Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94694
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘建興zh_TW
dc.contributor.advisorFrederick Kin Hing Phoaen
dc.contributor.author黃健滔zh_TW
dc.contributor.authorKin To Wongen
dc.date.accessioned2024-08-16T17:34:02Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citationAbdel‐Basset, M., Abdel-Fatah, L., & Sangaiah, A. K. (2018). Metaheuristic Algorithms: A Comprehensive Review. In Elsevier eBooks (pp. 185–231). https://doi.org/10.1016/b978-0-12-813314-9.00010-4

Abdel‐Basset, M., Ding, W., & El-Shahat, D. (2020). A hybrid Harris Hawks optimization algorithm with simulated annealing for feature selection. Artificial Intelligence Review, 54(1), 593–637. https://doi.org/10.1007/s10462-020-098603

Bandaru, S., & Deb, K. (2016). Metaheuristic Techniques. https://www.egr.msu.edu/~kdeb/papers/c2016029.pdf

Beheshti, Z. (2013). A review of population-based meta-heuristic algorithm. Soft Computing, 5(1), 1–35. http://home.ijasca.com/data/documents/IJASCA07_REVISED.pdf

Bellman, R. (1962). Dynamic Programming treatment of the travelling salesman problem. Journal of the ACM, 9(1), 61–63. https://doi.org/10.1145/321105.321111

Bertsimas, D., & Tsitsiklis, J. N. (1993). Simulated annealing. Statistical Science, 8(1). https://doi.org/10.1214/ss/1177011077

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3), 268–308. https://doi.org/10.1145/937503.937505

Bonyadi, M. R., Azghadi, M. R., & Shah‐Hosseini, H. (2008). Population-Based optimization algorithms for solving the travelling salesman problem. In InTech eBooks. https://doi.org/10.5772/5586

Boysen, N., Fedtke, S., & Schwerdfeger, S. (2020). Last-mile delivery concepts: a survey from an operational research perspective. OR Spectrum, 43(1), 1–58. https://doi.org/10.1007/s00291-020-00607-8

De Smith, M. J., Goodchild, P. M. F., & Longley, P. P. A. (2018). Geospatial analysis: A Comprehensive Guide to Principles Techniques and Software Tools. The Winchelsea Press.

Distance Matrix API request and response. (n.d.). Google for Developers. https://developers.google.com/maps/documentation/distance-matrix/distance-matrix

Dorigo M (1992) Learning and Natural Algorithms. PhD thesis, Politecnico di Milano, Italy

Eren, E., & Tuzkaya, U. R. (2021). Safe distance-based vehicle routing problem: Medical waste collection case study in COVID-19 pandemic. Computers & Industrial Engineering, 157, 107328. https://doi.org/10.1016/j.cie.2021.107328

Flood, M. M. (1956). The Traveling-Salesman Problem. Operations Research, 4(1), 61–75. https://www.jstor.org/stable/167517

Fraser, A. (1957). Simulation of genetic systems by Automatic Digital Computers. Australian Journal of Biological Sciences, 10(4), 484–491. https://doi.org/10.1071/bi9570484

Gad, A. G. (2022). Particle Swarm Optimization Algorithm and its Applications: A Systematic review. Archives of Computational Methods in Engineering, 29(5), 2531–2561. https://doi.org/10.1007/s11831-021-09694-4

Gaertner, D., & Clark, K. L. (2005). On optimal parameters for ant colony optimization algorithms. International Conference on Artificial Intelligence, 83–89. https://dblp.uni-trier.de/db/conf/icai/icai2005-1.html#GaertnerC05

Getting directions through the Directions API. (n.d.). Google for Developers. https://developers.google.com/maps/documentation/directions/get-directions

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5), 533–549. https://doi.org/10.1016/0305-0548(86)90048-1

Glover, F. (1990). Tabu Search—Part II. ORSA Journal on Computing, 2(1), 4–32. https://doi.org/10.1287/ijoc.2.1.4

Gmira, M., Gendreau, M., Lodi, A., & Potvin, J. (2021). Tabu search for the time-dependent vehicle routing problem with time windows on a road network. European Journal of Operational Research, 288(1), 129–140. https://doi.org/10.1016/j.ejor.2020.05.041

Goldberg, D. E., & Lingle Jr, R. (1985, July). AllelesLociand the Traveling Salesman Problem. In Proceedings of the 1st International Conference on Genetic Algorithms (pp. 154-159).

Grisales-Noreña, L. F., Montoya, O. D., & Ramos‐Paja, C. A. (2020). An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. Journal of Energy Storage (Print), 29, 101488. https://doi.org/10.1016/j.est.2020.101488

Guevara, C., & Peñas, M. S. (2020). Surveillance routing of COVID-19 infection spread using an intelligent infectious diseases algorithm. IEEE Access, 8, 201925–201936. https://doi.org/10.1109/access.2020.3036347

Gutin, G., & Punnen, A. P. (2007). The traveling salesman problem and its variations. In Combinatorial optimization. https://doi.org/10.1007/b101971

Halim, A., & Ismail, I. (2017). Combinatorial Optimization: Comparison of heuristic algorithms in travelling salesman Problem. Archives of Computational Methods in Engineering, 26(2), 367–380. https://doi.org/10.1007/s11831-017-9247-y

Hoffman, K. L., Padberg, M., & Rinaldi, G. (2013). Traveling salesman problem. Encyclopedia of operations research and management science, 1, 1573-1578.

Holland, J. H. (1975). Adaptation in natural and artificial systems. https://dl.acm.org/citation.cfm?id=129194

Hsu, T., & Phoa, F. K. H. (2018). A smart initialization on the swarm intelligence based method for efficient search of optimal minimum energy design. In Lecture Notes in Computer Science (pp. 78–87). https://doi.org/10.1007/978-3-319-93815-8_9

Huang, E. C., & Phoa, F. K. H. (2023a). Uniformly scattering neighboring nodes of an Ego-Centric network on a spherical surface for better network visualization. In Studies in computational intelligence (pp. 97–107). https://doi.org/10.1007/978-3-031-21131-7_8

Huang, E. C., & Phoa, F. K. H. (2023b). A UNIFORM PLACEMENT OF ALTERS ON SPHERICAL SURFACE (U-PASS) FOR EGO-CENTRIC NETWORKS WITH COMMUNITY STRUCTURE AND ALTER ATTRIBUTES. Advances in Complex Systems, 26(03). https://doi.org/10.1142/s0219525923400039

Hussain, A., Muhammad, Y. S., Sajid, M. N., Hussain, I., Shoukry, A. M., & Gani, S. (2017). Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator. Computational Intelligence and Neuroscience, 2017, 1–7. https://doi.org/10.1155/2017/7430125

Ilin, V., Simić, D., Simić, S. D., Simić, S., Saulić, N., & Calvo-Rolle, J. L. (2022). A hybrid genetic algorithm, list-based simulated annealing algorithm, and different heuristic algorithms for the travelling salesman problem. Logic Journal of the IGPL (Print), 31(4), 602–617. https://doi.org/10.1093/jigpal/jzac028

Jiang, C., Wan, Z., & Peng, Z. (2020). A new efficient hybrid algorithm for large scale multiple traveling salesman problems. Expert Systems With Applications, 139, 112867. https://doi.org/10.1016/j.eswa.2019.112867

Jiang, H., He, Z., Ye, G., & Zhang, H. (2020). Network intrusion detection based on PSO-XGBoost model. IEEE Access, 8, 58392–58401. https://doi.org/10.1109/access.2020.2982418

Katoch, S., Chauhan, S. S., & Kumar, V. (2020). A review on genetic algorithm: past, present, and future. Multimedia Tools and Applications, 80(5), 8091–8126. https://doi.org/10.1007/s11042-020-10139-6

Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp. 1942-1948). IEEE.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671

Lin, F. P., & Phoa, F. K. H. (2017). An Efficient Construction of Confidence Regions via Swarm Intelligence and Its Application in Target Localization. IEEE Access, 6, 8610–8618. https://doi.org/10.1109/access.2017.2785789

Liu, H., Phoa, F. K. H., Chen-Burger, Y., & Lin, S. (2024). An efficient swarm intelligence approach to the optimization on high-dimensional solutions with cross-dimensional constraints, with applications in supply chain management. Frontiers in Computational Neuroscience, 18. https://doi.org/10.3389/fncom.2024.1283974

Miller, B. L., & Goldberg, D. E. (1995). Genetic algorithms, tournament selection, and the effects of noise. Complex systems, 9(3), 193-212.

Miller, C., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling salesman problems. Journal of the ACM, 7(4), 326–329. https://doi.org/10.1145/321043.321046

Mirjalili, S. (2018). Evolutionary Algorithms and Neural Networks: Theory and applications.https://openlibrary.org/books/OL28177039M/Evolutionary_Algorithms_and_Neural_Networks

Olson, R. S. (2015, March 8). Dr. Randal S. Olson | Computing the optimal road trip across the U.S. https://randalolson.com/2015/03/08/computing-the-optimal-road-trip-across-the-u-s/

Osaba, E., Yang, X., & Del Ser, J. (2020). Traveling salesman problem: a perspective review of recent research and new results with bio-inspired metaheuristics. In Elsevier eBooks (pp. 135–164). https://doi.org/10.1016/b978-0-12-819714-1.00020-8

Phoa, F. K. H. (2017). A Swarm Intelligence Based (SIB) method for optimization in designs of experiments. Natural Computing, 16(4), 597–605. https://doi.org/10.1007/s11047-016-9555-4

Phoa, F. K. H., Chen, C., Wang, W., & Wong, W. K. (2016). Optimizing Two-Level supersaturated designs using swarm intelligence techniques. Technometrics, 58(1), 43–49. https://doi.org/10.1080/00401706.2014.981346

Phoa, F. K. H., & Tsai, T. (2020). A Two-Step approach to the search of minimum energy designs via swarm intelligence. In Lecture Notes in Computer Science (pp. 37–45). https://doi.org/10.1007/978-3-030-53956-6_4

Phoa, F. K. H., Liu, H., Chen-Burger, Y., & Lin, S. (2021). Metaheuristic optimization on Tensor-Type solution via Swarm Intelligence and its application in the profit optimization in designing selling scheme. In Lecture Notes in Computer Science (pp. 72–82). https://doi.org/10.1007/978-3-030-78743-1_7

Razali, N. M., & Geraghty, J. (2011, July). Genetic algorithm performance with different selection strategies in solving TSP. In Proceedings of the world congress on engineering (Vol. 2, No. 1, pp. 1-6). Hong Kong, China: International Association of Engineers.

Reinelt, G. (1991). TSPLIB—A Traveling Salesman problem Library. ORSA Journal on Computing, 3(4), 376–384. https://doi.org/10.1287/ijoc.3.4.376

Rego, C., Gamboa, D., Glover, F., & Osterman, C. (2011). Traveling salesman problem heuristics: Leading methods, implementations and latest advances. European Journal of Operational Research, 211(3), 427–441. https://doi.org/10.1016/j.ejor.2010.09.010

Rosenkrantz, D. J., Stearns, R. E., & Lewis, P. (1977). An analysis of several heuristics for the traveling salesman problem. SIAM Journal on Computing, 6(3), 563–581. https://doi.org/10.1137/0206041

Shi, X., Liang, Y., Lee, H. P., Lu, C., & Wang, Q. X. (2007). Particle swarm optimization-based algorithms for TSP and generalized TSP. Information Processing Letters, 103(5), 169–176. https://doi.org/10.1016/j.ipl.2007.03.010

Shi, Y., & Eberhart, R. C. (1999, July). Empirical study of particle swarm optimization. In Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406) (Vol. 3, pp. 1945-1950). IEEE.

Singh, K., Lin, S. P., Phoa, F. K. H., & Chen-Burger, Y. H. J. (2021). Swarm Intelligence optimisation algorithms and their applications in a complex Layer-Egg supply chain. In Smart innovation, systems and technologies (pp. 39–51). https://doi.org/10.1007/978-981-16-2994-5_4

Singh, K., Liu, H., Phoa, F. K. H., Lin, S., & Chen-Burger, Y. (2022). Decentralized supply chain optimization via Swarm Intelligence. In Lecture Notes in Computer Science (pp. 432–441). https://doi.org/10.1007/978-3-031-09677-8_36

Sörensen, K., & Glover, F. (2013). Metaheuristics. In Springer eBooks (pp. 960–970). https://doi.org/10.1007/978-1-4419-1153-7_1167

Sun, W., & Phoa, F. K. H. (2022). Network community detection via an improved swarm intelligence approach. In Lecture Notes in Computer Science (pp. 419–431). https://doi.org/10.1007/978-3-031-09677-8_35

Sutrisno, H., & Phoa, F. K. H. (2023). Anomalous variable-length subsequence detection in time series: mathematical formulation and a novel evolutionary algorithm based on clustering and swarm intelligence. Applied Intelligence, 53(24), 29585–29603. https://doi.org/10.1007/s10489-023-05066-6

Szu, H. (1987). Fast simulated annealing. Physics Letters A, 122(3–4), 157–162. https://doi.org/10.1016/0375-9601(87)90796-1

Talbi, E. (2009). Metaheuristics: from design to implementation. In HAL (Le Centre pour la Communication Scientifique Directe). https://hal.inria.fr/hal-00750681

Wang, K., Li, X., Gao, L., Li, P., & Gupta, S. M. (2021). A genetic simulated annealing algorithm for parallel partial disassembly line balancing problem. Applied Soft Computing, 107, 107404. https://doi.org/10.1016/j.asoc.2021.107404

Wei, X. (2014). Parameters analysis for basic Ant Colony Optimization Algorithm in TSP. International Journal of U- and E-service, Science and Technology, 7(4), 159–170. https://doi.org/10.14257/ijunesst.2014.7.4.16

Yen, P., & Phoa, F. K. H. (2021). Traveling salesman problem via swarm Intelligence. In Lecture Notes in Computer Science (pp. 106–115). https://doi.org/10.1007/978-3-030-78743-1_10

Yousefikhoshbakht, M., Didehvar, F., & Rahmati, F. (2016). An effective rank based ANT system algorithm for solving the balanced vehicle routing problem. International Journal of Industrial Engineering-theory Applications and Practice, 23(1). https://journals.sfu.ca/ijietap/index.php/ijie/article/view/1119/0

Yu, S., Ding, C., & Zhu, K. (2011). A hybrid GA–TS algorithm for open vehicle routing optimization of coal mines material. Expert Systems With Applications, 38(8), 10568–10573. https://doi.org/10.1016/j.eswa.2011.02.108

Zhang, G., Wang, H., Zhao, W., Guan, Z., & Li, P. (2021). Application of improved Multi-Objective AnT Colony Optimization Algorithm in ship weather routing. Journal of Ocean University of China, 20(1), 45–55. https://doi.org/10.1007/s11802-021-4436-6

Zheng, Y., Lv, X., Qian, L., & Liu, X. (2022). An optimal BP neural network track prediction method based on a GA–ACO hybrid algorithm. Journal of Marine Science and Engineering, 10(10), 1399. https://doi.org/10.3390/jmse10101399
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94694-
dc.description.abstract旅行推銷員問題(TSP)一直都是個具挑戰性的最佳化問題,促使人們發展各種方法去有效率地解決這個問題。本研究提出了一個改良基於群體智慧的最佳化演算法(Swarm Intelligence-based method)框架的最佳化演算法,並將這改良後的方法論與一些常規的最佳化演算法:基因演算法和蟻群演算法的最佳解和計算時間作比較。在有47 和50 個目的地的非對稱TSP 中,我們提出的方法在最佳解和計算時間方面表現均為最佳。為貼近實際應用,本研究利用了Google Maps API獲取路徑資料,並把結果視覺化,呈現在OpenStreetMap 的地圖上以供參考。zh_TW
dc.description.abstractThe Travelling Salesman Problem (TSP) has long been a challenging optimization puzzle, prompting the development of various methodologies to seek for efficient solutions. In this paper, we propose an improved optimization algorithm with the implementation of the Swarm Intelligence-based method (SIB). This improved method is compared to conventional optimization techniques, the Genetic Algorithm (GA) and the Ant Colony Optimization (ACO), in terms of solution quality and computational time. In asymmetric TSPs with 47 and 50 destinations, our proposed method has the best performance in terms of solution quality and computational time. To incorporate real world applications, route data are retrieved by using Google Maps API and the results are visualized on OpenStreetMap for reference.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:34:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:34:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgments i
摘要 ii
Abstract iii
Table of Contents iv
List of Figures vi
List of Tables vii
1. Introduction 1
1.1 Travelling Salesman Problem (TSP) 1
1.2 Development of TSP and Optimization Techniques 3
1.3 Challenges in Logistics 5
2. Literature Review 7
2.1 Metaheuristics of Solving the TSP 7
2.1.1 Simulated Annealing (SA) 8
2.1.2 Tabu Search (TS) 10
2.1.3 Genetic Algorithm (GA) 11
2.1.4 Ant Colony Optimization (ACO) 14
2.1.5 Particle Swarm Optimization (PSO) 16
2.2 Swarm Intelligence-Based Method 18
2.3 Datasets 22
3. Methodology 29
3.1 Google Maps API 29
3.2 Improved Swarm Intelligence Based Method 30
3.2.1 Initialization 31
3.2.2 Iteration 32
4. Experimental Setup and Result 36
4.1 Programming language and hardware 36
4.2 Experiment 36
4.3 Result for 50 landmarks 36
4.4 Result for 47 cities 44
4.4 Parameter setup of algorithms 48
5. Discussion and Conclusion 52
Reference 55
Appendix 68
-
dc.language.isoen-
dc.subject最佳化zh_TW
dc.subject旅行推銷員問題zh_TW
dc.subject萬用啟發式演算法zh_TW
dc.subject群體智慧zh_TW
dc.subject地圖視覺化zh_TW
dc.subjectMetaheuristicsen
dc.subjectSwarm Intelligenceen
dc.subjectOptimizationen
dc.subjectTravelling Salesman Problemen
dc.subjectMap Visualizationen
dc.title利用基於群體智慧的最佳化演算法解決旅行推銷員問題, 以進行有效率的路徑規劃zh_TW
dc.titleSolving the Travelling Salesman Problem for Efficient Route Planning through Swarm Intelligence-Based Optimizationen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor孫紹華zh_TW
dc.contributor.coadvisorShao-Hua Sunen
dc.contributor.oralexamcommittee張漢利;尹邦嚴zh_TW
dc.contributor.oralexamcommitteeHendri Sutrisno;Peng-Yeng Yinen
dc.subject.keyword旅行推銷員問題,最佳化,群體智慧,萬用啟發式演算法,地圖視覺化,zh_TW
dc.subject.keywordTravelling Salesman Problem,Optimization,Swarm Intelligence,Metaheuristics,Map Visualization,en
dc.relation.page83-
dc.identifier.doi10.6342/NTU202403317-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-07-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資料科學學位學程-
顯示於系所單位:資料科學學位學程

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved