Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94685
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林晃巖zh_TW
dc.contributor.advisorHoang-Yan Linen
dc.contributor.author李昱廷zh_TW
dc.contributor.authorYu-Ting Leeen
dc.date.accessioned2024-08-16T17:30:51Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-13-
dc.identifier.citation[1] Kai-Siang Hsu. Design and Analysis of Integral Imaging based 3D Light-Field Display. http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84793, 2022.
[2] Park, Jae-Hyeung, Keehoon Hong, and Byoungho Lee. "Recent progress in three-dimensional information processing based on integral imaging." Applied optics 48.34 (2009): H77-H94..
[3] Martínez-Corral, Manuel, and Bahram Javidi. "Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems." Advances in Optics and Photonics 10.3 (2018): 512-566.
[4] Akeley, Kurt. "Light‐Field Imaging Approaches Commercial Viability." Information Display 31.6 (2015): 12-15.
[5] Piao, Yongri, et al. "Extended depth of field integral imaging using multi-focus fusion." Optics communications 411 (2018): 8-14.
[6] Li, Shuang, et al. "Integral imaging 3D display system with improved depth of field using a colloidal scattering layer." Optics Communications 484 (2021): 126680.
[7] Wang, Zi, et al. "Resolution-enhanced integral imaging using two micro-lens arrays with different focal lengths for capturing and display." Optics express 23.22 (2015): 28970-28977.
[8] Kim, Yunhee, et al. "Depth-enhanced three-dimensional integral imaging by use of multilayered display devices." Applied optics 45.18 (2006): 4334-4343.
[9] Wang, Zhou, et al. "Image quality assessment: from error visibility to structural similarity." IEEE transactions on image processing 13.4 (2004): 600-612.
[10] Wang, Zhou, and Alan C. Bovik. "Mean squared error: Love it or leave it? A new look at signal fidelity measures." IEEE signal processing magazine 26.1 (2009): 98-117.
[11] Sheikh, Hamid R., Muhammad F. Sabir, and Alan C. Bovik. "A statistical evaluation of recent full reference image quality assessment algorithms." IEEE Transactions on image processing 15.11 (2006): 3440-3451.
[12] Min, Sung-Wook, Joohwan Kim, and Byoungho Lee. "New characteristic equation of three-dimensional integral imaging system and its applications." Japanese journal of applied physics 44.1L (2004): L71.
[13] Huang, Hekun, and Hong Hua. "An integral‐imaging‐based head‐mounted light field display using a tunable lens and aperture array." Journal of the Society for Information Display 25.3 (2017): 200-207.
[14] Chia-Yuan Chang and Hoang Yan Lin, “Noise Reduction Through Square Aperture Array in Integral Imaging-based 3D Light-Field Display,” SID Display Week 2023.
[15] Geng, Jason. "Three-dimensional display technologies." Advances in optics and photonics 5.4 (2013): 456-535.
[16] Blundell, B. G., A. J. Schwarz, and D. K. Horrell. "Volumetric threedimensional display systems: their past present and future." Engineering Science & Education Journal 2.5 (1993): 196-200.
[17] Okoshi, Takanori. Three-dimensional imaging techniques. Elsevier, 2012.
[18] Piao, Yongri, et al. "Accelerated Generation Algorithm for an Elemental Image Array Using Depth Information in Computational Integral Imaging." Journal of information and communication convergence engineering 11.2 (2013): 132-138.
[19] Oh, Se-Chan, et al. "Efficient algorithms to generate elemental images in integral imaging." Journal of the Optical Society of Korea 8.3 (2004): 115-121.
[20] Martinez-Corral, M., et al. "Lightfield recording and reconstruction by integral imaging." 2011 10th Euro-American Workshop on Information Optics. IEEE, 2011.
[21] McMillan, Leonard, and Gary Bishop. "Plenoptic modeling: An image-based rendering system." Seminal Graphics Papers: Pushing the Boundaries, Volume 2. 2023. 433-440.
[22] Adelson, Edward H., and James R. Bergen. The plenoptic function and the elements of early vision. Vol. 2. Cambridge, MA, USA: Vision and Modeling Group, Media Laboratory, Massachusetts Institute of Technology, 1991.
[23] Levoy, Marc, and Pat Hanrahan. "Light field rendering." Seminal Graphics Papers: Pushing the Boundaries, Volume 2. 2023. 441-452.
[24] Wilburn, Bennett, et al. "High performance imaging using large camera arrays." ACM siggraph 2005 papers. 2005. 765-776.
[25] Levoy, Marc. "Efficient ray tracing of volume data." ACM Transactions on Graphics (ToG) 9.3 (1990): 245-261.
[26] Hahne, Christopher, and Amar Aggoun. "PlenoptiCam v1. 0: A light-field imaging framework." IEEE Transactions on Image Processing 30 (2021): 6757-6771.
[27] Kalantari, Nima Khademi, Ting-Chun Wang, and Ravi Ramamoorthi. "Learning-based view synthesis for light field cameras." ACM Transactions on Graphics (TOG) 35.6 (2016): 1-10.
[28] Marshall, Richard J., et al. "Improving depth estimation from a plenoptic camera by patterned illumination." Videometrics, Range Imaging, and Applications XIII. Vol. 9528. SPIE, 2015.
[29] Georgiev, Todor, and Chintan Intwala. "Light field camera design for integral view photography." Adobe System, Inc., Technical Report (2006): 1.
[30] Boominathan, Vivek, Kaushik Mitra, and Ashok Veeraraghavan. "Improving resolution and depth-of-field of light field cameras using a hybrid imaging system." 2014 IEEE International Conference on Computational Photography (ICCP). IEEE, 2014.
[31] Wu, Gaochang, et al. "Light field reconstruction using deep convolutional network on EPI." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
[32] Takaki, Yasuhiro, et al. "Multi-view display module employing MEMS projector array." Optics express 20.27 (2012): 28257-28266.
[33] Hua, Hong, and Bahram Javidi. "A 3D integral imaging optical see-through head-mounted display." Optics express 22.11 (2014): 13484-13491.
[34] Hore, Alain, and Djemel Ziou. "Image quality metrics: PSNR vs. SSIM." 2010 20th international conference on pattern recognition. IEEE, 2010.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94685-
dc.description.abstract隨著顯示器的進步,人們對顯示器的要求也從畫質、刷新率轉變想將二維的影像擴展成三維的影像,例如AR、VR、3D等相關應用也是越來越值得探討的主題之一。在這個背景下,積分成像式光場顯示器的出現填補了傳統顯示技術無法提供真實立體影像的空白,為深度虛擬體驗開啟了新的可能性。其能夠捕捉和再現光場的深度資訊,使觀眾能夠在觀看影像時感受到更真實的立體效果,從而在AR、VR等領域中提供更加沉浸式的體驗。因此,積分成像式光場顯示器在未來的顯示技術發展中將扮演著重要的角色。
積分成像式光場顯示器的優勢在於其能夠在不同的深度空間重現不同的影像。這種能力使其能夠實現焦點模糊,從而有效解決了3D影像中的一個重要問題:視覺輻輳調節衝突(Vergence-Accommodation Conflict, VAC)。VAC發生時,觀看者的眼睛感受到的深度線索(輻輳)與顯示影像的焦距(調節)之間存在不匹配。通過動態調整顯示影像的焦平面以匹配觀看者的視覺焦點,積分成像式顯示器可以減輕VAC,提供更舒適、更身臨其境的3D觀影體驗。這種改進不僅增強了觀眾的舒適度,也提高了3D影像應用,如虛擬現實(VR)和增強現實(AR)的整體真實感和效果。
在本論文中將會先探討積分成像式光場顯示器的設計原理以及鬼影發生原因,在了解到鬼影發生的原因後,先利用LightTools®建構出能夠遮擋鬼影的架構,並進行基本的驗證後,再將其透過MATLAB®模擬出其對應的數位濾波器樣式並加以改進,最後再透過Verilog設計出對應於此功能的數位濾波器晶片,來縮短運算所需要的時間。
zh_TW
dc.description.abstractWith the advancement of displays, people's demands for displays have also shifted from image quality and refresh rate to expanding two-dimensional images into three-dimensional ones. Applications such as AR, VR, and 3D are becoming increasingly worthy of exploration. In this context, the emergence of integral imaging displays fills the gap left by traditional display technologies in providing realistic three-dimensional images, opening up new possibilities for deep virtual experiences. Integral imaging displays can capture and reproduce depth information of light fields, allowing viewers to experience more realistic three-dimensional effects when watching images, thus providing a more immersive experience in fields such as AR and VR. Therefore, integral imaging displays are expected to play an important role in the future development of display technologies.
The advantage of integral imaging displays lies in their ability to reproduce different images in different depth spaces. This capability enables them to achieve focal blur, effectively addressing a significant issue in 3D imaging: the Vergence-Accommodation Conflict (VAC). When VAC occurs, there is a mismatch between the depth cues (vergence)perceived by the viewer's eyes and the focal distance (accommodation)of the displayed images. By dynamically adjusting the focal plane of the displayed images to match the viewer's visual focus, integral imaging displays can alleviate VAC, providing a more comfortable and immersive 3D viewing experience. This improvement not only enhances audience comfort but also elevates the overall realism and effects of 3D imaging applications such as virtual reality (VR) and augmented reality (AR).
In this thesis, we will first explore the design principles of integral imaging light field displays and the causes of crosstalk effect. After understanding the reasons for crosstalk effect, we will use LightTools® to construct a framework capable of mitigating crosstalk effect and conduct basic verification. Then, we will simulate the corresponding digital filter pattern in MATLAB® and make improvements. Finally, we will design a digital filter chip using Verilog to implement this functionality, aiming to reduce the required computation time.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:30:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:30:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 iv
Abstract v
目次 vii
圖次 viii
表次 x
第一章 緒論 1
1.1研究動機 1
1.2數位濾波器 2
1.3數位電路設計 3
第二章 積分成像式光場顯示器 4
2.1積分成像式光場顯示器之設計步驟 4
2.1.1資料採集 5
2.1.2資料處理 7
2.1.3資料顯示 8
2.2 CGEI演算法簡介 9
2.3積分成像式光場顯示器常用之衡量指標 12
2.4積分成像式光場顯示器中鬼影發生原因 18
第三章 研究方法 20
3.1數位濾波器設計 20
3.1.1架構模擬圖 20
3.1.2 MATLAB®模擬設計 22
3.2數位電路設計 24
3.2.1設計與規格說明 25
3.2.2位移運算與模式介紹 27
第四章 研究結果與討論 34
4.1數位濾波器分析 34
4.2數位電路設計分析 38
4.3 LightTools®模擬分析 40
第五章 結論與未來展望 53
5.1結論探討 53
5.2未來展望 54
參考文獻 55
-
dc.language.isozh_TW-
dc.subject鬼影zh_TW
dc.subject積分成像zh_TW
dc.subject3D光場顯示器zh_TW
dc.subject數位濾波器zh_TW
dc.subject數位電路設計zh_TW
dc.subject3D Light Field Displayen
dc.subjectCrosstalken
dc.subjectDigital Circuit Designen
dc.subjectDigital Filteren
dc.subjectIntegral Imageen
dc.title利用數位濾波器消除積分成像式光場顯示器中鬼影效果之數位電路設計zh_TW
dc.titleDigital Circuit Design for Crosstalk Effect Elimination in Integral Imaging-Based Light Field Display by Using Digital Filteren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊家驤;蔡朝旭zh_TW
dc.contributor.oralexamcommitteeChia-Hsiang Yang;Chao-Hsu Tsaien
dc.subject.keyword鬼影,積分成像,3D光場顯示器,數位濾波器,數位電路設計,zh_TW
dc.subject.keywordCrosstalk,Integral Image,3D Light Field Display,Digital Filter,Digital Circuit Design,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU202403265-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved