Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94706
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡豐羽zh_TW
dc.contributor.advisorFeng-Yu Tsaien
dc.contributor.author陳郁琪zh_TW
dc.contributor.authorYu-Chi Chenen
dc.date.accessioned2024-08-16T17:38:05Z-
dc.date.available2024-09-16-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citationLuo, S., & Daoud, W. A. Recent progress in organic–inorganic halide perovskite solar cells: Mechanisms and Material Design. Journal of Materials Chemistry A, 2015, 3(17), 8992–9010.
Zhang, Q., Hao, F., Li, J., Zhou, Y., Wei, Y., & Lin, H. (2018). Perovskite solar cells: Must lead be replaced – and can it be done? Science and Technology of Advanced Materials, 19(1), 425–442.
Wang, X., Zhang, T., Lou, Y., & Zhao, Y. (2019). All-inorganic lead-free perovskites for Optoelectronic Applications. Materials Chemistry Frontiers, 3(3), 365–375.
Qin, Z., Pols, M., Qin, M., Zhang, J., Yan, H., Tao, S., & Lu, X. (2023). Over-18%-efficiency quasi-2d Ruddlesden–Popper Pb–Sn mixed perovskite solar cells by compositional engineering. ACS Energy Letters, 8(7), 3188–3195.
Ju, M.-G., Chen, M., Zhou, Y., Dai, J., Ma, L., Padture, N. P., & Zeng, X. C. (2018). Toward eco-friendly and stable perovskite materials for photovoltaics. Joule, 2(7), 1231–1241.
Chen, Q., Luo, J., He, R., Lai, H., Ren, S., Jiang, Y., Wan, Z., Wang, W., Hao, X., Wang, Y., Zhang, J., Constantinou, I., Wang, C., Wu, L., Fu, F., & Zhao, D. (2021). Unveiling roles of tin fluoride additives in high‐efficiency low‐bandgap mixed tin‐lead perovskite solar cells. Advanced Energy Materials, 11(29).
Gupta, S., Cahen, D., & Hodes, G. (2018). How SnF2 impacts the material properties of lead-free tin perovskites. The Journal of Physical Chemistry C, 122(25), 13926–13936.
Lin, R., Xu, J., Wei, M. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022).
(N.d.). Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-Based Perovskite Solar Cells. J. Am. Chem. Soc. 2017, 139, 836−842
Xiao, K., Lin, R., Han, Q., Hou, Y., Qin, Z., Nguyen, H. T., Wen, J., Wei, M., Yeddu, V., Saidaminov, M. I., Gao, Y., Luo, X., Wang, Y., Gao, H., Zhang, C., Xu, J., Zhu, J., Sargent, E. H., & Tan, H. (2020). All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nature Energy, 5(11), 870–880.
Tai, Q., Guo, X., Tang, G., You, P., Ng, T., Shen, D., Cao, J., Liu, C., Wang, N., Zhu, Y., Lee, C., & Yan, F. (2018). Antioxidant grain passivation for air‐stable tin‐based perovskite solar cells. Angewandte Chemie, 131(3), 816–820.
Qiu, J., Xia, Y., Zheng, Y., Hui, W., Gu, H., Yuan, W., Yu, H., Chao, L., Niu, T., Yang, Y., Gao, X., Chen, Y., & Huang, W. (2019). 2D intermediate suppression for efficient Ruddlesden–Popper (RP) phase lead-free perovskite solar cells. ACS Energy Letters, 4(7), 1513–1520.
(N.d.-a). Revealing the Crystallization and Thermal-Induced Phase Evolution in Aromatic-Based Quasi-2d Perovskites Using a Robot-Based Platform. ACS Energy Lett. 2023,8,3595−3603
Cao, J., Loi, H., Xu, Y., Guo, X., Wang, N., Liu, C., Wang, T., Cheng, H., Zhu, Y., Li, M. G., Wong, W., & Yan, F. (2021). High‐Performance tin–lead mixed‐perovskite solar cells with vertical compositional gradient. Advanced Materials, 34(6).
Wei, M., Xiao, K., Walters, G., Lin, R., Zhao, Y., Saidaminov, M. I., Todorović, P., Johnston, A., Huang, Z., Chen, H., Li, A., Zhu, J., Yang, Z., Wang, Y., Proppe, A. H., Kelley, S. O., Hou, Y., Voznyy, O., Tan, H., & Sargent, E. H. (2020). Combining efficiency and stability in mixed tin–lead perovskite solar cells by capping grains with an ultrathin 2D layer. Advanced Materials, 32(12).
T. B. Song, T. Yokoyama, C. C. Stoumpos, J. Logsdon, D. H. Cao, M. R. Wasielewski, S. Aramaki, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139, 836.
Kayesh, M. E.; Chowdhury, T. H.; Matsuishi, K.; Kaneko, R.; Kazaoui, S.; Lee, J. J.; Noda, T.; Islam, A. Enhanced Photovoltaic Performance of FASnI3-Based Perovskite Solar Cells with Hydrazinium Chloride Coadditive. ACS Energy Lett 2018, 3 (7), 1584–1589.
Wu, D.; Jia, P.; Bi, W.; Tang, Y.; Zhang, J.; Song, B.; Qin, L.; Lou, Z.; Hu, Y.; Teng, F.; Hou, Y. Enhanced Performance of Tin Halide Perovskite Solar Cells by Addition of Hydrazine Monohydrobromide. Org Electron 2020, 82, 105728.
Chen, S.; Xiao, X.; Gu, H.; Huang, J. Iodine Reduction for Reproducible and High-Performance Perovskite Solar Cells and Modules. Sci Adv 2021, 7 (10).
Wang, C.; Gu, F.; Zhao, Z.; Rao, H.; Qiu, Y.; Cai, Z.; Zhan, G.; Li, X.; Sun, B.; Yu, X.; Zhao, B.; Liu, Z.; Bian, Z.; Huang Wang, C. C.; Gu, F.; Zhao, Z.; Rao, H.; Qiu, Y.; Cai, Z.; Zhan, G.; Li, X.; Sun, B.; Yu, X.; Zhao, B.; Liu, Z.; Bian, Z.; Huang, C. Self-Repairing Tin-Based Perovskite Solar Cells with a Breakthrough Efficiency Over 11%. Advanced Materials 2020, 32 (31), 1907623.
Cao, J.; Loi, H. L.; Xu, Y.; Guo, X.; Wang, N.; Liu, C. ki; Wang, T.; Cheng, H.; Zhu, Y.; Li, M. G.; Wong, W. Y.; Yan, F. High-Performance Tin–Lead Mixed-Perovskite Solar Cells with Vertical Compositional Gradient. Advanced Materials 2022, 34 (6), 2107729.
You, J., Wang, M., Xu, C., Yao, Y., Zhao, X., Liu, D., Dong, J., Guo, P., Xu, G., Luo, C., Zhong, Y., & Song, Q. (2021). Hydrazine dihydrochloride as a new additive to promote the performance of tin-based mixed organic cation perovskite solar cells. Sustainable Energy & Fuels, 5(10), 2660–2667.
Zhang, K.; Späth, A.; Almora, O.; Le Corre, V. M.; Wortmann, J.; Zhang, J.; Xie, Z.; Barabash, A.; Hammer, M. S.; Heumüller, T.; Min, J.; Fink, R.; Lüer, L.; Li, N.; Brabec, C. J. Suppressing Nonradiative Recombination in Lead-Tin Perovskite Solar Cells through Bulk and Surface Passivation to Reduce Open Circuit Voltage Losses. ACS Energy Lett 2022, 7 (10), 3235–3243.
Zhang, W., Yuan, H., Li, X., Guo, X., Lu, C., Liu, A., Yang, H., Xu, L., Shi, X., Fang, Z., Yang, H., Cheng, Y., & Fang, J. (2023). Component distribution regulation in Sn-Pb perovskite solar cells through selective molecular interaction. Advanced Materials, 35(39).
Petrus, M.L. (author). (2014b). Azomethine-based donor materials for Organic Solar Cells.
Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J Phys Chem Lett 2018, 9 (23), 6814–6817.
Von Hauff, E.; Klotz, D. Impedance Spectroscopy for Perovskite Solar Cells: Characterisation, Analysis, and Diagnosis. J Mater Chem C Mater 2022, 10 (2), 742–761.
Hu, X.; Wang, H.; Wang, M.; Zang, Z. Interfacial Defects Passivation Using Fullerene-Polymer Mixing Layer for Planar-Structure Perovskite Solar Cells with Negligible Hysteresis. Solar Energy 2020, 206, 816–825.
He, X.; Wu, T.; Liu, X.; Wang, Y.; Meng, X.; Wu, J.; Noda, T.; Yang, X.; Moritomo, Y.; Segawa, H.; Han, L. Highly Efficient Tin Perovskite Solar Cells Achieved in a Wide Oxygen Concentration Range. J Mater Chem A Mater 2020, 8 (5), 2760–2768.
Chen, Y. F.; Luo, Z. M.; Chiang, C. H.; Wu, C. G. Multifunctional Ionic Fullerene Additive for Synergistic Boundary and Defect Healing of Tin Perovskite to Achieve High-Efficiency Solar Cells. ACS Appl Mater Interfaces 2022, 14 (41), 46603–46614.
Seo, J.-Y.; Matsui, T.; Luo, J.; Correa-Baena, J.-P.; Giordano, F.; Saliba, M.; Schenk, K.; Ummadisingu, A.; Domanski, K.; Hadadian, M.; Hagfeldt, A.; Zakeeruddin, S. M.; Steiner, U.; Grätzel, M.; Abate, A.; Seo, J.; Luo, J.; Giordano, F.; Saliba, M.; Ummadisingu, A.; Domanski, K.; Zakeeruddin, S. M.; Grätzel, M.; Abate, A.; Matsui, T.; Correa-Baena, J.; Hadadian, M.; Hagfeldt, A.; Schenk, K. Ionic Liquid Control Crystal Growth to Enhance Planar Perovskite Solar Cells Efficiency. Adv Energy Mater 2016, 6 (20), 1600767.
Singh, T.; Miyasaka, T.; Singh, T.; Miyasaka, T. Stabilizing the Efficiency Beyond 20% with a Mixed Cation Perovskite Solar Cell Fabricated in Ambient Air under Controlled Humidity. Adv Energy Mater 2018, 8 (3), 1700677.
Zhu, Z.; Xu, J.-Q.; Chueh, C.-C.; Liu, H.; Li, an; Li, X.; Chen, H.; K-Y Jen, A.; Zhu, Z.; Xu, J.; Chueh, C.; Li, Z.; K-Y Jen, A.; Chen, H.; Liu, H.; Li, X. A Low-Temperature, Solution-Processable Organic Electron-Transporting Layer Based on Planar Coronene for High-Performance Conventional Perovskite Solar Cells. Advanced Materials 2016, 28 (48), 10786–10793.
Turren-Cruz, S.-H. Pascual, J. Hu, S. Sanchez-Diaz, J. Galve-Lahoz, S. Liu, W. Hempel, W. Chirvony, V.S. Martinez-Pastor, J.P. Boix, P.P. Wakamiya, A. Mora-Seró, I. ACS Energy Letters 2024, 9(2),432-411.
Tian, C., Zhang, Z., Sun, A., Liang, J., Zheng, Y., Wu, X., Liu, Y., Tang, C., & Chen, C.-C. (2023). Tuning Phase Stability and Interfacial Dipole for Efficient Methylammonium-Free Sn-Pb Perovskite Solar Cells. Nano Energy 116,108848
Chen, T., & Yan, D. (2024). Full-color, time-valve controllable and janus-type long-persistent luminescence from all-inorganic halide perovskites. Nature Communications, 15(1).
Zuo, L.; Guo, H.; DeQuilettes, D. W.; Jariwala, S.; De Marco, N.; Dong, S.; DeBlock, R.; Ginger, D. S.; Dunn, B.; Wang, M.; Yang, Y. Polymer-Modified Halide Perovskite Films for Efficient and Stable Planar Heterojunction Solar Cells. Sci Adv 2017, 3 (8).
Efficient and Stable FAPbBr3 Perovskite Solar Cells via Interface Modification by a Low-Dimensional Perovskite Layer. ChenSusChem 2019,12,5007-5014.
Von Hauff, E.; Klotz, D. Impedance Spectroscopy for Perovskite Solar Cells: Characterisation, Analysis, and Diagnosis. J Mater Chem C Mater 2022, 10 (2), 742–761.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94706-
dc.description.abstract有機無機錫鉛混合型鈣鈦礦太陽能電池相較於目前主流的鉛基鈣鈦礦太陽能電池更為環保,在有機無機錫鉛混合型鈣鈦礦太陽能電池系統中,以芳香肼類化合物作為添加劑有助於提升電池穩定性,原因為芳香結構中推電子的特性,提升鄰近肼基抑制錫氧化的能力。因此本研究探討以下四種不同推電子取代基的芳香肼類化合物 phenylhydrazine hydrochloride (PH•HCl)、o-tolylhydrazine hydrochloride (OTH•HCl)、p-tolylhydrazine hydrochloride (PTH•HCl) 和1-naphthalenyl hydrazine hydrochloride (NH•HCl) 來對於錫鉛混合型鈣鈦礦太陽能電池的影響。其中以不含取代基之芳香肼類化合物PH•HCl作為基準,跟PHHCl相比之下,另外三種肼類化合物對於錫鉛混合型太陽能電池的穩定性均顯著提高。在元件穩定性方面: NH•HCl > OTH•HCl ~ PTH•HCl,其中NH•HCl使元件的壽命延長將近100%。除了穩定性的提升之外,薄膜的晶粒尺寸也有所增加,且能有效鈍化光自發光淬滅所造成的缺陷,也提高鈣鈦礦太陽能電池元件的複合電阻與載流子遷移率,進而使最高的光電轉換率提高10%,本研究的發現將為應用於錫鉛混合型與以錫為基底的鈣鈦礦太陽能電池之肼類添加劑有極大的幫助。zh_TW
dc.description.abstractAromatic hydrazine compounds have been shown to be effective stability-enhancing additives to Pb-Sn organic-inorganic halide perovskite solar cells (PSC)—a more eco-friendly alternative to the mainstream Pb-based PSC technology—owing to the electron-donating nature of the aromatic structure, which enhances the neighboring hydrazine group’s ability to suppress degradations Pb-Sn perovskites via oxidation of Sn2+. Aiming to advance this concept further, this study examined four aromatic hydrazine compounds with various electron-donating substituents as additives to Pb-Sn PSC devices, including phenylhydrazine hydrochloride (PH•HCl), o-tolylhydrazine hydrochloride (OTH•HCl), p-tolylhydrazine hydrochloride (PTH•HCl), and 1-naphthalenyl hydrazine hydrochloride (NH•HCl). Compared to PH•HCl, which has a non-substituted phenyl group and was used as a benchmark, the three other electron-donating-group-substituted hydrazines all showed greater enhancements in the stability of PSC devices, validating the premise of this work. The levels of stability enhancement yielded by the three substituted hydrazines followed the strength of their electron-donating substituents, i.e. NH•HCl > OTH•HCl ~ PTH•HCl, with NH•HCl extending the device lifetime by > 100%. In addition to stability enhancements, the three substituted hydrazines increased the crystal grain size in the Pb-Sn perovskite film, passivated photoluminescence-quenching defects therein, and increased recombination resistance and charge-carrier mobility through the PSC device, resulting in a maximal enhancement of 10% in power conversion efficiency. The findings of this work will offer guidance to designing and selecting hydrazine-type additives for Pb-Sn and Sn-based PSCs.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:38:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:38:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書i
誌謝ii
摘要iii
Abstract iv
Content vi
Lists of Figures viii
Lists of Tables xii
Chapter 1 Introduction 1
1.1 Lead-lean perovskite solar cells 1
1.2 Hydrazine compounds as additive to Sn-containing PVSK 3
1.3 Literature review on hydrazine additives for Sn-containing PSCs 4
1.4 Motivation, Approach and Objective 6
Chapter 2 Experiment Section 8
2.1 Chemicals 8
2.2 Instruments 11
2.3 Solution preparation of Pb-Sn PSCs 12
2.3.1 HTL / PEDOT:PSS 12
2.3.2 Pb-Sn perovskite precursor solution / Cs0.25FA0.75Pb0.5Sn0.5I3 13
2.3.3 Additive solution / OTH•HCl 13
2.3.4 Additive solution / PTH•HCl 13
2.3.5 Additive solution / NH•HCl 14
2.4 Fabrication of Pb-Sn PSCs 14
2.4.1 Cleaning of transparent conductive glass 14
2.4.2 UV ozone surface treatment of transparent conductive glass 14
2.4.3 Spin coating of PEDOT:PSS hole transport layer 14
2.4.4 Spin coating of Cs0.25FA0.75Pb0.5Sn0.5I3 perovskite precursor solution 15
2.4.5 Evaporation of C60 electron transport layer 15
2.4.6 Evaporation of BCP 15
2.4.7 Evaporation of Ag silver electrode 16
2.5 Methods of device analysis and measurement 16
2.5.1 Currentvoltage measurement of PSCs 16
2.5.2 UVvisible absorption spectrum 17
2.5.3 External quantum efficiency (EQE) 18
2.5.4 Xray diffraction (XRD) 19
2.5.5 Xray photoelectron spectroscopy (XPS) 19
2.5.6 Fouriertransform infrared spectroscopy (FTIR) 19
2.5.7 Electrochemical impedance spectroscopy (EIS) 19
2.5.8 Spacecharge limited current (SCLC) measurements 20
2.5.9 Reducing test of the hydrazine compounds 21
Chapter 3 Results and Discussion 22
3.1 Reducing strength of the hydrazine additives 22
3.2 Effects of the hydrazine additives on PbSn PSC device characteristics 24
3.2.1 Determining proper concentrations of the hydrazine additives 24
3.2.2 The J-V curves of three additives for PbSn PSCs 25
3.2.3 The EQE spectra of three additives for PbSn PSCs 26
3.2.4 The device stability of four additives 27
3.3 Discussions 30
3.3.1 Morphological analysis 30
3.3.2 Optical Characterization 34
3.3.3 Compositional analysis 38
3.3.4 EIS and SCLC measurements 39
Chapter 4 Conclusion 44
Chapter 5 Reference 45
-
dc.language.isozh_TW-
dc.title不同取代基之肼類添加劑對有機無機錫鉛鈣鈦礦 太陽能電池元件效能之研究zh_TW
dc.titleEffects of substituents of hydrazine additives on the characteristics of organic-inorganic hybrid lead-tin perovskite photovoltaic devicesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee闕居振; 黃裕清; 李坤穆zh_TW
dc.contributor.oralexamcommitteeChu-Chen Chueh;Yu-Ching Huang;Kun-Mu Leeen
dc.subject.keyword有機無機錫鉛混和型鈣鈦礦太陽能電池,鈣鈦礦太陽能電池穩定性,添加劑工程,還原劑,肼類化合物,zh_TW
dc.subject.keywordorganic-inorganic hybrid lead-tin perovskite solar cells,photovoltaic device stability,additive engineering,reducing agents,hydrazine compounds,en
dc.relation.page50-
dc.identifier.doi10.6342/NTU202403324-
dc.rights.note未授權-
dc.date.accepted2024-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
2.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved