Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94691
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor黃永芬zh_TW
dc.contributor.advisorYung-Fen Huangen
dc.contributor.author陳思彤zh_TW
dc.contributor.authorSsu-Tung Chenen
dc.date.accessioned2024-08-16T17:33:02Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-01-
dc.identifier.citationAhmad M, Dar Z, Habib M (2014) A review on oat (Avena sativa L.) as a dual-purpose crop. Scientific Research and Essays 9:52-59
Albayrak S, Başayığıt L, Türk M (2011) Use of canopy- and leaf-reflectance indices for the detection of quality variables of Vicia species. International Journal of Remote Sensing 32:1199-1211
Bruno-Soares AM, Murray I, Paterson RM, Abreu JMF (1998) Use of near infrared reflectance spectroscopy (NIRS) for the prediction of the chemical composition and nutritional attributes of green crop cereals. Animal Feed Science and Technology 75:15-25
Butt MS, Tahir-Nadeem M, Khan MKI, Shabir R, Butt MS (2008) Oat: unique among the cereals. European journal of nutrition 47:68-79
Coblentz W, Bertram M, Martin N (2011) Planting date effects on fall forage production of oat cultivars in Wisconsin. Agronomy journal 103:145-155
Coblentz W, Jokela W, Bertram M (2014) Cultivar, harvest date, and nitrogen fertilization affect production and quality of fall oat. Agronomy Journal 106:2075-2086
Dhakal R, Maimaitijiang M, Chang J, Caffe M (2023) Utilizing Spectral, Structural and Textural Features for Estimating Oat Above-Ground Biomass Using UAV-Based Multispectral Data and Machine Learning. Sensors 23:9708
Favre JR, Albrecht KA, Gutierrez L, Picasso VD (2019) Harvesting oat forage at late heading increases milk production per unit of area. Crop, Forage & Turfgrass Management 5:1-8
Fernandes MHMdR, FernandesJunior JdS, Adams JM, Lee M, Reis RA, Tedeschi LO (2024) Using sentinel-2 satellite images and machine learning algorithms to predict tropical pasture forage mass, crude protein, and fiber content. Scientific Reports 14:8704
Geipel J, Bakken AK, Jørgensen M, Korsaeth A (2021) Forage yield and quality estimation by means of UAV and hyperspectral imaging. Precision Agriculture 22:1437-1463
Gitelson AA, Kaufman YJ, Stark R, Rundquist D (2002) Novel algorithms for remote estimation of vegetation fraction. Remote sensing of Environment 80:76-87
Gitelson AA, Merzlyak MN (1998) Remote sensing of chlorophyll concentration in higher plant leaves. Advances in Space Research 22:689-692
Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote sensing of environment 25:295-309
Jiang Z, Huete AR, Kim Y, Didan K (2007) 2-band enhanced vegetation index without a blue band and its application to AVHRR data. Remote Sensing and Modeling of Ecosystems for Sustainability IV. SPIE, pp 45-53
Khanna P, Mohan S (2016) Oats: Understanding the science. International Journal of Food Science and Nutrition 1:1-10
Lussem U, Bolten A, Gnyp M, Jasper J, Bareth G (2018) Evaluation of RGB-based vegetation indices from UAV imagery to estimate forage yield in grassland. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42:1215-1219
Pasquini C (2018) Near infrared spectroscopy: A mature analytical technique with new perspectives–A review. Analytica chimica acta 1026:8-36
Pullanagari RR, Yule IJ, Hedley MJ, Tuohy MP, Dynes RA, King WM (2012) Multi-spectral radiometry to estimate pasture quality components. Precision Agriculture 13:442-456
Rouse JW, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec Publ 351:309
Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote sensing of environment 81:337-354
Suttie JM, Reynolds SG (2004) Fodder oats: a world overview. Food & Agriculture Org.
Teshome FT, Bayabil HK, Hoogenboom G, Schaffer B, Singh A, Ampatzidis Y (2023) Unmanned aerial vehicle (UAV) imaging and machine learning applications for plant phenotyping. Computers and Electronics in Agriculture 212:108064
Thulin S, Hill MJ, Held A, Jones S, Woodgate P (2012) Hyperspectral determination of feed quality constituents in temperate pastures: Effect of processing methods on predictive relationships from partial least squares regression. International Journal of Applied Earth Observation and Geoinformation 19:322-334
Xiang T-Z, Xia G-S, Zhang L (2019) Mini-unmanned aerial vehicle-based remote sensing: Techniques, applications, and prospects. IEEE geoscience and remote sensing magazine 7:29-63
Zeng L, Chen C (2018) Using remote sensing to estimate forage biomass and nutrient contents at different growth stages. Biomass and bioenergy 115:74-81
丁芝筠,2024。利用高光譜資料評估芻料燕麥營養價值。碩士論文,國立臺灣大學農藝學研究所。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94691-
dc.description.abstract燕麥(Avena sativa L.)是重要的穀類作物,為單年生禾本科植物,除了穀粒供人類食用外,也常用作動物芻料。育成優良的芻料燕麥品種除關注產量外,還需評估其營養價值 (Nutritive values, NV),然一般產量性狀與營養價值之量測方法耗時費力,不利於育種的進行。透過無人機(Unmanned aerial vehicle, UAV)搭載多光譜相機,獲取可反映植物生長狀態之特定波長的反射光譜影像,近似產量性狀和營養價值為可能的解方。因此,本研究的目的為利用無人機擷取之多光譜影像近似燕麥芻料性狀。本研究於國立臺灣大學附設農業試驗場進行為期兩年的田間試驗,播種時間分別為2020年10月28日和2021年11月3日。第一年試驗種植4個具有不同特性的燕麥品系,第二年除第一年的4個品系,另增加8個,共有12個燕麥品系。第一年在其中一個品系開始抽穗時進行收穫,於收穫當日利用無人機搭載多光譜相機拍攝影像,共有7個日期的多光譜影像;第二年則於植株達抽穗期時進行多光譜影像拍攝及收穫。本研究利用五個波段之反射光譜值及由反射光譜衍生之植生指數 (Vegetation index, VI) 作為自變數,以性狀數據做為應變數,並以最佳子集迴歸 (Best subsets regression) 及交叉驗證 (Cross-validation) 建立最佳模型。結果顯示,波段模型和植生指數模型的表現相似,波段模型對於營養價值的預測性較好,其中,對Ash的預測效果最差,預測值與實際觀測值之皮爾森相關係數 (Pearson’s correlation coefficient) 僅0.20,其他營養價值的相關係數則介於0.39到0.54;植生指數模型對於產量性狀的預測性較好,FWY和DWY的相關係數分別為0.70和0.65。本研究建立了一套非破壞性且高通量的芻料性狀分析方法,利用無人機拍攝多光譜影像即可快速估算芻料燕麥的產量及營養價值。未來的研究可擴大試驗範圍,包括更多的收穫期、品系及地點,以增加數據的多樣性,從而使模型能更廣泛地應用於芻料燕麥的育種。zh_TW
dc.description.abstractOats (Avena sativa L.) serve as both human food and animal feed. Breeding high-quality forage oat varieties not only needs to consider the yield but also requires evaluating their nutritive values (NV). Traditional methods for measuring yield traits and NV are time-consuming and labor-intensive. The present study aims to approximate oat forage traits using multispectral images captured by unmanned aerial vehicle (UAV). Field experiments were conducted over two years at the Experimental Farm of National Taiwan University. Oats were sowed on October 28, 2020 and November 3, 2021. In the first year, 4 oat lines with different characteristics were sowed, while 8 more lines were included in the second-year experiment. Reflectance of five wavelengths, as well as eight vegetation indices (VI) calculated based on the reflectance data, were used for trait prediction model fitting using best subsets regression and cross-validation. Results showed similar prediction ability between the direct use of reflectance and VI. The reflectance models were better at predicting NVs, with the poorest prediction for Ash, having a Pearson’s correlation coefficient of only 0.20 between the predicted and actual values. For other NVs, the correlation coefficients ranged from 0.39 to 0.54. The VI models were better at predicting yield traits, with correlation coefficients for fresh weight yield (FWY) and dry weight yield (DWY) being 0.70 and 0.65, respectively. This study established a non-destructive, high-throughput method for analyzing oat forage traits using UAV-captured multispectral images, with potential applications in forage oat breeding. The experiment can be extended in the future to include additional harvest periods, oat lines, and locations. This expansion would enhance data diversity and extend the model's predictive ability.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:33:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:33:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
表次 vii
圖次 viii
附錄 ix
中英對照表 x
一、 前言 1
1.1 芻料燕麥 1
1.2 外表型調查方法 2
1.3 研究目的 3
二、 材料與方法 4
2.1 田間試驗 4
2.2 多光譜影像 4
2.3 田間性狀調查 5
2.4 營養價值分析 5
2.4.1 乾物質 (Dry matter, DM) 6
2.4.2 體外乾物質消化率 (in vitro dry matter digestibility, IVDMD) 6
2.4.3 體外中洗纖維消化率 (in vitro neutral detergent fiber digestibility, IVNDFD) 7
2.4.4 體外真消化率 (in vitro true dry matter degradability, IVTDMD) 7
2.4.5 中洗纖維 (Neutral detergent fiber, NDF) 7
2.4.6 酸洗纖維 (Acidic detergent fiber, ADF) 8
2.4.7 粗蛋白 (Crude protein, CP) 8
2.4.8 水溶性碳水化合物 (Water soluble carbohydrates, WSC) 9
2.4.9 灰分 (Ash) 10
2.5 影像處理 10
2.6 預測模型 12
三、 結果 13
3.1 不同收穫期產量性狀與營養價值 13
3.2 抽穗期收穫之產量性狀與營養價值 13
3.3 性狀間相關性 14
3.4 波段與性狀相關性 15
3.5 植生指數與性狀相關性 16
3.6 模型表現 16
四、 討論 17
4.1 收穫期對牧草品質的影響 17
4.2 模型選擇 18
4.3 模型關鍵波段和植生指數 19
五、 結論 20
參考文獻 40
附錄 42
-
dc.language.isozh_TW-
dc.subject植生指數zh_TW
dc.subject多光譜影像zh_TW
dc.subject營養價值zh_TW
dc.subject芻料zh_TW
dc.subject燕麥zh_TW
dc.subjectAvena sativa L.en
dc.subjectvegetation indicesen
dc.subjectmultispectral imagesen
dc.subjectnutritive valuesen
dc.subjectforageen
dc.subjectoaten
dc.title利用無人機擷取之多光譜影像近似燕麥芻料性狀zh_TW
dc.titleApproximating the forage traits of oats based on multispectral images captured using an unmanned aerial vehicleen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡育彰;蔡欣甫;陳嘉昇zh_TW
dc.contributor.oralexamcommitteeYu-Chang Tsai;Shin-Fu Tsai;Chia-Sheng Chenen
dc.subject.keyword燕麥,芻料,營養價值,多光譜影像,植生指數,zh_TW
dc.subject.keywordoat,forage,nutritive values,multispectral images,vegetation indices,Avena sativa L.,en
dc.relation.page63-
dc.identifier.doi10.6342/NTU202402610-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-05-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農藝學系-
dc.date.embargo-lift2026-09-01-
Appears in Collections:農藝學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
4.47 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved