Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94679
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘斯文zh_TW
dc.contributor.advisorStephen Payneen
dc.contributor.author郭昱德zh_TW
dc.contributor.authorYu-te Kuoen
dc.date.accessioned2024-08-16T17:28:58Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citation[1] Ding-Yuan Lee et al, Predicting Stroke Outcomes in Atrial Fibrillation Patients Using Multimodal Analysis of Physiological Signals, 2015
[2] Sung-Chun Tang et al, Complexity of heart rate variability predicts outcome in intensive care unit admitted patients with acute stroke, 2014
[3] Chih-Hao Chen et al, Complexity of Heart Rate Variability Can Predict Stroke-In-Evolution in Acute Ischemic Stroke Patients, 2015
[4] Sung-Chun Tang et al, Identification of Atrial Fibrillation by Quantitative Analyses of Fingertip Photoplethysmography, 2017
[6] Jiapu Pan and Willis J. Tompkins, A Real-Time QRS Detection Algorithm 1985
[7] Yun-Kai Lee et al, Blood Pressure Complexity Discriminates Pathological Beat-to-Beat Variability as a Marker of Vascular Aging, 2022
[8] Tatsuya Maruhashi et al,Upstroke Time Is a Useful Vascular Marker for Detecting Patients With Coronary Artery Disease Among Subjects With Normal Ankle-Brachial Index, 2020 :1-2
[9] Soler EP, Ruiz VC. Epidemiology and risk factors of cerebral ischemia and ischemic heart diseases: similarities and differences. Curr Cardiol Rev. 2010 Aug;6(3):138-49. doi: 10.2174/157340310791658785. PMID: 21804773; PMCID: PMC2994106. 2010
[10] Po-Chao Hsu et al, Upstroke Time Per Cardiac Cycle as A Novel Parameter for Mortality Prediction in Patients with Acute Myocardial Infarction, 2020
[11] Nayak S, Natarajan B, Pai RG. Etiology, Pathology, and Classification of Atrial Fibrillation. 2020
[12] Fred Shaffer and J. P. Ginsberg, An Overview of Heart Rate Variability Metrics and Norms 2017
[13] Roy M. John(PhD)Saurabh Kumar(PhD), Sinus Node and Atrial Arrhythmias. 2016
[14] Marit H. N. van Velzen, Increasing accuracy of pulse transit time measurements by automated elimination of distorted photoplethysmography wave 2017
[15]https://www.cdc.gov/heartdisease/atrial_fibrillation.htm
[16]https://www.melbourneheartrhythm.com.au/learn/conditions/73-atrial-fibrillation
[17]https://www.richtek.com/Design%20Support/Technical%20Document/AN057?sc_lang=zh-TW
[18] Tanja Charlotte Frederiksen, The bidirectional association between atrial fibrillation and myocardial infarction 2023
[19]https://www.physio-pedia.com/Middle_Cerebral_Artery
[20] Basile JN. Systolic blood pressure. BMJ. 2002 Oct 26;325(7370):917-8. doi: 10.1136/bmj.325.7370.917. PMID: 12399325; PMCID: PMC1124431.
[21] Yihong Sun. The link between diabetes and atrial fibrillation: cause or correlation? 2009
[22] João D. Fontes .Insulin Resistance and Atrial Fibrillation (from the Framingham Heart Study) 2012
[23] Nogles TE, Galuska MA. Middle Cerebral Artery Stroke. 2023 Apr 3. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. PMID: 32310592.
[24]https://www.epilepsysparks.com/brain-lobes
[25]https://www.firstaidforfree.com/recording-a-12-lead-ecgekg/
[26]https://www.biometriccables.in/blogs/blog/12-lead-ecg-cable-electrode-placement
[27] Oh, G.C., Cho, HJ. Blood pressure and heart failure. Clin Hypertens 26, 1 (2020). https://doi.org/10.1186/s40885-019-0132-x
[28] Karin Willeit, Stefan Kiechl, Metrics Atherosclerosis and atrial fibrillation – Two closely intertwined diseases 2013
DOI:https://doi.org/10.1016/j.atherosclerosis.2013.11.082
[29] Li C, Wang H, Li M, Qiu X, Wang Q, Sun J, Yang M, Feng X, Meng S, Zhang P, Liu B, Li W, Chen M, Zhao Y, Zhang R, Mo B, Zhu Y, Zhou B, Chen M, Liu X, Zhao Y, Shen M, Huang J, Luo L, Wu H, Li YG. Epidemiology of Atrial Fibrillation and Related Myocardial Ischemia or Arrhythmia Events in Chinese Community Population in 2019. Front Cardiovasc Med. 2022 Apr 4;9:821960. doi: 10.3389/fcvm.2022.821960. PMID: 35445083; PMCID: PMC9013769.
[30] Ding X, Zhang YT. Pulse transit time technique for cuffless unobtrusive blood pressure measurement: from theory to algorithm. Biomed Eng Lett. 2019 Feb 18;9(1):37-52. doi: 10.1007/s13534-019-00096-x. PMID: 30956879; PMCID: PMC6431352.
[31] Chen H, Chen G, Zhang L, Wu W, Li W, Wang X, Yan X, Chen Y, Wu S. Estimated pulse wave velocity can predict the incidence of new-onset atrial fibrillation: A 11-year prospective study in a Chinese population. Front Cardiovasc Med. 2022 Aug 22;9:912573. doi: 10.3389/fcvm.2022.912573. PMID: 36072866; PMCID: PMC9443485.
[32] Mitchell GF, Vasan RS, Keyes MJ, et al. Pulse Pressure and Risk of New-Onset Atrial Fibrillation. JAMA. 2007;297(7):709–715. doi:10.1001/jama.297.7.709
[33]https://en.wikipedia.org/wiki/Lobes_of_the_brain
[34]https://mdmedicine.wordpress.com/2011/04/24/heart-conduction-system/
[35]https://www.mathworks.com/matlabcentral/fileexchange/60172-bp_annotate.
[36] Cepelis A, Brumpton BM, Malmo V, et al. Associations of Asthma and Asthma Control With Atrial Fibrillation Risk: Results From the Nord-Trøndelag Health Study (HUNT). JAMA Cardiol. 2018;3(8):721–728. doi:10.1001/jamacardio.2018.1901
[37] Hwang, C.S.; Kim, Y.H.; Hyun, J.K.; Kim, J.H.; Lee, S.R.; Kim, C.M.; Nam, J.W.; Kim, E.Y.,Evaluation of the Photoplethysmogram-Based Deep Learning Model for Continuous Respiratory Rate Estimation in Surgical Intensive Care Unit. Bioengineering 2023, 10, 1222. https://doi.org/10.3390/bioengineering10101222
[38]https://thoracickey.com/the-electrocardiogram-2/
[39] Block, R.C. Yavarimanesh, M., Natarajan, K. et al. Conventional pulse transit times as markers of blood pressure changes in humans. Sci Rep 10, 16373 (2020). https://doi.org/10.1038/s41598-020-73143-8
[40] Hrabia JB, Pogue EPL, Zayachkowski AG, Długosz D, Kruszelnicka O, Surdacki A, Chyrchel B. Left atrial compliance: an overlooked predictor of clinical outcome in patients with mitral stenosis or atrial fibrillation undergoing invasive management. Postepy Kardiol Interwencyjnej. 2018;14(2):120-127. doi: 10.5114/aic.2018.76402. Epub 2018 Jun 19. PMID: 30008763; PMCID: PMC6041835.
[41] García-Escobar A, Vera-Vera S, Jurado-Román A, Jiménez-Valero S, Galeote G, Moreno R. Subtle QRS changes are associated with reduced ejection fraction, diastolic dysfunction, and heart failure development and therapy responsiveness: Applications for artificial intelligence to ECG. Ann Noninvasive Electrocardiol. 2022 Nov;27(6):e12998. doi: 10.1111/anec.12998. Epub 2022 Jul 29. PMID: 35904538; PMCID: PMC9674781.
[42] Zuo K, Li K, Liu M, Li J, Liu X, Liu X, Zhong J, Yang X. Correlation of left atrial wall thickness and atrial remodeling in atrial fibrillation: Study based on low-dose-ibutilide-facilitated catheter ablation. Medicine (Baltimore). 2019 Apr;98(15):e15170. doi: 10.1097/MD.0000000000015170. PMID: 30985700; PMCID: PMC6485781.
[43] Hiraga A, Yamaoka T, Sakai Y, Osakabe Y, Suzuki A, Hirose N. Relationship between outcome in acute stroke patients and multiple stroke related scores obtained after onset of stroke. J Phys Ther Sci. 2018 Oct;30(10):1310-1314. doi: 10.1589/jpts.30.1310. Epub 2018 Oct 12. PMID: 30349170; PMCID: PMC6181659.
[44]https://www.strokeinfo.org/stroke-facts-statistics/
[45] Andreozzi E, Sabbadini R, Centracchio J, Bifulco P, Irace A, Breglio G, Riccio M. Multimodal Finger Pulse Wave Sensing: Comparison of Forcecardiography and Photoplethysmography Sensors. Sensors. 2022; 22(19):7566. https://doi.org/10.3390/s22197566
[46]https://www.thelancet.com/journals/lanepe/article/PIIS2666-7762(23)00205-3/fulltext
[47]https://manual.jointcommission.org/releases/TJC2018A/DataElem0569.html
[48]https://www.mesa-nhlbi.org/ParticipantWebsite/MesaNewsAirPollutionsCarotid.aspx
[49]https://www.radiologymasterclass.co.uk/tutorials/ct/ct_acute_brain/ct_brain_acute_ischaemia
[50]https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94679-
dc.description.abstract心律不整是一個當今老化的社會中盛行的心血管疾病其中一個嚴峻的課題,嚴重的情況可能導致死亡。其中最常見型態的心律不整為心房顫動。
房顫是由於心臟組織失調的電位活動,導致心臟異常的收縮甚至產生顫動的情形。然而,有關於中風相關的疾病背後的病理學牽涉複雜,因此我們排除其他非缺血性中風的其他病理學所導致的中風。
為了描述這個問題,我們採用由臨床內科醫師確診為心房顫動暨中風症狀的病患的來自加護病房生理訊號,探索使用機器學習的方法來判別病患的中風嚴重程度。
我們的目標是試圖探索那些特徵是有效足以讓我們能夠有效鑑別不同中風嚴重程度的病患。
我們研究的發現即時血壓分析之於彌補心率變異性分析(HRV)的重要性,特別是心電圖(ECG)的量測。如果沒有涉及到與收縮壓在時間和資訊熵域條件特徵,我們很難泛化各種背後複雜的病理學。此外,光體積描記法(PPG)對於研究血流速率和心血管健康也是至關重要。
zh_TW
dc.description.abstractArrhythmia is emerging as a significant cardiovascular disease in our modern aging society and can lead to fatal outcomes; One of the most prevalent types of arrhythmia is Atrial Fibrillation (AF). AF originates from abnormal discharges in cardiac tissue, resulting in incomplete atrial contraction and atrial fibrillation. To address this issue, we analysed the recordings of acute ischaemic stroke patients associated with AF symptoms diagnosed by clinicians for further analysis and explored the methodology to classify them into different severity of stroke by Machine Learning Technique. Our goal is to explore what features are significant for distinguishing the different outcomes of this patient group.
Our study findings underscore the critical role of real-time blood pressure analysis in complementing Heart Rate Variability (HRV), especially in ECG measurements. Without incorporating haemodynamic condition features related to Systolic blood pressure in both Time and Entropy domains, it's difficult to generalise the complex metrics underlying pathology. Additionally, Photoplethysmography (PPG) is indispensable for investigating flow rate and cardiovascular health.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:28:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:28:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements…………………………………………………………………... i
中文摘要 ……………………………………………………………………………. ii
Abstract……………………………………………………………………………... iii
Contents ……………………………………………………………………………..v
List of Figures ……………………………………………………………………viii
List of Tables ………………………………………………………………………...x
Introduction ………………………………………………………………………… 1
1.1 Brain Structure and its Physiology…………………………………………..6
1.2 Blood Pressure……………………………………………………………….8
1.3 Myocardial infarction……………………………………………………….10
1.4 Middle Cerebral Artery Stroke……………………………………………...11
1.5 Modified Rankin Scale Definition………………………………………….13
1.6 Risk Factors…………………………………………………………………15
1.6.1 Hypertension………………………………………………………….16
1.6.2 Atherosclerosis………………………………………………………..17
1.7 Clarification…………………………………………………………………18
1.8 Machine Learning and Deep Learning……………………………………...21
1.9 Conclusions…………………………………………………………………22
Materials and Methods ……………………………………………………………24
2.1 Data Acquisition……………………………………………………………24
2.2 Population Demographics………………………………………………….24
2.3 Electrocardiography………………………………………………………...27
2.3.1 Pan-Tompkins filtering………………………………………………30
2.3.2 Time domain analysis……………………………………………….32
2.3.3 Frequency domain analysis………………………………………….36
2.3.4 Entropy domain analysis…………………………………………….37
2.4 Photoplethysmography……………………………………………………...41
2.5 None-invasive blood pressure analysis……………………………………..45
2.6 Normalisation process………………………………………………………50
2.7 Principal Component Analysis……………………………………………..51
2.8 Feature selection……………………………………………………………59
2.9 Support Vector Machine Classification…………………………………….60
2.10 Conclusions……………………………………………………………….62
Result and discussions …………………………………………………………….63
3.1 Classification discussions…………………………………………………..63
3.1.1 Data splitting………………………………………………………...63
3.1.2 Training and Testing…………………………………………………63
3.1.3 Evaluation……………………………………………………………64
3.2 Conclusions…………………………………………………………………69
Conclusions and future work ……………………………………………………...71
4.1 Summary of findings………………………………………………………..71
4.2 Limitations………………………………………………………………….72
4.3 Future Work………………………………………………………………... 74
References …………………………………………………………………………..76
-
dc.language.isoen-
dc.subject缺血型中風zh_TW
dc.subject監督式學習zh_TW
dc.subject光體積變化描繪法zh_TW
dc.subject資訊熵zh_TW
dc.subject心律變異性分析zh_TW
dc.subject房顫zh_TW
dc.subjectSupervised Learningen
dc.subjectAtrial Fibrillationen
dc.subjectIschaemic strokeen
dc.subjectPlethysmographyen
dc.subjectInformation Entropyen
dc.title藉由機器學習判别伴隨心房顫動之中風病患的嚴重程度zh_TW
dc.titleOutcome Prediction in Stroke Patients with Atrial Fibrillation using Machine Learning Techniquesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommitteeDavid Simpson;Jatinder Minhaszh_TW
dc.contributor.oralexamcommitteeDavid Simpson;Jatinder Minhasen
dc.subject.keyword缺血型中風,房顫,心律變異性分析,資訊熵,光體積變化描繪法,監督式學習,zh_TW
dc.subject.keywordIschaemic stroke,Atrial Fibrillation,Information Entropy,Plethysmography,Supervised Learning,en
dc.relation.page83-
dc.identifier.doi10.6342/NTU202403578-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf1.6 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved