請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94673
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 章韶軒 | zh_TW |
dc.contributor.advisor | Shao-Hsuan Chang | en |
dc.contributor.author | 張鈞筌 | zh_TW |
dc.contributor.author | Chun-Chuan Chang | en |
dc.date.accessioned | 2024-08-16T17:27:04Z | - |
dc.date.available | 2024-08-17 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-05 | - |
dc.identifier.citation | 1. Polk, J.B., et al., Organizing precision medicine: A case study of Memorial Sloan Kettering Cancer Center's engagement in/with genomics. Social Science & Medicine, 2023. 324: p. 115789.
2. Malone, E.R., et al., Molecular profiling for precision cancer therapies. Genome Medicine, 2020. 12(1): p. 8. 3. Yoshida, K. and Y. Miki, Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci, 2004. 95(11): p. 866-71. 4. Greenwood, H.I. and K. Dodelzon, Screening in Women With BRCA Mutations Revisited. J Breast Imaging, 2024. 6(1): p. 4-13. 5. Lone, S.N., et al., Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer, 2022. 21(1): p. 79. 6. Diehl, F., et al., Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A, 2005. 102(45): p. 16368-73. 7. Chen, L., A.M. Bode, and Z. Dong, Circulating Tumor Cells: Moving Biological Insights into Detection. Theranostics, 2017. 7(10): p. 2606-2619. 8. Thierry, A.R., et al., Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev, 2016. 35(3): p. 347-76. 9. Underwood, J.J., et al., Liquid Biopsy for Cancer: Review and Implications for the Radiologist. Radiology, 2020. 294(1): p. 5-17. 10. Corcoran, R.B. and B.A. Chabner, Application of Cell-free DNA Analysis to Cancer Treatment. N Engl J Med, 2018. 379(18): p. 1754-1765. 11. Gerlinger, M., et al., Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med, 2012. 366(10): p. 883-892. 12. Jung, A. and T. Kirchner, Liquid Biopsy in Tumor Genetic Diagnosis. Dtsch Arztebl Int, 2018. 115(10): p. 169-174. 13. Abbosh, C., et al., Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature, 2017. 545(7655): p. 446-451. 14. Diehl, F., et al., Circulating mutant DNA to assess tumor dynamics. Nat Med, 2008. 14(9): p. 985-90. 15. Wan, J.C.M., et al., Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer, 2017. 17(4): p. 223-238. 16. Hindson, B.J., et al., High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem, 2011. 83(22): p. 8604-10. 17. de Bono, J.S., et al., Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res, 2008. 14(19): p. 6302-9. 18. Pantel, K. and C. Alix-Panabières, Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med, 2010. 16(9): p. 398-406. 19. Cristofanilli, M., et al., Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol, 2005. 23(7): p. 1420-30. 20. Gorges, T.M. and K. Pantel, Circulating tumor cells as therapy-related biomarkers in cancer patients. Cancer Immunol Immunother, 2013. 62(5): p. 931-9. 21. Bidard, F.C., et al., Circulating Tumor Cells in Breast Cancer Patients Treated by Neoadjuvant Chemotherapy: A Meta-analysis. J Natl Cancer Inst, 2018. 110(6): p. 560-567. 22. Aceto, N., et al., Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 2014. 158(5): p. 1110-1122. 23. Thakur, B.K., et al., Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res, 2014. 24(6): p. 766-9. 24. Nilsson, J., et al., Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer, 2009. 100(10): p. 1603-7. 25. Madhavan, B., et al., Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int J Cancer, 2015. 136(11): p. 2616-27. 26. Sohel, M.H., Extracellular/Circulating MicroRNAs: Release Mechanisms, Functions and Challenges. Achievements in the Life Sciences, 2016. 10(2): p. 175-186. 27. Calin, G.A., et al., Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A, 2004. 101(9): p. 2999-3004. 28. Wu, H., S. Zhu, and Y.Y. Mo, Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res, 2009. 19(4): p. 439-48. 29. Gregory, P.A., et al., The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol, 2008. 10(5): p. 593-601. 30. Markou, A., et al., Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem, 2008. 54(10): p. 1696-704. 31. Duffy, M.J., Circulating tumor DNA (ctDNA) as a biomarker for lung cancer: Early detection, monitoring and therapy prediction. Tumour Biol, 2024. 46(s1): p. S283-s295. 32. Duffy, M.J., Tumor markers in clinical practice: a review focusing on common solid cancers. Med Princ Pract, 2013. 22(1): p. 4-11. 33. Duffy, M.J., Role of tumor markers in patients with solid cancers: A critical review. Eur J Intern Med, 2007. 18(3): p. 175-84. 34. Bonanno, L., et al., Liquid biopsy and non-small cell lung cancer: are we looking at the tip of the iceberg? Br J Cancer, 2022. 127(3): p. 383-393. 35. Duffy, M.J. and J. Crown, Use of Circulating Tumour DNA (ctDNA) for Measurement of Therapy Predictive Biomarkers in Patients with Cancer. J Pers Med, 2022. 12(1). 36. van den Heuvel, M., et al., Serum tumor markers for response prediction and monitoring of advanced lung cancer: A review focusing on immunotherapy and targeted therapies. Tumour Biol, 2024. 46(s1): p. S233-s268. 37. Rhoads, A. and K.F. Au, PacBio Sequencing and Its Applications. Genomics Proteomics Bioinformatics, 2015. 13(5): p. 278-89. 38. Lo, Y.M., et al., Presence of fetal DNA in maternal plasma and serum. Lancet, 1997. 350(9076): p. 485-7. 39. Meldrum, C., M.A. Doyle, and R.W. Tothill, Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev, 2011. 32(4): p. 177-95. 40. Slatko, B.E., A.F. Gardner, and F.M. Ausubel, Overview of Next-Generation Sequencing Technologies. Curr Protoc Mol Biol, 2018. 122(1): p. e59. 41. Fantini, M., et al., Assessment of antibody library diversity through next generation sequencing and technical error compensation. PLoS One, 2017. 12(5): p. e0177574. 42. Berglund, E.C., A. Kiialainen, and A.-C. Syvänen, Next-generation sequencing technologies and applications for human genetic history and forensics. Investigative Genetics, 2011. 2(1): p. 23. 43. Robison, K., Semiconductors charge into sequencing. Nat Biotechnol, 2011. 29(9): p. 805-7. 44. Bustin, S.A., et al., Quantitative real-time RT-PCR--a perspective. J Mol Endocrinol, 2005. 34(3): p. 597-601. 45. Garcia, J., et al., Cross-platform comparison for the detection of RAS mutations in cfDNA (ddPCR Biorad detection assay, BEAMing assay, and NGS strategy). Oncotarget, 2018. 9(30): p. 21122-21131. 46. Zhu, H., et al., PCR past, present and future. Biotechniques, 2020. 69(4): p. 317-325. 47. Hindson, C.M., et al., Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods, 2013. 10(10): p. 1003-5. 48. Genzen, J.R., Regulation of Laboratory-Developed Tests. Am J Clin Pathol, 2019. 152(2): p. 122-131. 49. Frueh, F.W. and B. Quinn, Molecular diagnostics clinical utility strategy: a six-part framework. Expert Rev Mol Diagn, 2014. 14(7): p. 777-86. 50. Pfeifer, J.D., et al., Reference Samples to Compare Next-Generation Sequencing Test Performance for Oncology Therapeutics and Diagnostics. American Journal of Clinical Pathology, 2022. 157(4): p. 628-638. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94673 | - |
dc.description.abstract | 癌症長期以來是國人十大死因中的頭號殺手,發病率逐漸上升。液體活檢技術的出現,為精準醫療提供了新的可能性。液體活檢通過檢測血液中的腫瘤標誌物或癌細胞DNA,確定治療方向並追踪癌症進展。相比傳統的組織活檢,液體活檢具有多次採樣和持續追踪的優勢,提高了臨床管理效率和患者生存期。在台灣,精準醫療得到了政策支持,食品藥物管理署和衛生福利部發布了相關指引和管理辦法,加速精準醫療和基因治療的發展。然而,液體活檢技術在臨床應用中的敏感度有待提高,並面臨法規和市場競爭的不確定性。對液體活檢技術在市場中的定位、產品優劣勢及法規政策進行研究具有重要意義。本研究旨在評估液體活檢技術在分子診斷市場中的定位及未來發展方向。
首先,本研究分析美國FDA資料庫與台灣實驗室自行研發檢驗技術(LDTs)產品,以非小細胞肺癌(NSCLC)為例,通過美國體外診斷(In Vitro Diagnostic, IVD)認證的產品包括Cobas EGFR Mutation Test v2(羅氏分子系統公司)、FoundationOne Liquid CDx(Foundation Medicine公司)和Guardant360 CDx(Guardant Health公司)。另外透過查詢台灣特管辦法LDTs認證之廠商名單,發現台灣目前尚未有廣泛型液態切片產品獲得LDTs認證。因此,本研究特別關注正在申請認證的液體活檢技術公司A。該公司代理的廣泛型液態切片產品雖然尚未獲得認證,但已在臨床上使用。為深入了解該產品在台灣市場的定位及銷售策略,本文進行了SWOT分析。此外,透過臨床問卷調查,收集了胸腔科與血液腫瘤科主任及主治醫師的使用經驗,探討其在臨床使用的趨勢。 結果顯示,液態切片檢測結果是否可申請健保用藥及檢測本身是否有法規認證,均為目前影響臨床醫師使用程度的主要因素,且不同科別和年資的醫師在使用液體活檢技術上的趨勢和需求亦有所差異。此外,胸腔科醫師特別重視報告完成時間及臨床用藥實證;相比之下,腫瘤科醫師對報告時間的要求較為寬鬆,普遍能接受目前產品的報告速度。為深入了解技術開發的市場利基點。透過業界專家訪談,進一步強調了液體活檢技術在臨床敏感度和法規政策方面所面臨的挑戰。針對特定癌別設計不同品項產品,並通過代理服務滿足市場需求,皆為未來市場對應策略。這些策略為未來技術開發提供了重要參考。液體活檢技術有望在癌症診斷和治療的精準度作出重要貢獻。 | zh_TW |
dc.description.abstract | Cancer has long been the leading cause of death among the top ten causes in Taiwan, with its incidence rate gradually increasing. The emergence of liquid biopsy technology offers new possibilities for precision medicine. Liquid biopsy determines treatment direction and monitors cancer progression by detecting tumor markers or cancer cell DNA in the blood. Compared to traditional tissue biopsy, liquid biopsy has the advantages of multiple sampling and continuous monitoring, improving clinical management efficiency and patient survival rates. In Taiwan, precision medicine has received policy support, with the Food and Drug Administration (FDA) and the Ministry of Health and Welfare issuing relevant guidelines and management measures to accelerate the development of precision medicine and gene therapy. However, the sensitivity of liquid biopsy technology in clinical applications needs improvement, and it faces uncertainties in regulations and market competition. Studying the market positioning, product strengths and weaknesses, and regulatory policies of liquid biopsy technology is of great significance. This research aims to assess the market positioning and future development direction of liquid biopsy technology in the molecular diagnostics market.
This study analyzes the US FDA database and Taiwanese LDT products, using non-small cell lung cancer (NSCLC) as a case study. Products that have received US IVD certification include the Cobas EGFR Mutation Test v2 (Roche Molecular Systems), FoundationOne Liquid CDx (Foundation Medicine), and Guardant360 CDx (Guardant Health). By consulting the list of companies certified under Taiwan's special regulations for LDT, it was found that there are currently no broad-spectrum liquid biopsy products with LDT certification in Taiwan. Therefore, this study particularly focuses on Company A, which is in the process of applying for certification for its liquid biopsy technology. Although their broad-spectrum liquid biopsy product has not yet been certified, it is already being used clinically. To gain a deeper understanding of this product's market positioning and sales strategy in Taiwan, this paper conducts a SWOT analysis. Additionally, a clinical survey was conducted to gather usage experiences from the heads and attending physicians in thoracic surgery and hematology-oncology departments. The survey explored the clinical usage trends. The results indicate that whether the liquid biopsy test results can be used to apply for insurance coverage and whether the test itself is regulatory certified are the primary factors influencing clinical usage by physicians. Furthermore, there are variations in the trends and needs for liquid biopsy technology usage among physicians of different specialties and years of experience. Thoracic surgeons particularly emphasize the importance of report turnaround time and clinical drug efficacy evidence. In contrast, oncologists are more lenient regarding report turnaround times and generally accept the current product's report speed. To further understand the market niche for technology development, industry expert interviews were conducted, highlighting the challenges in clinical sensitivity and regulatory policies faced by liquid biopsy technology. Designing different product items for specific cancer types and meeting market demands through agency services are future market response strategies. These strategies provide important references for future technology development. Liquid biopsy technology is poised to make significant contributions to the precision of cancer diagnosis and treatment. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:27:04Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T17:27:04Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II ABSTRACT IV 圖次 VIII 表次 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 第二章 文獻回顧 4 2.1 癌症篩檢與精準醫療 4 2.2 液態活檢(LIQUID BIOPSY) 4 2.2.1 生物標記分子(Biomarker) 6 2.2.2 ctDNA於肺癌的臨床應用 9 2.2.3 定序技術的發展介紹 11 2.2.4 次世代定序(Next-Generation Sequencing, NGS) 12 2.2.5 數位化聚合酶反應分析系統(Digital PCR, dPCR) 14 2.3 基因檢測的法規發展 16 第三章 研究方法 21 3.1 研究架構 21 3.1.1 液態切片產品分析 21 3.1.2 問卷設計、訪談 21 3.2 研究因子篩選 23 3.3 問卷與訪談 24 3.3.1專家訪談 24 3.3.2問卷調查 25 3.4 研究範圍/對象 25 3.5 A公司的液態切片檢測產品SWOT分析 27 第四章 研究結果 28 4.1 液態切片產品分析 28 4.2 問卷統計結果 30 4.2.1液態切片在實體腫瘤的使用時機 30 4.2.2 液態切片臨床使用意願趨勢 32 4.2.3 液態切片選擇中大型Panel的因子 42 4.2.4 液態切片平台選擇因子 46 4.3 訪談分析 48 4.4 SWOT分析 53 4.5 小結 55 第五章 討論與結論 57 5.1 市場策略建議 57 5.1.1. 提升技術精確性和靈敏度 57 5.1.2. 推動健保政策改革 57 5.1.3. 降低檢測成本 57 5.1.4. 提高市場認知度 58 5.1.5. 品牌建設和信任度提升 58 5.1.6. 產品和服務多樣化 58 5.1.7. 加強跨科別合作 58 5.1.8. 監測市場反饋和技術改進 59 5.2 研究限制與未來規劃 60 5.3 結論 61 參考文獻 62 附錄 66 | - |
dc.language.iso | zh_TW | - |
dc.title | 臺灣特管法監管下的液態活檢診斷市場評估策略: 以次世代定序技術平台為例 | zh_TW |
dc.title | Regulatory Implications of Liquid Biopsy Market Strategy in Taiwan: Next Generation Sequencing Platform as an Example | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 饒梓明 | zh_TW |
dc.contributor.coadvisor | Tzu-Ming Jao | en |
dc.contributor.oralexamcommittee | 楊雅倩;胡凱焜 | zh_TW |
dc.contributor.oralexamcommittee | YA-CHIEN YANG;KAI-KUEN HU | en |
dc.subject.keyword | 液態活檢,精準醫療,癌症診斷,台灣特管辦法,非小細胞肺癌, | zh_TW |
dc.subject.keyword | Liquid biopsy,Precision medicine,Cancer diagnosis,LDTs,Non-Small Cell Lung Cancer (NSCLC), | en |
dc.relation.page | 82 | - |
dc.identifier.doi | 10.6342/NTU202402440 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-08 | - |
dc.contributor.author-college | 進修推廣學院 | - |
dc.contributor.author-dept | 生物科技管理碩士在職學位學程 | - |
顯示於系所單位: | 生物科技管理碩士在職學位學程 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 此日期後於網路公開 2026-08-31 | 2.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。