請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94669完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐丞志 | zh_TW |
| dc.contributor.advisor | Cheng-Chih Hsu | en |
| dc.contributor.author | 陳宇萱 | zh_TW |
| dc.contributor.author | Yu-Hsuan Chen | en |
| dc.date.accessioned | 2024-08-16T17:25:45Z | - |
| dc.date.available | 2024-08-31 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-09 | - |
| dc.identifier.citation | 1 Buchberger, A. R.; Delaney, K.; Johnson, J.; Li, L. Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights. Analytical Chemistry 2018, 90 (1), 240-265. DOI: 10.1021/acs.analchem.7b04733.
2 Ma, X.; Fernández, F. M. Advances in mass spectrometry imaging for spatial cancer metabolomics. Mass Spectrometry Reviews 2024, 43 (2), 235-268. DOI: 10.1002/mas.21804. 3 Addie, R. D.; Balluff, B.; Bovée, J. V. M. G.; Morreau, H.; McDonnell, L. A. Current State and Future Challenges of Mass Spectrometry Imaging for Clinical Research. Analytical Chemistry 2015, 87 (13), 6426-6433. DOI: 10.1021/acs.analchem.5b00416. 4 Schulz, S.; Becker, M.; Groseclose, M. R.; Schadt, S.; Hopf, C. Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development. Current Opinion in Biotechnology 2019, 55, 51-59. DOI: 10.1016/j.copbio.2018.08.003. 5 Neubert, P.; Walch, A. Current frontiers in clinical research application of MALDI imaging mass spectrometry. Expert Review of Proteomics 2013, 10 (3), 259-273. DOI: 10.1586/epr.13.19. 6 Kwon, H. J.; Kim, Y.; Sugihara, Y.; Baldetorp, B.; Welinder, C.; Watanabe, K.-I.; Nishimura, T.; Malm, J.; Török, S.; Döme, B.; et al. Drug compound characterization by mass spectrometry imaging in cancer tissue. Archives of Pharmacal Research 2015, 38 (9), 1718-1727. DOI: 10.1007/s12272-015-0627-2. 7 Arentz, G.; Mittal, P.; Zhang, C.; Ho, Y. Y.; Briggs, M.; Winderbaum, L.; Hoffmann, M. K.; Hoffmann, P. Applications of Mass Spectrometry Imaging to Cancer. Elsevier, 2017; pp 27-66. 8 Caughlin, S.; Park, D. H.; Yeung, K. K. C.; Cechetto, D. F.; Whitehead, S. N. Sublimation of DAN Matrix for the Detection and Visualization of Gangliosides in Rat Brain Tissue for MALDI Imaging Mass Spectrometry. Journal of Visualized Experiments 2017, (121). DOI: 10.3791/55254. 9 Takáts, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306 (5695), 471-473. DOI: doi:10.1126/science.1104404. 10 Morato, N. M.; Cooks, R. G. Desorption Electrospray Ionization Mass Spectrometry: 20 Years. Accounts of Chemical Research 2023, 56 (18), 2526-2536. DOI: 10.1021/acs.accounts.3c00382. 11 Banerjee, S. Ambient ionization mass spectrometry imaging for disease diagnosis: Excitements and challenges. Journal of Biosciences 2018, 43 (4), 731-738. DOI: 10.1007/s12038-018-9785-y. 12 Takáts, Z.; Wiseman, J. M.; Cooks, R. G. Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. Journal of Mass Spectrometry 2005, 40 (10), 1261-1275. DOI: https://doi.org/10.1002/jms.922. 13 He, M. J.; Pu, W.; Wang, X.; Zhang, W.; Tang, D.; Dai, Y. Comparing DESI-MSI and MALDI-MSI Mediated Spatial Metabolomics and Their Applications in Cancer Studies. Frontiers in Oncology 2022, 12, Review. DOI: 10.3389/fonc.2022.891018. 14 Cotte-Rodríguez, I.; Cooks, R. G. Non-proximate detection of explosives and chemical warfare agent simulants by desorption electrospray ionization mass spectrometry. Chem. Commun. 2006, (28), 2968-2970. DOI: 10.1039/b606020j. 1 Buchberger, A. R.; Delaney, K.; Johnson, J.; Li, L. Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights. Analytical Chemistry 2018, 90 (1), 240-265. DOI: 10.1021/acs.analchem.7b04733. 2 McDonnell, L. A.; Heeren, R. M. A. Imaging mass spectrometry. Mass Spectrometry Reviews 2007, 26 (4), 606-643. DOI: 10.1002/mas.20124. 3 Amstalden van Hove, E. R.; Smith, D. F.; Heeren, R. M. A. A concise review of mass spectrometry imaging. Journal of Chromatography A 2010, 1217 (25), 3946-3954. DOI: https://doi.org/10.1016/j.chroma.2010.01.033. 4 Spengler, B. Mass Spectrometry Imaging of Biomolecular Information. Analytical Chemistry 2015, 87 (1), 64-82. DOI: 10.1021/ac504543v. 5 Ifa, D. R.; Eberlin, L. S. Ambient Ionization Mass Spectrometry for Cancer Diagnosis and Surgical Margin Evaluation. Clinical Chemistry 2016, 62 (1), 111-123. DOI: 10.1373/clinchem.2014.237172 (acccessed 4/13/2024). 6 Ma, X.; Fernández, F. M. Advances in mass spectrometry imaging for spatial cancer metabolomics. Mass Spectrometry Reviews 2024, 43 (2), 235-268. DOI: 10.1002/mas.21804. 7 Chughtai, K.; Heeren, R. M. A. Mass Spectrometric Imaging for Biomedical Tissue Analysis. Chemical Reviews 2010, 110 (5), 3237-3277. DOI: 10.1021/cr100012c. 8 Chung, H. H.; Huang, P.; Chen, C. L.; Lee, C.; Hsu, C. C. Next‐generation pathology practices with mass spectrometry imaging. Mass Spectrometry Reviews 2023, 42 (6), 2446-2465. DOI: 10.1002/mas.21795. 9 Taylor, M. J.; Lukowski, J. K.; Anderton, C. R. Spatially Resolved Mass Spectrometry at the Single Cell: Recent Innovations in Proteomics and Metabolomics. Journal of the American Society for Mass Spectrometry 2021, 32 (4), 872-894. DOI: 10.1021/jasms.0c00439. 10 Zhang, J.; Sans, M.; Garza, K. Y.; Eberlin, L. S. MASS SPECTROMETRY TECHNOLOGIES TO ADVANCE CARE FOR CANCER PATIENTS IN CLINICAL AND INTRAOPERATIVE USE. Mass Spectrometry Reviews 2021, 40 (5), 692-720. DOI: 10.1002/mas.21664. 11 Weiskirchen, R.; Weiskirchen, S.; Kim, P.; Winkler, R. Software solutions for evaluation and visualization of laser ablation inductively coupled plasma mass spectrometry imaging (LA-ICP-MSI) data: a short overview. Journal of Cheminformatics 2019, 11 (1). DOI: 10.1186/s13321-019-0338-7. 12 Bokhart, M. T.; Nazari, M.; Garrard, K. P.; Muddiman, D. C. MSiReader v1.0: Evolving Open-Source Mass Spectrometry Imaging Software for Targeted and Untargeted Analyses. Journal of the American Society for Mass Spectrometry 2018, 29 (1), 8-16. DOI: 10.1007/s13361-017-1809-6. 13 Robichaud, G.; Garrard, K. P.; Barry, J. A.; Muddiman, D. C. MSiReader: An Open-Source Interface to View and Analyze High Resolving Power MS Imaging Files on Matlab Platform. Journal of the American Society for Mass Spectrometry 2013, 24 (5), 718-721. DOI: 10.1007/s13361-013-0607-z. 14 Klinkert, I.; Chughtai, K.; Ellis, S. R.; Heeren, R. M. A. Methods for full resolution data exploration and visualization for large 2D and 3D mass spectrometry imaging datasets. International Journal of Mass Spectrometry 2014, 362, 40-47. DOI: https://doi.org/10.1016/j.ijms.2013.12.012. 15 Bemis, K. A.; Föll, M. C.; Guo, D.; Lakkimsetty, S. S.; Vitek, O. Cardinal v3 - a versatile open source software for mass spectrometry imaging analysis. Cold Spring Harbor Laboratory: 2023. 16 Bemis, K. D.; Harry, A.; Eberlin, L. S.; Ferreira, C.; Van De Ven, S. M.; Mallick, P.; Stolowitz, M.; Vitek, O. <i>Cardinal</i>: an R package for statistical analysis of mass spectrometry-based imaging experiments. Bioinformatics 2015, 31 (14), 2418-2420. DOI: 10.1093/bioinformatics/btv146. 17 Guo, G.; Papanicolaou, M.; Demarais, N. J.; Wang, Z.; Schey, K. L.; Timpson, P.; Cox, T. R.; Grey, A. C. Automated annotation and visualisation of high-resolution spatial proteomic mass spectrometry imaging data using HIT-MAP. Nature Communications 2021, 12 (1). DOI: 10.1038/s41467-021-23461-w. 18 Palmer, A.; Phapale, P.; Chernyavsky, I.; Lavigne, R.; Fay, D.; Tarasov, A.; Kovalev, V.; Fuchser, J.; Nikolenko, S.; Pineau, C.; et al. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nature Methods 2017, 14 (1), 57-60. DOI: 10.1038/nmeth.4072. 19 Balluff, B.; Heeren, R. M. A.; Race, A. M. An overview of image registration for aligning mass spectrometry imaging with clinically relevant imaging modalities. Journal of Mass Spectrometry and Advances in the Clinical Lab 2022, 23, 26-38. DOI: https://doi.org/10.1016/j.jmsacl.2021.12.006. 20 Gurcan, M. N.; Boucheron, L. E.; Can, A.; Madabhushi, A.; Rajpoot, N. M.; Yener, B. Histopathological Image Analysis: A Review. IEEE Reviews in Biomedical Engineering 2009, 2, 147-171. DOI: 10.1109/rbme.2009.2034865. 21 Chaurand, P.; Schwartz, S. A.; Billheimer, D.; Xu, B. J.; Crecelius, A.; Caprioli, R. M. Integrating Histology and Imaging Mass Spectrometry. Analytical Chemistry 2004, 76 (4), 1145-1155. DOI: 10.1021/ac0351264. 22 Schwamborn, K.; Caprioli, R. M. Molecular imaging by mass spectrometry — looking beyond classical histology. Nature Reviews Cancer 2010, 10 (9), 639-646. DOI: 10.1038/nrc2917. 23 Porta Siegel, T.; Hamm, G.; Bunch, J.; Cappell, J.; Fletcher, J. S.; Schwamborn, K. Mass Spectrometry Imaging and Integration with Other Imaging Modalities for Greater Molecular Understanding of Biological Tissues. Molecular Imaging and Biology 2018, 20 (6), 888-901. DOI: 10.1007/s11307-018-1267-y. 24 Lin, B.-J.; Kuo, T.-C.; Chung, H.-H.; Huang, Y.-C.; Wang, M.-Y.; Hsu, C.-C.; Yao, P.-Y.; Tseng, Y. J. MSIr: Automatic Registration Service for Mass Spectrometry Imaging and Histology. Analytical Chemistry 2023, 95 (6), 3317-3324. DOI: 10.1021/acs.analchem.2c04360. 25 Abdelmoula, W. M.; Škrášková, K.; Balluff, B.; Carreira, R. J.; Tolner, E. A.; Lelieveldt, B. P. F.; van der Maaten, L.; Morreau, H.; van den Maagdenberg, A. M. J. M.; Heeren, R. M. A.; et al. Automatic Generic Registration of Mass Spectrometry Imaging Data to Histology Using Nonlinear Stochastic Embedding. Analytical Chemistry 2014, 86 (18), 9204-9211. DOI: 10.1021/ac502170f. 1 Arnold, M., Singh, D., Laversanne, M., Vignat, J., Vaccarella, S., Meheus, F., et al. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatology 2022;158:495-503. 2 Heistein JB, Acharya U, Mukkamalla SKR. Malignant Melanoma. StatPearls 2024. 3 Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. Cancer statistics. CA: A Cancer Journal for Clinicians 2023;73(1): 17-48. 4 Ohsie, S. J., Sarantopoulos, G. P., Cochran, A. J., & Binder, S. W. Immunohistochemical characteristics of melanoma. Journal of Cutaneous Pathology 2008;35:433-444. 5 Elmore JG, Barnhill RL, Elder DE, Longton GM, Pepe MS, Reisch LM, et al. Pathologists’ diagnosis of invasive melanoma and melanocytic proliferations: observer accuracy and reproducibility study. BMJ 2017;357:j2813. 6 Deacon, D. C., Smith, E. A., & Judson-Torres, R. L. Molecular Biomarkers for Melanoma Screening, Diagnosis and Prognosis: Current State and Future Prospects. Frontiers in Medicine 2021;8:1-26. 7 Bradish, J. R., & Cheng, L.. Molecular pathology of malignant melanoma: Changing the clinical practice paradigm toward a personalized approach. Human Pathology 2014;45:1315-1326. 8 Teixido, C., Castillo, P., Arance, A., & Alos, L.. Molecular Markers and Targets in Melanoma. Cells 2021;10:2320. 9 Lazova Rossitza, Yang Zhe, Constantin El Habr, Lim Young , Choate, Keith Adam, Seeley, Erin H., Caprioli, Richard M., Yangqun, Li. Mass Spectrometry Imaging Can Distinguish on a Proteomic Level Between Proliferative Nodules Within a Benign Congenital Nevus and Malignant Melanoma. The American Journal of Dermatopathology 2017;39(9):p 689-695. 10 Casadonte, R., Kriegsmann, M., Kriegsmann, K., Hauk, I., Meliß, R. R., Müller, C. S., et al. Imaging Mass Spectrometry-Based Proteomic Analysis to Differentiate Melanocytic Nevi and Malignant Melanoma. Cancers 2020;13(13): 3197. 11 Al-Rohil, R. N., Moore, J. L., Patterson, N. H., Nicholson, S., Verbeeck, N., Claesen, et al. Diagnosis of melanoma by imaging mass spectrometry: Development and validation of a melanoma prediction model. Journal of Cutaneous Pathology 2021;48(12):1455-1462. https://doi.org/10.1111/cup.14083 12 Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417(6892): 949-954. 13 Akbani, R., Kadir; B., Albert, M., Ally, A., Samirkumar; Arachchi, H., Arora, A.; J., et al. Genomic Classification of Cutaneous Melanoma. Cell 2015;161(7):1681-1696. 14 Sunshine, Hannah; Iruela-Arispe, Maria Luisa. Membrane lipids and cell signaling. Current Opinion in Lipidology 2017;28(5):408-413. 15 Van Meer, G., Voelker, D. R., Feigenson, G. W. Membrane lipids: Where they are and how they behave. Nature Reviews Molecular Cell Biology 2008;9(2):112-124. 16 Ackerman, D.; Simon, M. C.. Hypoxia, Lipids, and Cancer: Surviving the Harsh Tumor Microenvironment. Trends in Cell Biology 2014;24(8):472-478. 17 Röhrig, F., & Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nature Reviews Cancer 2016;16(11): 732-749. 18 Sugihara, Y., Rivas, D., Malm, J., Szasz, M., Kwon, H., Baldetorp, B., et al. Endogenous expression mapping of malignant melanoma by mass spectrometry imaging. Clinical and Translational Medicine 2018;7(1):e22. 19 Huergo-Baños, C., Velasco, V., Garate, J., Fernández, R., Martín-Allende, J., Zabalza, I., et al. Lipid fingerprint-based histology accurately classifies nevus, primary melanoma, and metastatic melanoma samples. International Journal of Cancer 2024;154(4):712-722. 20 Neittaanmäki, N., Zaar, O., Cehajic, K. S., Nilsson, K. D., Katsarelias, D., Bagge, R. O., et al. ToF-SIMS imaging reveals changes in tumor cell lipids during metastatic progression of melanoma. Pigment Cell & Melanoma Research. 2024. 21 Yang X, Song X, Zhang X, Shankar V, Wang S, Yang Y, et al. In situ DESI-MSI lipidomic profiles of mucosal margin of oral squamous cell carcinoma. EBioMedicine. 2021;70:103529. 22 Eberlin LS, Tibshirani RJ, Zhang J, Longacre TA, Berry GJ, Bingham DB, et al. Molecular assessment of surgical-resection margins of gastric cancer by mass-spectrometric imaging. Proceedings of the National Academy of Sciences. 2014;111(7):2436-41. 23 Santoro AL, Drummond RD, Silva IT, Ferreira SS, Juliano L, Vendramini PH, et al. In Situ DESI-MSI Lipidomic Profiles of Breast Cancer Molecular Subtypes and Precursor Lesions. Cancer Research. 2020;80(6):1246-57. 24 Kumar, B. S. Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI) in Disease Diagnosis: An Overview. Anal. Methods 2023;15(31): 3768-3784. 25 Chung, H., Huang, P., Chen, L., Lee, C., & Hsu, C. Next-generation pathology practices with mass spectrometry imaging. Mass Spectrometry Reviews 2023;42(6):2446-2465. 26 Wu, Z., Shon, J. C., Liu, H. Mass Spectrometry-based Lipidomics and Its Application to Biomedical Research. Journal of Lifestyle Medicine 2014;4(1):17-33. 27 Liebal, U. W., T. Phan, A. N., Sudhakar, M., Raman, K., Blank, L. M. Machine Learning Applications for Mass Spectrometry-Based Metabolomics. Metabolites 2020;10(6). 28 Fischer, A. H., Jacobson, K. A., Rose, J., Zeller, R. Hematoxylin and Eosin Staining of Tissue and Cell Sections. CSH Protoc. 2008. 29 Chambers, M. C., Maclean, B., Burke, R., Amodei, D., Ruderman, D. L., Neumann, S.; Gatto, L., et al. Cross-platform Toolkit for Mass Spectrometry and Proteomics. Nature Biotechnology 2012;30(10):918-920. 30 Palmer, A., Phapale, P., Chernyavsky, I., Lavigne, R., Fay, D., Tarasov, A., et al. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nature Methods 2016;14(1): 57-60. 31 Waskom, M.. Seaborn: Statistical Data Visualization. Journal of Open Source Software 2021;6(60):3021. 32 Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nature Methods. 2019;16(4):299-302. 33 Godzien J, Ciborowski M, Martínez-Alcázar MP, Samczuk P, Kretowski A, et al. Rapid and Reliable Identification of Phospholipids for Untargeted Metabolomics with LC–ESI–QTOF–MS/MS. Journal of Proteome Research. 2015;14(8):3204-16. 34 Fagone, P., Jackowski, S. Membrane phospholipid synthesis and endoplasmic reticulum function. Journal of Lipid Research 2009;50:S311-S316. 35 Vasseur, S., Guillaumond, F. Lipid metabolic reprogramming in cancer cells. Oncogenesis 2015;5(1): e189. 36 Mallick, R., Bhowmik, P., & Duttaroy, A. K. Targeting fatty acid uptake and metabolism in cancer cells: A promising strategy for cancer treatment. Biomedicine & Pharmacotherapy 2023; 167:115591. 37 Mambelli, L. I., Teixeira, S. F., Jorge, S. D., Kawamura, B., Meneguelo, R., Barbuto, J. A., et al. Phosphoethanolamine induces caspase-independent cell death by reducing the expression of C-RAF and inhibits tumor growth in human melanoma model. Biomedicine & Pharmacotherapy 2018;103:18-28. 38 Ferreira, A. K., Meneguelo, R., Marques, F. L. N., Radin, A., Filho, O. M. R., Neto, S. C., et al. Synthetic phosphoethanolamine a precursor of membrane phospholipids reduce tumor growth in mice bearing melanoma B16-F10 and in vitro induce apoptosis and arrest in G2/M phase. Biomedicine & Pharmacotherapy 2012;66(7): 541-548. 39 Henderson F, Johnston HR, Badrock AP, Jones EA, Forster D, Nagaraju RT, et al. Enhanced Fatty Acid Scavenging and Glycerophospholipid Metabolism Accompany Melanocyte Neoplasia Progression in Zebrafish. Cancer Research. 2019;79(9):2136-51. 40 Jiang Y, Du M, Wu M, Zhu Y, Zhao X, Cao X, et al. Phosphatidic Acid Improves Reprogramming to Pluripotency by Reducing Apoptosis. Stem Cells and Development. 2015;25(1):43-54. 41 Lima LG, Chammas R, Monteiro RQ, Moreira MEC, Barcinski MA. Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Letters. 2009;283(2):168-75. 42 Bilal, F., Montfort, A., Gilhodes, J., Garcia, V., Riond, J., Carpentier, S., et al. Sphingomyelin Synthase 1 (SMS1) Downregulation Is Associated With Sphingolipid Reprogramming and a Worse Prognosis in Melanoma. Frontiers in Pharmacology 2019;10:437586. 43 Hannun, Y. A., & Obeid, L. M. Sphingolipids and their metabolism in physiology and disease. Nature Reviews Molecular Cell Biology 2018;19(3):175-191. 44 Hernández-Corbacho, M. J., Salama, M. F., Canals, D., Senkal, C. E., Obeid, L. M. Sphingolipids in mitochondria. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2016;1862(1):56-68. 45 Taniguchi, M., & Okazaki, T. The role of sphingomyelin and sphingomyelin synthases in cell death, proliferation and migration—From cell and animal models to human disorders. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 2014;1841(5):692-703. 46 Ogretmen, B. Sphingolipid metabolism in cancer signalling and therapy. Nature Reviews Cancer 2017;18(1):33-50. 47 Snaebjornsson, M. T., Janaki-Raman, S., Schulze, A. Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer. Cell Metabolism 2020;31(1):62-76. 48 Simiczyjew, A., Wądzyńska, J., Pietraszek-Gremplewicz, K. et al. Melanoma cells induce dedifferentiation and metabolic changes in adipocytes present in the tumor niche. Cell Mol Biol Lett 2023;28:58. 49 Pellerin, L., Carrié, L., Dufau, C., Nieto, L., Ségui, B., Levade, T., & Riond, J. Lipid metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives. Cancers 2020;12(11):3147. 50 Simiczyjew, A., Wądzyńska, J., Pietraszek-Gremplewicz, K., Kot, M., Ziętek, M., Matkowski, R., et al. Melanoma cells induce dedifferentiation and metabolic changes in adipocytes present in the tumor niche. Cellular & Molecular Biology Letters 2023;28. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94669 | - |
| dc.description.abstract | 質譜影像 (MSI) 為一種高靈敏並且可以同時提供空間資訊及非標的式分析之強大工具。近年來,常壓游離方法因為可以於常壓環境下進行游離與其簡易樣品準備步驟而廣為人知。然而質譜影像技術因涉及空間上的資訊,其產生之數據通常複雜程度較高,讓其實際應用有些阻礙。為了解決這個問題,我們首先介紹MSI Tale軟體,這是一款基於 MATLAB 的軟體,該軟體提供圖片對齊、圈選感興趣區域 (ROI) 選擇、標記和匯出等功能用以簡化 MSI 數據分析過程。此外,我們應用質譜影像技術於黑色素瘤,透過將附式電噴灑游離法 (DESI)-MSI 與機器學習相結合,目的開發出黑色素瘤分類平台以及尋找與黑色素瘤有相關之代謝產物。使用質譜影像方法能夠精確地描繪腫瘤區域,並提供黑色素瘤代謝體空間分布資訊,幫助我們尋找潛在生物標誌物的可能性。總結來說,我們的研究結果強調了 MSI Tale 的重要性以及質譜影像與機器學習結合在黑色素瘤研究中之應用。 | zh_TW |
| dc.description.abstract | Mass spectrometry imaging (MSI) provides spatial distribution and allows untargeted analysis of molecules. Recently, ambient ionization mass spectrometry has become popular due to its operation at atmospheric pressure with minimal sample preparation, greatly shortening analysis time. Despite its promise, MSI's large and complex datasets often hinder practical application. To address this, we introduce MSI Tale (Mass Spectrometry Imaging Tool for Tissue Alignment, Labeling, and Export), a MATLAB-based software designed to simplify MSI data analysis by offering image alignment, region of interest (ROI) selection, labeling, and exporting. Additionally, we apply MSI to melanoma by integrating desorption electrospray ionization (DESI)-MSI with machine learning to develop a melanoma classification platform. This approach enables precise tumor region mapping and provides insights into melanoma metabolism, highlighting metabolites as potential biomarkers. Our findings underscore the significance of MSI Tale and the integration of MSI with machine learning for melanoma research and diagnosis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:25:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:25:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定 i
誌謝 ii 摘要 iv Abstract v Chapter 1. Introductory chapter 1 1-1 Mass spectrometry imaging 1 1-2 Overview of this study 6 1-3 References 8 Chapter 2. MSI data processing software: MSI Tale 10 2-1 Abstract 10 2-2 Introduction 11 2-3 Results and Discussions 15 2-3-1 Overview of MSI Tale 15 2-3-2 Data preprocessing and visualization 18 2-3-3 Image registration and ROI selection 20 2-3-4 Spectra labeling and exporting 22 2-3-5 Evaluation of MSI data processing pipeline for MSI Tale 24 2-4 Conclusion 25 2-5 Material &Method 26 2-5-1 Materials 26 2-5-2 DESI-MSI 26 2-5-3 MSI Tale 26 2-5-4 Metabolite identification 27 2-6 Reference 28 Chapter 3. Exploring cutaneous melanoma through spatially-resolved metabolomics via mass spectrometry imaging and machine learning algorithms 32 3-1 Abstract 32 3-2 Introduction 34 3-3 Results 39 3-3-1 Overview for the study design 39 3-3-2 Study design for exploring melanoma-related metabolites 41 3-3-3 ML model construction 43 3-3-4 Feature selection and model performance evaluation 44 3-3-5 Mapping lipidomic melanoma signatures 52 3-3-6 Identification of RFE-selected features 54 3-3-7 Exploration of disease-related candidates 64 3-4 Discussion 72 3-5 Conclusion 77 3-6 Material and Methods 78 3-6-1 Materials 78 3-6-2 Participants 78 3-6-3 Skin specimen collection and preparation. 79 3-6-4 Desorption electrospray ionization (DESI) MSI analysis. 81 3-6-5 Histopathology 81 3-6-6 MSI data processing 82 3-6-7 ML model construction 83 3-6-8 Feature selection 83 3-6-9 Lipid extraction from skin specimen 84 3-6-10 Highly-weighted compounds identification with LC-HR-MS/MS 84 3-6-11 Selected-candidate identification 86 3-6-12 Statistical analysis 86 3-7 Reference 88 | - |
| dc.language.iso | en | - |
| dc.subject | 黑色素瘤 | zh_TW |
| dc.subject | 質譜影像 | zh_TW |
| dc.subject | 皮膚癌 | zh_TW |
| dc.subject | 脂類組學 | zh_TW |
| dc.subject | 生物標誌物 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 常壓游離法 | zh_TW |
| dc.subject | Lipidomics | en |
| dc.subject | Mass spectrometry imaging | en |
| dc.subject | Ambient ionization | en |
| dc.subject | Machine learning | en |
| dc.subject | Biomarker discovery | en |
| dc.subject | Skin cancer | en |
| dc.subject | Melanoma | en |
| dc.title | 應用常壓游離質譜影像技術探索黑色素瘤之生物標記與開發質譜影像數據前處理軟體 | zh_TW |
| dc.title | Applying Ambient Mass Spectrometry Imaging to Discover Cutaneous Melanoma Biomarkers and Developing Supporting Data Processing Software | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 廖怡華;謝建台 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Hua Liao;Jentaie Shiea | en |
| dc.subject.keyword | 質譜影像,常壓游離法,機器學習,生物標誌物,脂類組學,皮膚癌,黑色素瘤, | zh_TW |
| dc.subject.keyword | Mass spectrometry imaging,Ambient ionization,Machine learning,Biomarker discovery,Lipidomics,Skin cancer,Melanoma, | en |
| dc.relation.page | 93 | - |
| dc.identifier.doi | 10.6342/NTU202402544 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2029-08-05 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 6.48 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
