請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94678
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 魏志平 | zh_TW |
dc.contributor.advisor | Chih-Ping Wei | en |
dc.contributor.author | 羅苡菱 | zh_TW |
dc.contributor.author | Yi-Ling Lo | en |
dc.date.accessioned | 2024-08-16T17:28:39Z | - |
dc.date.available | 2024-08-17 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-10 | - |
dc.identifier.citation | Carr, S. C., Inkson, K., & Thorn, K. (2005). From global careers to talent flow: Reinterpreting ‘brain drain’. Journal of World Business, 40(4), 386-398.
Cheng, Y., Xie, Y., Chen, Z., Agrawal, A., Choudhary, A., & Guo, S. (2013). Jobminer: A real-time system for mining job-related patterns from social media. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1450-1453). Glassdoor (n.d.). About Glassdoor. Retrieved July 16, 2024, from https://www.glassdoor.com/about/ Groysberg, B. & Abrahams, R., (2006). Lift outs: How to acquire a high-functioning team. Harvard Business Review, 84(12), 133-140. Freeman, W. T., & Tenenbaum, J. B. (1997). Learning bilinear models for two-factor problems in vision. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 554-560. Hongal, P., & Kinange, U. (2020). A study on talent management and its impact on organization performance-an empirical review. International Journal of Engineering and Management Research, 10, 64-71. Hu, T. S., & Chen, K. C. (2014). Creative talent drive transformation of professionals’ constitution in the modern city: A case study of fashion talent flow in Taipei. European Planning Studies, 22(5), 1081-1105. Jackson, D. J., Carr, S. C., Edwards, M., Thorn, K., Allfree, N., Hooks, J., & Inkson, K. (2005). Exploring the dynamics of New Zealand's talent flow. New Zealand Journal of Psychology, 34(2), 110-117. Liu, J., Ng, Y. C., Wood, K. L., & Lim, K. H. (2020). IPOD: A large-scale industrial and professional occupation dataset. In Companion Publication of the 2020 Conference on Computer Supported Cooperative Work and Social Computing, pp. 323-328. LinkedIn (n.d.). About LinkedIn. Retrieved July 17, 2024, from https://about.linkedin.com/zh-tw?lr=1 Mao, G., Hu, B., & Song, H. (2009). Exploring talent flow in Wuhan automotive industry cluster at China. International Journal of Production Economics, 122(1), 395-402. McKinsey & Co. (2018, August 7). Winning with your talent-management strategy. https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/winning-with-your-talent-management-strategy McKinsey & Co. (2021, September 8). ‘Great Attrition’ or ‘Great Attraction’? The choice is yours. https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/great-attrition-or-great-attraction-the-choice-is-yours Oentaryo, R. J., Lim, E.-P., Ashok, X. J. S., Prasetyo, P. K., Ong, K. H., & Lau, Z. Q. (2018). Talent flow analytics in online professional network. Data Science and Engineering, 3, 199-220. Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532-1543. Qin, C., Zhang, L., Zha, R., Shen, D., Zhang, Q., Sun, Y., Zhu, C., Zhu, H., & Xiong, H. (2023). A comprehensive survey of artificial intelligence techniques for talent analytics. arXiv preprint arXiv:2307.03195. Song, W., & Wang, C. (2022). Hybrid recommendation based on matrix factorization and deep learning. In Proceedings of the 4th International Conference on Big Data Engineering, pp. 81-85. State, B., Rodriguez, M., Helbing, D., & Zagheni, E. (2014). Migration of professionals to the US: Evidence from LinkedIn data. In Proceedings of 6th International Conference on Social Informatics (SocInfo 2014), Barcelona, Spain, pp. 531-543. Tarique, I., & Schuler, R. S. (2010). Global talent management: Literature review, integrative framework, and suggestions for further research. Journal of World Business, 45(2), 122-133. Wang, P. L. (2023). What's next after quitting? Predicting the next job using time-series embeddings. Unpublished Master’s Thesis, Department of Information Management, National Taiwan University, Taipei, Taiwan, ROC. Xu, H., Yu, Z., Yang, J., Xiong, H., & Zhu, H. (2016). Talent circle detection in job transition networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.655-664. Xu, H., Yu, Z., Yang, J., Xiong, H., & Zhu, H. (2019). Dynamic talent flow analysis with deep sequence prediction modeling. IEEE Transactions on Knowledge and Data Engineering, 31(10), 1926-1939. Zhang, L., Xu, T., Zhu, H., Qin, C., Meng, Q., Xiong, H., & Chen, E. (2020). Large-scale talent flow embedding for company competitive analysis. In Proceedings of the World Wide Web Conference (pp. 2354-2364). Zhang, L., Zhu, H., Xu, T., Zhu, C., Qin, C., Xiong, H., & Chen, E. (2019). Large-scale talent flow forecast with dynamic latent factor model? In Proceedings of the World Wide Web Conference, pp. 2312-2322. Zhou, Y., Guo, Y., & Liu, Y. (2018). High-level talent flow and its influence on regional unbalanced development in China. Applied Geography, 91, 89-98. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94678 | - |
dc.description.abstract | 人才流動預測是協助企業人力資源團隊制定有效的人才管理策略的關鍵任務。此問題可以透過線上專業網絡的歷史工作轉換資料來分析與預測企業間未來的人才流動。過去的研究方法使用成對的公司資料結構進行特徵工程和預測。然而,成對的公司資料結構只能提供整體人才流動網絡的聚合特徵,並不能利用從焦點公司到其他公司的分佈。此外,先前的研究也使用股票數據作為額外的數據來源,但股票數據容易被眾多市場訊號影響,並不一定能反應一間公司對人才的吸引力。為了解決這些限制,我們提出了一個深度學習模型,採用了公司列式的資料結構和公司評價網站的評分資料作為特徵,並使用遞迴式神經網路以擷取人才流動時間序列的特徵。此外,我們模型加入了公司感知結構和嵌入層去有效地捕捉了各焦點公司的人才流動模式。與現有模型相比,不同職位的預測表現提高了 3-4%。 | zh_TW |
dc.description.abstract | This thesis addresses the problem of talent flow prediction by leveraging historical job transition data from Online Professional Networks to forecast future talent movements, a crucial task for human resource teams in developing effective talent management strategies. Previous approaches used a pair-wise structure for feature engineering and prediction. However, the pair-wise structure can only provide aggregated features of the network and does not leverage the distribution from a focal company to other companies. Additionally, previous studies have used stock data as an additional data source, yet stock data can be sensitive to many market signals.To address these limitations, we proposed a deep learning model employs a company list-wise structure and company rating data as features and feed into a RNN-based model to learn the time series features. After that, our model's company-aware structure and embedding layer effectively capture each focal company’s unique talent flow patterns. It demonstrates a 3-4% improvement in predictive performance over existing models across various positions. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:28:39Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T17:28:39Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Table of Contents iv List of Tables vi List of Figures vii Chapter 1 Introduction 1 1-1. Background 1 1-2. Overview of Previous Studies 3 1-3. Motivation 5 1-4. Research Objective 6 Chapter 2 Literature Review 8 2-1-1. Factors Influencing Talent Retention and Turnover 8 2-1-2. Talent Flow Patterns 10 2-2. Talent Flow Prediction 12 2-3. Research Gap 15 Chapter 3 Methodology 17 3-1. Problem Formulation 17 3-2. Model Structure 17 3-3. Input 18 3-4. Time Series Learning Layer 19 3-5. Dimension Reduction Layer 19 3-6. Learnable Company Embedding 20 3-7. Company Embedding Aware Layer 20 3-8. Prediction Layer 21 3-9. Parameter Learning 22 Chapter 4 Data 23 4-1. Talent Flow Preprocessing 23 4-1-1. Data Collection & Cleaning 23 4-1-2. Company Filtering 24 4-1-3. Position Grouping 24 4-1-4. Talent Flow Extraction 26 4-1-5. Talent Flow Network Formation 27 4-2. Talent Flow Exploration 28 4-3. Rating Data Preprocessing 32 4-4. Rating Data Exploration 33 Chapter 5. Experiment 35 5-1. Training and Testing Data 35 5-2. Evaluation matrices 35 5-3. Hyperparameter Settings 37 5-4. Benchmarks 38 5-5. Results 40 5-6. Sensitivity Test 43 5-7. Ablation Test 45 Chapter 6. Conclusion 48 6-1. Summary 48 6-3. Future Research Directions 49 References 51 | - |
dc.language.iso | en | - |
dc.title | 基於公司感知的遞迴式神經網路方法的人才流動預測 | zh_TW |
dc.title | CAR-TFP: Company-aware RNN-based Modeling for Talent Flow Prediction | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 楊錦生;胡雅涵 | zh_TW |
dc.contributor.oralexamcommittee | Chin-Sheng Yang;Ya-Han Hu | en |
dc.subject.keyword | 人才管理,人才流動預測,深度學習,遞迴式神經網路, | zh_TW |
dc.subject.keyword | Talent Management,Talent Flow Prediction,Deep Learning,RNN-based Time Series Learning, | en |
dc.relation.page | 55 | - |
dc.identifier.doi | 10.6342/NTU202403333 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 管理學院 | - |
dc.contributor.author-dept | 資訊管理學系 | - |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 1.72 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。