] A.T. Dinsdale, SGTE data for pure elements, Calphad 15(4) (1991) 317–425. [194] S.Y. Yang, M. Jiang, H.X. Li, Y. Liu, L. Wang, Assessment of Co–Cr–Ni ternary system by CALPHAD technique, Rare Met. 31 (2012) 75–80. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94708 | - |
dc.description.abstract | 本研究透過高真空電弧熔煉技術製備一系列(CoCrNi)98–xTixMo2 (x = 1, 2, 3, 4)、(CoCrNi)98–yTi2Moy (y = 1, 2, 3, 4)及(CoCrNi)100–2zTizMoz (z = 0, 1, 2, 3)中熵合金並進行微結構與機械性質的分析,透過添加不同含量的過度元素鈦(Ti)和/或鉬(Mo)來探討對CoCrNi中熵合金系統造成的微結構與機械性質影響。基於XRD、EBSD與TEM的結果顯示,隨著鈦元素添加量上升並固定鉬元素含量為2 at.%,晶體結構從單相FCC轉為FCC + η + σ。隨著鉬元素添加量上升並固定鈦元素含量為2 at.%,晶體結構從單相FCC轉為FCC + σ。η相析出物主要富含鎳及鈦,而σ相析出物主要富含鉻及鉬。晶粒尺寸隨著溶質元素的添加略為減小,但在析出物形成時則顯著減小;合金強度及硬度隨著溶質元素的添加些微增加,但在析出物形成時則顯著增加,晶粒尺寸與硬度的變化趨勢證明了溶質元素貢獻了固溶強化、而析出物則貢獻了析出強化的效果。奈米壓痕分析結果顯示,FCC基體、η相析出物與σ相析出物的奈米硬度分別約為6、9及12 GPa。Ti3Mo3在本研究中展現出最佳的機械性質,其降伏強度為953.70 MPa、最大拉伸強度為1319.09 MPa、斷裂伸長率為22.09%、以及微硬度為424 HV。本研究引入了包含固溶強化、晶界強化以及析出強化等在內的協同強化機制來提升材料的機械性質,其量測與計算的降伏強度之間存在著高度相關性。
為了研究元素添加在不同溫度下的機械性質及塑性變形機制的演變,將由單相FCC結構的Ti0Mo0及Ti2Mo2進行室溫(298 K)及低溫(173 K)拉伸試驗。拉伸試驗結果表明在低溫下具有較佳的強度及延展性組合。XRD結果顯示在室溫下,Ti0Mo0及Ti2Mo2在變形前後均維持單一FCC相,而在低溫下則發現了FCC到FCC + HCP相轉。EBSD結果顯示隨著局部應變的增加,<111>織構在平行拉伸方向上的強度增加;相較於室溫拉伸,在低溫拉伸下發現了大量的變形雙晶,暗示著不同溫度下具有不同的變形機制。透過TEM分析近一步了解Ti0Mo0及Ti2Mo2在室溫及低溫拉伸下,不同局部應變下的微結構演變。在室溫下存在明顯的成分相關變形機制轉變,Ti0Mo0主要變形機制為差排滑移,而Ti2Mo2在中及高局部應變下,出現了少量疊差(SF)及變形雙晶,暗示元素鈦及鉬的添加可有效減少疊差能(SFE),進而導致孿晶誘導塑性(TWIP)效應的產生;在低溫下則表現出顯著的溫度相關變形機制轉變,在低局部應變下除了差排滑移外,也發現大量疊差及變形雙晶的形成;隨著應變量增加,多重塑性變形機制包含疊差、變形奈米雙晶以及HCP層狀結構,表明了在低溫下引入了孿晶誘導塑性(TWIP)及相轉誘導塑性(TRIP)效應。這些現象是主導塑性變形及加工硬化行為的重要機制,透過引入額外的晶界或是相界,不僅可以降低差排移動的平均自由程來提升材料的強度,即所謂的動態Hall-Petch效應,額外的雙晶晶界及相界亦可以作為差排滑移的額外途徑,共同延遲頸縮的發生,提升低溫下的延展性。 總而言之,我們的研究探討了溶質原子鈦及鉬添加對具有協同強化機制和塑性變形機制的CoCrNi中熵合金在室溫和低溫下的微觀結構與機械行為的影響,其結果為未來在室溫及低溫應用中實現了卓越機械性能組合的材料設計提供了潛在的途徑。 | zh_TW |
dc.description.abstract | Series of (CoCrNi)98–xTixMo2 (TixMo2, x = 1, 2, 3 and 4), (CoCrNi)98–yTi2Moy (Ti2Moy, y = 1, 2, 3 and 4) and (CoCrNi)100–2zTizMoz (TizMoz, z = 0, 1, 2 and 3) medium entropy alloys (MEAs) were fabricated using high-vacuum arc melting to investigate the effects of transition elements, Ti and Mo, on the microstructures and mechanical properties of the CoCrNi-based MEAs. Phase transformations from single face-centered cubic (FCC) phase to FCC + η + σ phases were observed in TixMo2 and TizMoz, while phase transformations from single FCC phase to FCC + σ phases were observed Ti2Moy, based on the results of X-ray diffraction (XRD), electron backscatter electron (EBSD) and transmission electron microscopy (TEM) analyses. The η precipitates were rich in Ni and Ti while the σ precipitates were rich in Cr and Mo. The grain size decreased slightly with the increasing solute atoms but significantly in the presence of precipitates, while the strength and hardness increased slightly with the increasing solute atoms but significantly in the presence of precipitates, which indicated the introduction of solid solution strengthening by the addition of solute atoms and precipitation strengthening by the formation of precipitates. The nanohardness of FCC matrix, η and σ precipitates were approximately 6, 9 and 12 GPa, respectively. The optimum mechanical properties of yield strength, ultimate tensile strength, fracture elongation, and microhardness of 953.70 MPa, 1319.09 MPa, 22.09% and 424 HV, respectively, were obtained in Ti3Mo3 compared to 417.74 MPa, 813.14 MPa, 66.28%, and 226 HV in Ti0Mo0. The synergistic strengthening mechanisms including solid solution strengthening, grain boundary strengthening and precipitation strengthening were examined, and there was a high correlation between the measured and calculated yield strengths.
In this research, we also investigated the microstructural evolution and plastic deformation mechanisms of Ti0Mo0 and Ti2Mo2 MEA with single FCC phase at 298 K and 173 K. There is a pronounced composition-dependent transition of deformation mechanism at 298 K, from the typical dislocation slip of Ti0Mo0 to the cooperative plastic deformation of stacking faults and deformation nano-twins of Ti2Mo2. This suggests an effective reduction of stacking fault energy through Ti/Mo co-doping, resulting in the emergence of twinning-induced plasticity (TWIP) effect. Remarkably, TizMoz exhibits temperature dependent mechanical behavior with concurrent increases of strength and ductility at cryogenic temperature. There is a notable transition from the dislocation slip at 298 K to the synergistic plastic deformation of stacking faults, deformation nano-twins and hexagonal close-packed (HCP) lamellar structures at 173 K. The activations of twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP), resulting from the hierarchical deformation nano-twins and HCP structures. The findings served as significant mechanisms for plastic deformation mechanisms and work hardening behaviors and collaboratively delay the onset of necking for improved ductility at 173 K. Overall, our research investigated the effects of solute atom Ti and Mo additions on microstructural and mechanical behaviors of CoCrNi MEA with synergistic strengthening mechanisms and plastic deformation mechanisms at room temperature and cryogenic temperature. Our results offered potential avenues for future material design of superior mechanical property combination at both room-temperature and cryogenic applications. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:38:47Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T17:38:47Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 #
誌謝 i 中文摘要 iii ABSTRACT v CONTENTS viii LIST OF FIGURES xiv LIST OF TABLES xxxiii Chapter 1 Introduction 1 Chapter 2 Literature Review 5 2.1 High Entropy Alloys 5 2.1.1 Definitions of HEAs 5 2.1.2 Four Core Effects 8 2.1.2.1 High Entropy Effect 9 2.1.2.2 Sluggish Diffusion Effect 11 2.1.2.3 Severe Lattice Distortion Effect 13 2.1.2.4 Cocktail Effect 15 2.2 Mechanical Properties of HEAs/MEAs 17 2.2.1 Quinary CoCrFeMnNi HEAs 17 2.2.2 Quaternary CoCrFeNi MEAs 19 2.2.3 Ternary CoCrNi MEAs 20 2.3 Effects of Element Additions 23 2.3.1 Substitutional Element Additions 23 2.3.1.1 Al Addition 23 2.3.1.2 Ti Addition 26 2.3.1.3 Mo Addition 27 2.3.1.4 W Addition 30 2.3.1.5 Rare Earth Element Addition 33 2.3.2 Interstitial Element Additions 37 2.3.2.1 B Addition 37 2.3.2.2 N Addition 38 2.3.2.3 C Addition 39 2.3.2.4 Si Addition 41 2.4 Elements co-doped CoCrNi MEAs 43 2.4.1 Al/Ti Co-doped 43 2.4.2 Al/Ta Co-doped 46 2.5 Strengthening Mechanisms 50 2.5.1 Solid Solution Strengthening 50 2.5.2 Grain Boundary Strengthening 51 2.5.3 Precipitation Strengthening 52 2.5.4 Dislocation Strengthening/Work Hardening 54 2.6 Plastic Deformation Mechanisms 55 2.6.1 SFE Effect 55 2.6.2 TWIP Effect 57 2.6.3 TRIP Effect 59 Chapter 3 Experimental Procedure 62 3.1 Experimental Flow Chart 62 3.2 Materials Preparation 62 3.3 Microstructure Analyses 64 3.3.1 X-ray Diffraction (XRD) 64 3.3.2 Electron Probe X-ray Microanalyzer (EPMA) 65 3.3.3 Scanning Electron Microscope (SEM) 65 3.3.4 Transmission Electron Microscope (TEM) 65 3.4 Mechanical Property Analyses 67 3.4.1 Vickers Hardness Test 67 3.4.2 Nanoindentation 67 3.4.3 Uniaxial Tensile Test 67 Chapter 4 Results and Discussion 70 4.1 (CoCrNi)98-xTixMo2 MEAs 70 4.1.1 XRD Results 70 4.1.2 Chemical Compositions 73 4.1.3 Microstructures 79 4.1.4 TEM Observation 86 4.1.5 Vickers Hardness Tests 88 4.1.6 Nanoindentation 89 4.1.7 Tensile Tests 91 4.1.8 Fracture Morphology After Tensile Tests 93 4.2 (CoCrNi)98-yTi2Moy MEAs 95 4.2.1 XRD Results 95 4.2.2 Chemical Compositions 96 4.2.3 Microstructures 99 4.2.4 TEM Observation 107 4.2.5 Vickers Hardness Tests 110 4.2.6 Nanoindentation 111 4.2.7 Tensile Tests 113 4.2.8 Fracture Morphology After Tensile Tests 114 4.3 (CoCrNi)100-2zTizMoz MEAs 116 4.3.1 XRD Results 116 4.3.2 Chemical Composition 117 4.3.3 Microstructures 120 4.3.4 TEM Observation 127 4.3.5 Vickers Hardness Tests 130 4.3.6 Nanoindentation 131 4.3.7 Tensile Tests 133 4.3.8 Fracture Morphology After Tensile Tests 134 4.4 Comparisons 136 4.5 Tensile Deformation Mechanisms at 298 K and 173 K 138 4.5.1 Tensile Tests 138 4.5.2 XRD results 140 4.5.3 Microstructures and Fracture Morphology After Tensile Tests 141 4.5.4 EBSD Microstructural Analysis 143 4.5.5 TEM Microstructural Analysis 154 4.5.6 Schematic Diagram of Plastic Deformation 174 4.6 Strengthening Mechanisms 176 4.7 SFE Calculation by Thermodynamics 181 Chapter 5 Conclusions 183 5.1 Ti and/or Mo additions CoCrNi-based MEAs 183 5.2 Tensile Deformation Mechanisms 185 References 188 | - |
dc.language.iso | en | - |
dc.title | 元素Ti 及Mo 添加對於CoCrNi 中熵合金顯微結構、 機械性質與拉伸變形機制之影響 | zh_TW |
dc.title | Effects of Ti and Mo Additions on Microstructures, Mechanical Properties and Tensile Deformation Mechanisms of CoCrNi Medium Entropy Alloys | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 楊哲人;林新智;姚栢文 | zh_TW |
dc.contributor.oralexamcommittee | Jer-Ren Yang;Hsin-Chih Lin;Pakman Yiu | en |
dc.subject.keyword | 中熵合金,微結構演變,機械性質,奈米壓痕試驗,強化機制,低溫拉伸試驗,拉伸變形機制, | zh_TW |
dc.subject.keyword | Medium entropy alloys,Microstructural evolution,Mechanical properties,Nanoindentation,Strengthening mechanisms,Cryogenic tensile test,Tensile deformation mechanisms, | en |
dc.relation.page | 202 | - |
dc.identifier.doi | 10.6342/NTU202402302 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 材料科學與工程學系 | - |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 40.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。