請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94646完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳凱風 | zh_TW |
| dc.contributor.advisor | Kai-Feng Chen | en |
| dc.contributor.author | 高裕維 | zh_TW |
| dc.contributor.author | Yu-Wei Kao | en |
| dc.date.accessioned | 2024-08-16T17:18:03Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-13 | - |
| dc.identifier.citation | [1] M. Gell-Mann. A schematic model of baryons and mesons. In: Physics Letters 8.3 (1964), 214–215. issn: 0031-9163. https://doi.org/https://doi.org/10.1016/S0031-9163(64)92001-3.
[2] S. L. Glashow, J. Iliopoulos, and L. Maiani. Weak Interactions with Lepton-Hadron Symmetry. In: Phys. Rev. D 2 (7 Oct. 1970), 1285–1292. https://doi.org/10.1103/PhysRevD.2.1285. [3] J. J. Aubert et al. Experimental Observation of a Heavy Particle J. In: Phys. Rev. Lett. 33 (23 Dec. 1974), 1404–1406. https://doi.org/10.1103/PhysRevLett.33.1404. [4] J. -E. Augustin et al. Discovery of a Narrow Resonance in e+e− Annihilation. In: Phys. Rev. Lett. 33 (23 Dec. 1974), 1406–1408. https://doi.org/10.1103/PhysRevLett.33.1406. [5] Nicola Cabibbo. Unitary Symmetry and Leptonic Decays. In: Phys. Rev. Lett. 10 (12 June 1963), 531–533. https://doi.org/10.1103/PhysRevLett.10.531. [6] Makoto Kobayashi and Toshihide Maskawa. CP-Violation in the Renormalizable Theory of Weak Interaction. In: Progress of Theoretical Physics 49.2 (Feb. 1973), 652–657. issn: 0033-068X. https://doi.org/10.1143/PTP.49.652. eprint: https://academic.oup. com/ptp/article-pdf/49/2/652/5257692/49-2-652.pdf. [7] X. Fan et al. Measurement of the Electron Magnetic Moment. In: Physical Review Letters 130.7 (Feb. 2023). issn: 1079-7114. https://doi.org/10.1103/physrevlett.130. 071801. [8] Willis E. Lamb and Robert C. Retherford. Fine Structure of the Hydrogen Atom by a Microwave Method. In: Phys. Rev. 72 (3 Aug. 1947), 241–243. https://doi.org/10.1103/PhysRev.72.241. [9] S. Bethke. Experimental tests of asymptotic freedom. In: Progress in Particle and Nuclear Physics 58.2 (Apr. 2007), 351–386. issn: 0146-6410. https://doi.org/10.1016/j. ppnp.2006.06.001. [10] ATLAS Collaboration. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. In: Physics Letters B 716.1 (Sept. 2012). arXiv: 1207.7214, 1–29. issn: 03702693. https://doi.org/10.1016/j. physletb.2012.08.020. [11] CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. In: Physics Letters B 716.1 (Sept. 2012). arXiv: 1207.7235, 30– 61. issn: 03702693. https://doi.org/10.1016/j.physletb.2012.08.021. [12] Jens Erler and Matthias Schott. Electroweak precision tests of the Standard Model after the discovery of the Higgs boson. In: Progress in Particle and Nuclear Physics 106 (2019), 68–119. issn: 0146-6410. https://doi.org/https://doi.org/10.1016/j.ppnp.2019. 02.007. [13] F. Englert and R. Brout. Broken Symmetry and the Mass of Gauge Vector Mesons. In: Phys. Rev. Lett. 13 (9 Aug. 1964), 321–323. https://doi.org/10.1103/PhysRevLett.13. 321. [14] Peter W. Higgs. Broken symmetries, massless particles and gauge fields. In: Phys. Lett. 12 (1964), 132–133. https://doi.org/10.1016/0031-9163(64)91136-9. [15] Peter W. Higgs. Broken Symmetries and the Masses of Gauge Bosons. In: Phys. Rev. Lett. 13 (16 Oct. 1964), 508–509. https://doi.org/10.1103/PhysRevLett.13.508. [16] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble. Global Conservation Laws and Massless Particles. In: Phys. Rev. Lett. 13 (20 Nov. 1964), 585–587. https://doi.org/10.1103/PhysRevLett.13.585. [17] CMS Collaboration. A portrait of the Higgs boson by the CMS experiment ten years after the discovery. en. In: Nature 607.7917 (July 2022). Number: 7917 Publisher: Nature Publishing Group, 60–68. issn: 1476-4687. https://doi.org/10.1038/s41586-022-04892-x. [18] D. Binosi and L. Theußl. JaxoDraw: A graphical user interface for drawing Feynman diagrams. In: Computer Physics Communications 161.1 (2004), 76–86. issn: 0010-4655. https://doi.org/https://doi.org/10.1016/j.cpc.2004.05.001. [19] V. C. Rubin, Jr. Ford W. K., and N. Thonnard. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc). In: The Astrophysical Journal 238 (June 1980), 471–487. https://doi.org/10.1086/158003. [20] F. Zwicky. On the Masses of Nebulae and of Clusters of Nebulae. In: The Astrophysical Journal 86 (Oct. 1937), 217. https://doi.org/10.1086/143864. [21] Douglas Clowe et al. A Direct Empirical Proof of the Existence of Dark Matter. In: The Astrophysical Journal 648.2 (Aug. 2006), L109–L113. issn: 1538-4357. https://doi.org/10.1086/508162. [22] Andrei D Sakharov. Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. In: Soviet Physics Uspekhi 34.5 (May 1991), 392. https://doi.org/10. 1070/PU1991v034n05ABEH002497. [23] Kaori Fuyuto, Wei-Shu Hou, and Eibun Senaha. Electroweak baryogenesis driven by extra top Yukawa couplings. In: Physics Letters B 776 (2018), 402–406. issn: 0370-2693. https://doi.org/https://doi.org/10.1016/j.physletb.2017.11.073. [24] Roberto Contino, Leandro Da Rold, and Alex Pomarol. Light custodians in natural composite Higgs models. In: Physical Review D 75.5 (Mar. 2007). arXiv: hep-ph/0612048, 055014. issn: 1550-7998, 1550-2368. https://doi.org/10.1103/PhysRevD.75.055014. [25] Roberto Contino et al. Warped/Composite Phenomenology Simplified. In: Journal of High Energy Physics 2007.05 (May 2007). arXiv: hep-ph/0612180, 074–074. issn: 1029-8479. https://doi.org/10.1088/1126-6708/2007/05/074. [26] David B. Kaplan. Flavor at ssc energies: A new mechanism for dynamically generated fermion masses. en. In: Nuclear Physics B 365.2 (Nov. 1991), 259–278. issn: 0550-3213. https://doi.org/10.1016/S0550-3213(05)80021-5. [27] Michael J. Dugan, Howard Georgi, and David B. Kaplan. Anatomy of a composite Higgs model. en. In: Nuclear Physics B 254 (Jan. 1985), 299–326. issn: 0550-3213. https://doi.org/10.1016/0550-3213(85)90221-4. [28] Simone Blasi and Florian Goertz. Softened Goldstone-Symmetry Breaking. In: Physical Review Letters 123.22 (Nov. 2019). arXiv: 1903.06146, 221801. issn: 0031-9007, 1079-7114. https://doi.org/10.1103/PhysRevLett.123.221801. [29] Maxim Perelstein, Michael E. Peskin, and Aaron Pierce. Top Quarks and Electroweak Symmetry Breaking in Little Higgs Models. In: Physical Review D 69.7 (Apr. 2004). arXiv: hep-ph/0310039, 075002. issn: 1550-7998, 1550-2368. https://doi.org/10.1103/PhysRevD.69.075002. [30] Oleksii Matsedonskyi, Giuliano Panico, and Andrea Wulzer. Light Top Partners for a Light Composite Higgs. In: Journal of High Energy Physics 2013.1 (Jan. 2013). arXiv: 1204.6333, 164. issn: 1029-8479. https://doi.org/10.1007/JHEP01(2013)164. [31] Martin Schmaltz and David Tucker-Smith. Little Higgs Review. In: Annual Review of Nuclear and Particle Science 55.1 (Dec. 2005). arXiv: hep-ph/0502182, 229–270. issn: 0163-8998, 1545-4134. https://doi.org/10.1146/annurev.nucl.55.090704.151502. [32] Lisa Randall and Raman Sundrum. A Large Mass Hierarchy from a Small Extra Dimension. In: Physical Review Letters 83.17 (Oct. 1999). arXiv: hep-ph/9905221, 3370– 3373. issn: 0031-9007, 1079-7114. https://doi.org/10.1103/PhysRevLett.83.3370. [33] R. L. Workman et al. Review of Particle Physics. In: PTEP 2022 (2022), 083C01. https://doi.org/10.1093/ptep/ptac097. [34] Wei-Shu Hou. Tree level t → ch0 or h0 → tc decays. In: Physics Letters B 296.1 (1992), 179–184. issn: 0370-2693. https://doi.org/https://doi.org/10.1016/0370-2693(92)90823-M. [35] Wei-Shu Hou and Tanmoy Modak. Probing Top Changing Neutral Higgs Couplings at Colliders. 2020. arXiv: 2012.05735 [hep-ph]. [36] Kai-Feng Chen et al. When the Higgs meets the top: Search for t → ch0 at the LHC. In: Physics Letters B 725.4 (2013), 378–381. issn: 0370-2693. https://doi.org/https://doi.org/10.1016/j.physletb.2013.07.060. [37] J. A. Aguilar-Saavedra. Top flavor-changing neutral interactions: theoretical expectations and experimental detection. In: Acta Phys. Polon. B 35 (2004). Ed. by F. del Aguila et al., 2695. arXiv: hep-ph/0409342. https://www.actaphys.uj.edu.pl/R/35/11/2695/pdf. [38] Aleksandr Azatov, Manuel Toharia, and Lijun Zhu. Higgs mediated flavor changing neutral currents in warped extra dimensions. In: Phys. Rev. D 80 (2009), 035016. issn: 1550-2368. https://doi.org/10.1103/physrevd.80.035016. arXiv: 0906.1990 [hep-ph]. [39] Aleksandr Azatov et al. On the flavor structure of natural composite Higgs models & top flavor violation. In: JHEP 12 (2014), 082. issn: 1029-8479. https://doi.org/10.1007/jhep12(2014)082. arXiv: 1408.4525 [hep-ph]. [40] G.C. Branco et al. Theory and phenomenology of two-Higgs-doublet models. In: Physics Reports 516.1–2 (July 2012), 1–102. issn: 0370-1573. https://doi.org/10.1016/j.physrep. 2012.02.002. [41] Santi Bejar, Jaume Guasch, and Joan Solà. Loop induced flavor changing neutral decays of the top quark in a general two Higgs doublet model. In: Nucl. Phys. B 600 (2001), 21. https://doi.org/10.1016/S0550-3213(01)00044-X. arXiv: hep-ph/0011091. [42] Jaume Guasch and Joan Solà. FCNC top quark decays in the MSSM: a door to SUSY physics in high luminosity colliders? In: Nucl. Phys. B 562 (1999), 3. issn: 0550-3213. https://doi.org/10.1016/s0550-3213(99)00579-9. [43] J. J. Cao et al. Supersymmetry-induced flavor-changing neutral-current top-quark processes at the CERN Large Hadron Collider. In: Phys. Rev. D 75 (2007), 075021. issn: 1550-2368. https://doi.org/10.1103/physrevd.75.075021. arXiv: hep-ph/0702264 [hep-ph]. [44] Junjie Cao et al. SUSY induced top quark FCNC decay t → cH after Run I of LHC. In: Eur. Phys. J. C 74 (2014), 3058. issn: 1434-6052. https://doi.org/10.1140/epjc/s10052-014-3058-1. arXiv: 1404.1241 [hep-ph]. [45] G. Eilam et al. Top-quark rare decay t → cH in R-parity-violating SUSY. In: Phys. Lett. B 510 (2001), 227. issn: 0370-2693. https://doi.org/10.1016/s0370-2693(01)00598-6. arXiv: hep-ph/0102037 [hep-ph]. [46] J. A. Aguilar-Saavedra. Effects of mixing with quark singlets. In: Phys. Rev. D 67 (2003). [Erratum:doi:10.1103/PhysRevD.67.035003], 035003. https://doi.org/10.1103/PhysRevD.69.099901. arXiv: hep-ph/0210112. [47] W. Buchmuller and D. Wyler. Effective Lagrangian Analysis of New Interactions and Flavor Conservation. In: Nucl. Phys. B 268 (1986), 621. https://doi.org/10.1016/0550-3213(86)90262-2. [48] B. Grzadkowski et al. Dimension-Six Terms in the Standard Model Lagrangian. In: JHEP 10 (2010), 085. https://doi.org/10.1007/JHEP10(2010)085. arXiv: 1008.4884 [hep-ph]. [49] ATLAS Collaboration. Search for top quark decays t → qH with H → γγ using the ATLAS detector. In: Journal of High Energy Physics 2014.6 (June 2014). arXiv:1403.6293 [hep-ex], 8. issn: 1029-8479. https://doi.org/10.1007/JHEP06(2014)008. [50] ATLAS Collaboration. Search for flavour-changing neutral current top quark decays t → Hq in pp collisions at √s = 8 TeV with the ATLAS detector. In: Journal of High Energy Physics 2015.12 (Dec. 2015). arXiv:1509.06047 [hep-ex], 1–65. issn: 1029-8479. https://doi.org/10.1007/JHEP12(2015)061. [51] ATLAS Collaboration. Search for top quark decays t → qH, with H → γγ, in √s = 13 TeV pp collisions using the ATLAS detector. en. In: Journal of High Energy Physics 2017.10 (Oct. 2017), 129. issn: 1029-8479. https://doi.org/10.1007/JHEP10(2017)129. [52] ATLAS Collaboration. Search for flavor-changing neutral currents in top quark decays t → Hc and t → Hu in multilepton final states in proton-proton collisions at √s = 13 TeV with the ATLAS detector. In: Physical Review D 98.3 (Aug. 2018). Publisher: American Physical Society, 032002. https://doi.org/10.1103/PhysRevD.98.032002. [53] ATLAS Collaboration. Search for top-quark decays t → Hq with 36 fb−1 of pp collision data at √s = 13 TeV with the ATLAS detector. In: JHEP 05 (2019), 123. https://doi. org/10.1007/JHEP05(2019)123. arXiv: 1812.11568 [hep-ex]. [54] CMS Collaboration. Search for top quark decays t → qH with H → γγ in pp collisions at √s = 8 TeV. CMS-PAS-TOP-14-019, http://cds.cern.ch/record/2034227. 2015. http://cds.cern.ch/record/2034227 ( 02/23/2024). [55] CMS Collaboration. Search for the Flavor-Changing Neutral Current Decay t → qH Where the Higgs Decays to b ̄b Pairs at √s = 8 TeV. CMS-PAS-TOP-14-020, http://cds.cern.ch/record/2104020. 2015. http://cds.cern.ch/record/2104020 ( 02/23/2024). [56] CMS Collaboration. Search for top quark decays via Higgs-boson-mediated flavor-changing neutral currents in pp collisions at √s = 8 TeV. In: Journal of High Energy Physics 2017.2 (Feb. 2017). arXiv:1610.04857 [hep-ex], 79. issn: 1029-8479. https://doi.org/10.1007/JHEP02(2017)079. [57] CMS Collaboration. Search for the flavor-changing neutral current interactions of the top quark and the Higgs boson which decays into a pair of b quarks at √s = 13 TeV. en. In: Journal of High Energy Physics 2018.6 (June 2018), 102. issn: 1029-8479. https://doi.org/10.1007/JHEP06(2018)102. [58] J. A. Aguilar-Saavedra et al. Handbook of vectorlike quarks: Mixing and single production. In: Physical Review D 88.9 (Nov. 2013). issn: 1550-2368. https://doi.org/10.1103/physrevd.88.094010. [59] Otto Eberhardt et al. Impact of a Higgs Boson at a Mass of 126 GeV on the Standard Model with Three and Four Fermion Generations. In: Physical Review Letters 109.24 (Dec. 2012). issn: 1079-7114. https://doi.org/10.1103/physrevlett.109.241802. [60] ATLAS Collaboration. Search for pair and single production of new heavy quarks that decay to a Z boson and a third-generation quark in pp collisions at √s = TeV with the ATLAS detector. In: Journal of High Energy Physics 2014.11 (Nov. 2014). arXiv:1409.5500 [hep-ex], 104. issn: 1029-8479. https://doi.org/10.1007/JHEP11(2014)104. [61] ATLAS Collaboration. Search for vector-like B quarks in events with one isolated lepton, missing transverse momentum and jets at √s = 8 TeV with the ATLAS detector. In: Physical Review D 91.11 (June 2015). arXiv:1503.05425 [hep-ex], 112011. issn: 1550-7998, 1550-2368. https://doi.org/10.1103/PhysRevD.91.112011. [62] ATLAS Collaboration. Search for production of vector-like quark pairs and of four top quarks in the lepton-plus-jets final state in pp collisions at √s = 8 TeV with the ATLAS detector. In: Journal of High Energy Physics 2015.8 (Aug. 2015). arXiv:1505.04306 [hep-ex], 105. issn: 1029-8479. https://doi.org/10.1007/JHEP08(2015)105. [63] ATLAS Collaboration. Search for single production of vector-like quarks decaying into W b in pp collisions at √s = 8 TeV with the ATLAS detector. In: The European Physical Journal C 76.8 (Aug. 2016). arXiv:1602.05606 [hep-ex], 442. issn: 1434-6044, 1434-6052. https://doi.org/10.1140/epjc/s10052-016-4281-8. [64] CMS Collaboration. Search for top-quark partners with charge 5/3 in the same-sign dilepton final state. In: Physical Review Letters 112.17 (Apr. 2014). arXiv:1312.2391 [hep-ex], 171801. issn: 0031-9007, 1079-7114. https://doi.org/10.1103/PhysRevLett. 112.171801. [65] CMS Collaboration. Search for vector-like charge 2/3 T quarks in proton-proton collisions at sqrt(s) = 8 TeV. In: Physical Review D 93.1 (Jan. 2016). arXiv:1509.04177 [hep-ex], 012003. issn: 2470-0010, 2470-0029. https://doi.org/10.1103/PhysRevD.93. 012003. [66] CMS Collaboration. Search for pair-produced vectorlike B quarks in proton-proton collisions at sqrt(s) = 8 TeV. In: Physical Review D 93.11 (June 2016). arXiv:1507.07129 [hep-ex], 112009. issn: 2470-0010, 2470-0029. https://doi.org/10.1103/PhysRevD.93. 112009. [67] ATLAS Collaboration. Search for pair production of heavy vector-like quarks decaying to high-pT W bosons and b quarks in the lepton-plus-jets final state in pp collisions at √s =13 TeV with the ATLAS detector. In: Journal of High Energy Physics 2017.10 (Oct. 2017). arXiv:1707.03347 [hep-ex], 141. issn: 1029-8479. https://doi.org/10.1007/JHEP10(2017)141. [68] The ATLAS Collaboration. Search for pair production of vector-like top quarks in events with one lepton, jets, and missing transverse momentum in √s = 13 TeV pp collisions with the ATLAS detector. In: Journal of High Energy Physics 2017.8 (Aug. 2017). arXiv:1705.10751 [hep-ex], 52. issn: 1029-8479. https://doi.org/10.1007/JHEP08(2017)052. [69] ATLAS Collaboration. Search for pair production of up-type vector-like quarks and for four-top-quark events in final states with multiple b-jets with the ATLAS detector. In: Journal of High Energy Physics 2018.7 (July 2018). arXiv:1803.09678 [hep-ex], 89. issn: 1029-8479. https://doi.org/10.1007/JHEP07(2018)089. [70] ATLAS Collaboration. Search for new phenomena in events with same-charge leptons and b-jets in pp collisions at √s = 13 TeV with the ATLAS detector. In: Journal of High Energy Physics 2018.12 (Dec. 2018). arXiv:1807.11883 [hep-ex], 39. issn: 1029-8479. https://doi.org/10.1007/JHEP12(2018)039. [71] ATLAS Collaboration. Search for pair production of heavy vector-like quarks decaying into hadronic final states in pp collisions at √s = 13 TeV with the ATLAS detector. In: Physical Review D 98.9 (Nov. 2018). arXiv:1808.01771 [hep-ex], 092005. issn: 2470-0010, 2470-0029. https://doi.org/10.1103/PhysRevD.98.092005. [72] ATLAS Collaboration. Combination of the searches for pair-produced vector-like partners of the third-generation quarks at √s = 13 TeV with the ATLAS detector. In: Physical Review Letters 121.21 (Nov. 2018). arXiv:1808.02343 [hep-ex], 211801. issn: 0031-9007, 1079-7114. https://doi.org/10.1103/PhysRevLett.121.211801. [73] ATLAS Collaboration. Search for pair-production of vector-like quarks in pp collision events at √s = 13 TeV with at least one leptonically decaying Z boson and a third-generation quark with the ATLAS detector. arXiv:2210.15413 [hep-ex]. July 2023. https://doi.org/10.1016/j.physletb.2023.138019. [74] ATLAS Collaboration. Search for pair-production of vector-like quarks in lepton+jets final states containing at least one b-tagged jet using the Run 2 data from the ATLAS experiment. arXiv:2401.17165 [hep-ex]. Jan. 2024. https://doi.org/10.48550/arXiv. 2401.17165. [75] CMS Collaboration. Search for pair production of vector-like T and B quarks in single-lepton final states using boosted jet substructure in proton-proton collisions at sqrt(s) = 13 TeV. In: Journal of High Energy Physics 2017.11 (Nov. 2017). arXiv:1706.03408 [hep-ex], 85. issn: 1029-8479. https://doi.org/10.1007/JHEP11(2017)085. [76] CMS Collaboration. Search for pair production of vector-like quarks in the bWb ̄W channel from proton-proton collisions at √s = 13 TeV. In: Physics Letters B 779 (Apr. 2018). arXiv:1710.01539 [hep-ex], 82–106. issn: 03702693. https://doi.org/10.1016/j.physletb. 2018.01.077. [77] CMS Collaboration. Search for vector-like T and B quark pairs in final states with leptons at √s = 13 TeV. In: Journal of High Energy Physics 2018.8 (Aug. 2018). arXiv:1805.04758 [hep-ex], 177. issn: 1029-8479. https://doi.org/10.1007/JHEP08(2018) 177. [78] CMS Collaboration. Search for vector-like quarks in events with two oppositely charged leptons and jets in proton-proton collisions at √s = 13 TeV. In: The European Physical Journal C 79.4 (Apr. 2019). arXiv:1812.09768 [hep-ex], 364. issn: 1434-6044, 1434-6052. https://doi.org/10.1140/epjc/s10052-019-6855-8. [79] CMS Collaboration. Search for pair production of vector-like quarks in the fully hadronic final state. In: Physical Review D 100.7 (Oct. 2019). arXiv:1906.11903 [hep-ex], 072001. issn: 2470-0010, 2470-0029. https://doi.org/10.1103/PhysRevD.100.072001. [80] CMS Collaboration. Search for pair production of vector-like quarks in leptonic final states in proton-proton collisions at √s =13 TeV. In: Journal of High Energy Physics 2023.7 (July 2023). arXiv:2209.07327 [hep-ex], 20. issn: 1029-8479. https://doi.org/10.1007/JHEP07(2023)020. [81] ATLAS Collaboration. Search for pair and single production of vectorlike quarks in final states with at least one Z boson decaying into a pair of electrons or muons in pp collision data collected with the ATLAS detector at √s = 13 TeV. In: Physical Review D 98.11 (Dec. 2018). arXiv:1806.10555 [hep-ex], 112004. issn: 2470-0010, 2470-0029. https://doi.org/10.1103/PhysRevD.98.112004. [82] ATLAS Collaboration. Search for single production of vector-like quarks decaying into Wb in pp collisions at √s = 13 TeV with the ATLAS detector. In: Journal of High Energy Physics 2019.5 (May 2019). arXiv:1812.07343 [hep-ex], 164. issn: 1029-8479. https://doi.org/10.1007/JHEP05(2019)164. [83] ATLAS Collaboration. Search for large missing transverse momentum in association with one top-quark in proton-proton collisions at √s = 13 TeV with the ATLAS detector. In: Journal of High Energy Physics 2019.5 (May 2019). arXiv:1812.09743 [hep-ex], 41. issn: 1029-8479. https://doi.org/10.1007/JHEP05(2019)041. [84] ATLAS Collaboration. Search for single production of a vector-like T quark decaying into a Higgs boson and top quark with fully hadronic final states using the ATLAS detector. In: Physical Review D 105.9 (May 2022). arXiv:2201.07045 [hep-ex], 092012. issn: 2470-0010, 2470-0029. https://doi.org/10.1103/PhysRevD.105.092012. [85] ATLAS Collaboration. Search for single production of vector-like T quarks decaying into Ht or Zt in pp collisions at √s = 13 TeV with the ATLAS detector. In: Journal of High Energy Physics 2023.8 (Aug. 2023). arXiv:2305.03401 [hep-ex], 153. issn: 1029-8479. https://doi.org/10.1007/JHEP08(2023)153. [86] ATLAS Collaboration. Search for singly produced vector-like top partners in multilepton final states with 139 f b−1 of pp collision data at √s = 13 TeV with the ATLAS detector. arXiv:2307.07584 [hep-ex]. July 2023. https://doi.org/10.48550/arXiv.2307.07584. [87] CMS Collaboration. Search for single production of vector-like quarks decaying into a b quark and a W boson in proton-proton collisions at sqrt(s) = 13 TeV. In: Physics Letters B 772 (Sept. 2017). arXiv:1701.08328 [hep-ex], 634–656. issn: 03702693. https://doi.org/10.1016/j.physletb.2017.07.022. [88] CMS Collaboration. Search for single production of a vector-like T quark decaying to a Z boson and a top quark in proton-proton collisions at √s =13 TeV. In: Physics Letters B 781 (June 2018). arXiv:1708.01062 [hep-ex], 574–600. issn: 03702693. https://doi. org/10.1016/j.physletb.2018.04.036. [89] CMS Collaboration. Search for single production of vector-like quarks decaying to a b quark and a Higgs boson. In: Journal of High Energy Physics 2018.6 (June 2018). arXiv:1802.01486 [hep-ex], 31. issn: 1029-8479. https://doi.org/10.1007/JHEP06(2018) 031. [90] CMS Collaboration. Search for single production of vector-like quarks decaying to a top quark and a W boson in proton-proton collisions at √s = 13 TeV. In: The European Physical Journal C 79.2 (Feb. 2019). arXiv:1809.08597 [hep-ex], 90. issn: 1434-6044, 1434-6052. https://doi.org/10.1140/epjc/s10052-019-6556-3. [91] CMS Collaboration. Search for electroweak production of a vector-like T quark using fully hadronic final states. In: Journal of High Energy Physics 2020.1 (Jan. 2020). arXiv:1909.04721 [hep-ex], 36. issn: 1029-8479. https://doi.org/10.1007/JHEP01(2020) 036. [92] CMS Collaboration. Search for single production of a vector-like T quark decaying to a top quark and a Z boson in the final state with jets and missing transverse momentum at √s = 13 TeV. In: Journal of High Energy Physics 2022.5 (May 2022). arXiv:2201.02227 [hep-ex], 93. issn: 1029-8479. https://doi.org/10.1007/JHEP05(2022) 093. [93] A. M. Sirunyan et al. Search for electroweak production of a vector-like T quark using fully hadronic final states. In: Journal of High Energy Physics 2020.1 (Jan. 2020). issn: 1029-8479. https://doi.org/10.1007/jhep01(2020)036. [94] Sean Aidan. Feynman Diagrams. 2010. https://www.aidansean.com/feynman/. Accessed: 2022-12-04. [95] Wikimedia Commons. File:Cern-accelerator-complex.svg — Wikimedia Commons, the free media repository. [Online; accessed 8-August-2024]. 2024. https://commons.wikimedia.org/w/index.php?title=File:Cern-accelerator-complex. svg & oldid = 853401348. [96] CMS Collaboration. CMS Physics: Technical Design Report Volume 1: Detector Performance and Software. Technical design report. CMS. There is an error on cover due to a technical problem for some items. Geneva: CERN, 2006. http://cds.cern.ch/record/922757. [97] CMS Collaboration. The CMS experiment at the CERN LHC. In: Journal of Instrumentation 3.08 (Aug. 2008), S08004. https://doi.org/10.1088/1748-0221/3/08/S08004. [98] Tai Sakuma and Thomas McCauley. Detector and Event Visualization with SketchUp at the CMS Experiment. In: Journal of Physics: Conference Series 513.2 (June 2014), 022032. https://doi.org/10.1088/1742-6596/513/2/022032. [99] V Karimäki et al. The CMS tracker system project: Technical Design Report. Technical design report. CMS. Geneva: CERN, 1997. https://cds.cern.ch/record/368412. [100] The CMS tracker: addendum to the Technical Design Report. Technical design report. CMS. Geneva: CERN, 2000. https://cds.cern.ch/record/490194. [101] CMS Collaboration. DPG Results TRK. https://twiki.cern.ch/twiki/bin/view/CMSPublic/DPGResultsTRK. TWiki. Accessed: 2024-08-09. [102] CMS Collaboration. The CMS Phase-1 pixel detector upgrade. In: Journal of Instrumentation 16.02 (Feb. 2021), P02027. https://doi.org/10.1088/1748-0221/16/02/P02027. [103] Y. Allkofer et al. Design and performance of the silicon sensors for the CMS barrel pixel detector. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 584.1 (2008), 25– 41. issn: 0168-9002. https://doi.org/https://doi.org/10.1016/j.nima.2007.08.151. [104] The CMS electromagnetic calorimeter project: Technical Design Report. Technical design report. CMS. Geneva: CERN, 1997. https://cds.cern.ch/record/349375. [105] Philippe Bloch et al. Changes to CMS ECAL electronics: addendum to the Technical Design Report. Technical design report. CMS. Geneva: CERN, 2002. http://cds.cern. ch/record/581342. [106] CMS Collaboration. Particle-flow reconstruction and global event description with the CMS detector. In: Journal of Instrumentation 12.10 (Oct. 2017), P10003. https://doi. org/10.1088/1748-0221/12/10/P10003. [107] P Adzicet al. Energy resolution of the barrel of the CMS Electromagnetic Calorimeter. In: Journal of Instrumentation 2.04 (Apr. 2007), P04004. https://doi.org/10.1088/1748-0221/2/04/P04004. [108] CMS Collaboration. The CMS hadron calorimeter project: Technical Design Report. Technical design report. CMS. Geneva: CERN, 1997. https://cds.cern.ch/record/357153. [109] CMS Collaboration. The CMS barrel calorimeter response to particle beams from 2 to 350 GeV/c. en. In: The European Physical Journal C 60.3 (Apr. 2009), 359–373. issn: 1434-6052. https://doi.org/10.1140/epjc/s10052-009-0959-5. [110] J. G. Layter. The CMS muon project: Technical Design Report. Technical design report. CMS. Geneva: CERN, 1997. https://cds.cern.ch/record/343814. [111] CMS Collaboration. Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at √s=13 TeV. In: Journal of Instrumentation 13.06 (June 2018), P06015–P06015. issn: 1748-0221. https://doi.org/10.1088/1748-0221/13/06/p06015. [112] G. Abbiendi et al. The Analytical Method algorithm for trigger primitives generation at the LHC Drift Tubes detector. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1049 (2023), 168103. issn: 0168-9002. https://doi.org/https://doi.org/10.1016/j.nima. 2023.168103. [113] M. Abbrescia et al. Beam test results on double-gap resistive plate chambers proposed for CMS experiment. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 414.2 (1998), 135–148. issn: 0168-9002. https://doi.org/https://doi.org/10.1016/S0168-9002(98) 00571-3. [114] CMS Collaboration. CMS TriDAS project: Technical Design Report, Volume 1: The Trigger Systems. Technical design report. CMS. 2000. http://cds.cern.ch/record/706847. [115] Sergio Cittolin, Attila Rácz, and Paris Sphicas. CMS The TriDAS Project: Technical Design Report, Volume 2: Data Acquisition and High-Level Trigger. CMS trigger and data-acquisition project. Technical design report. CMS. Geneva: CERN, 2002. http://cds.cern.ch/record/578006. [116] CMS Collaboration. Performance of the CMS Level-1 trigger in proton-proton collisions at √s = 13 TeV. In: Journal of Instrumentation 15.10 (Oct. 2020), P10017–P10017. issn: 1748-0221. https://doi.org/10.1088/1748-0221/15/10/p10017. [117] CMS Collaboration. The CMS high level trigger. en. In: The European Physical Journal C - Particles and Fields 46.3 (June 2006), 605–667. issn: 1434-6052. https://doi.org/10.1140/epjc/s2006-02495-8. [118] V. Karimaki et al. Sensor Alignment by Tracks. 2003. arXiv: physics/0306034 [physics.data-an]. [119] CMS Collaboration. Public CMS Luminosity Information. 2023. https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults. Accessed: 2024-02-05. [120] Federico De Guio. CMS Alignement and Calibration workflows: lesson learned and future plans. In: Nuclear and Particle Physics Proceedings 273-275 (2016). 37th International Conference on High Energy Physics (ICHEP), 923–928. issn: 2405-6014. https://doi.org/https://doi.org/10.1016/j.nuclphysbps.2015.09.143. [121] CMS Collaboration. Website of the High-Luminosity Large Hadron Collider Project. 2022. https://hilumilhc.web.cern.ch/content/hl-lhc-project. [122] The Phase-2 Upgrade of the CMS Endcap Calorimeter. Tech. rep. Geneva: CERN, 2017. https://doi.org/10.17181/CERN.IV8M.1JY2. [123] CMS Collaboration. HGCAL website. 2021. https://hgcal.web. cern.ch/. Accessed: 2024-02-27. [124] CMS HGCAL collaboration. Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20–300 GeV positrons. In: Journal of Instrumentation 17.05 (May 2022), P05022. https://doi.org/10.1088/1748-0221/17/05/P05022. [125] CMS Collaboration. HGCAL local reconstruction algorithm for uncalibrated reconstructed hits. 2023. https://github.com/cms-sw/cmssw/blob/master/RecoLocalCalo/HGCalRecAlgos/interface/HGCalUncalibRecHitRecWeightsAlgo.h. Accessed: 2024-05-15 [126] Felice Pantaleo, Marco Rovere, and CMS Collaboration. The Iterative Clustering framework for the CMS HGCAL Reconstruction. In: Journal of Physics: Conference Series 2438.1 (Feb. 2023), 012096. issn: 1742-6596. https://doi.org/10.1088/1742-6596/2438/1/012096. [127] Thiago R. F. P. Tomei. The High-Level Trigger for the CMS Phase-2 Upgrade. 2022. arXiv: 2211.03684 [hep-ex]. https://arxiv.org/abs/2211.03684. [128] Erik Zenker et al. Alpaka - An Abstraction Library for Parallel Kernel Acceleration. In: 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). arXiv:1602.08477. IEEE, May 2016, 631–640. https://doi.org/10.1109/IPDPSW.2016.117. [129] A. Matthes et al. Tuning and optimization for a variety of many-core architectures without changing a single line of implementation code using the Alpaka library. In: arXiv:1706.10086. June 2017. https://arxiv.org/abs/1706.10086. [130] Kamil Rocki, Martin Burtscher, and Reiji Suda. The Future of Accelerator Programming: Abstraction, Performance or Can We Have Both? In: Proceedings of the 29th Annual ACM Symposium on Applied Computing. SAC ’14. Gyeongju, Republic of Korea: Association for Computing Machinery, 2014, 886–895. isbn: 9781450324694. https://doi.org/10.1145/2554850.2555029. [131] CMS Collaboration. Alpaka algorithms and modules in the CMS software. 2023. https://github.com/cms-sw/cmssw/blob/master/HeterogeneousCore/AlpakaCore/README. md ( 01/16/2024). [132] CMS Collaboration. Alpaka structure of array (SoA) generation in the CMS software. 2023. https://github.com/cms-sw/cmssw/blob/master/DataFormats/SoATemplate/README.md ( 01/16/2024). [133] CMS Collaboration. Define portable data formats that wrap a simple C-style struct and can be persisted to ROOT files in the CMS software. 2023. https://github.com/cms-sw/cmssw/blob/master/DataFormats/Portable/README.md ( 01/16/2024). [134] CMS Collaboration. CMS DQM GUI for users. 2024. https://twiki.cern.ch/twiki/bin/viewauth/CMS/DQMGuiForUsers. Accessed: 2024-07-24. [135] CLIC. GitLab: HGCAL sensor analysis. 2023. https://gitlab.cern.ch/CLICdp/HGCAL/HGCAL_sensor_analysis/-/tree/develop?ref_type=heads. Accessed: 2024-07-24. [136] Indra and Pruthvi. GitHub: A hit analysis script. 2022. https://github.com/indra-ehep/ReadSimResult/blob/main/HitAnalysis/scripts/overlay_from_ pruthvi.py. Accessed: 2024-07-24. [137] Stefanos Dris. Performance of the CMS Tracker Optical Links and Future Upgrade Using Bandwidth Efficient Digital Modulation. 2010. arXiv: 1004.5574 [physics.ins-det]. https://arxiv.org/abs/1004.5574. [138] CMS Collaboration. Measurements of Higgs boson production cross sections and couplings in the diphoton decay channel at √s = 13 TeV. In: Journal of High Energy Physics 2021.7 (July 2021). issn: 1029-8479. https://doi.org/10.1007/jhep07(2021)027. [139] Edward John Titman Scott. Measurements of Higgs boson properties using the diphoton decay channel with the Compact Muon Solenoid experiment. Presented on 21 Jun 2019. Imperial Coll., London, 2019. https://cds.cern.ch/record/2686716. [140] Eleftherios Spyromitros Xioufis et al. Multi-Label Classification Methods for Multi-Target Regression. In: CoRR abs/1211.6581 (2012). arXiv: 1211.6581. http://arxiv.org/abs/1211.6581. [141] W Adam et al. Reconstruction of electrons with the Gaussian-sum filter in the CMS tracker at the LHC. In: Journal of Physics G: Nuclear and Particle Physics 31.9 (July 2005), N9–N20. issn: 1361-6471. https://doi.org/10.1088/0954-3899/31/9/n01. [142] R. Frühwirth. Application of Kalman filtering to track and vertex fitting. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 262.2 (1987), 444–450. issn: 0168-9002. https://doi.org/https://doi.org/10.1016/0168-9002(87)90887-4. [143] Matteo Cacciari, Gavin P Salam, and Gregory Soyez. The anti-ktjet clustering algorithm. In: Journal of High Energy Physics 2008.04 (Apr. 2008), 063–063. issn: 1029-8479. https://doi.org/10.1088/1126-6708/2008/04/063. [144] The CMS Collaboration. Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV. In: Journal of Instrumentation 12.02 (Feb. 2017), P02014–P02014. issn: 1748-0221. https://doi.org/10.1088/1748-0221/12/02/p02014. [145] CMS Collaboration. Jet Energy Resolution and Corrections (JERC) Subgroup. In: CMS twiki page (2021). https://twiki.cern.ch/twiki/bin/view/CMS/JetEnergyScale. [146] A.M. Sirunyan et al. Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV. In: Journal of Instrumentation 13.05 (May 2018), P05011–P05011. issn: 1748-0221. https://doi.org/10.1088/1748-0221/13/05/p05011. [147] E. Bols et al. Jet flavour classification using DeepJet. In: Journal of Instrumentation 15.12 (Dec. 2020), P12012. https://doi.org/10.1088/1748-0221/15/12/P12012. [148] CMS Collaboration. B-tagging discriminant shape calibration using event weights with a tag-and-probe method. In: CMS twiki page (2021). https://twiki.cern.ch/twiki/bin/viewauth/CMS/BTagShapeCalibration. [149] Procedure for the LHC Higgs boson search combination in Summer 2011. Tech. rep. Geneva: CERN, 2011. https://cds.cern.ch/record/1379837. [150] Glen Cowan et al. Asymptotic formulae for likelihood-based tests of new physics. In: Eur. Phys. J. C 71 (2011). [Erratum: DOI10.1140/epjc/s10052-013-2501-z], 1554. https://doi.org/10.1140/epjc/s10052-011-1554-0. arXiv: 1007.1727 [physics.data-an]. [151] You-ying Li. Measurements of the associated V H production cross section in the H → γγ channel at √s = 13 TeV in the CMS experiment. Taiwan, Natl. Taiwan U., 2021. https://cds.cern.ch/record/2791684. [152] Thomas Junk. Confidence level computation for combining searches with small statistics. In: Nucl. Instrum. Meth. A 434 (1999), 435. https://doi.org/10.1016/S0168-9002(99)00498-2. arXiv: hep-ex/9902006. [153] Alexander L. Read. Presentation of search results: the CLs technique. In: J. Phys. G 28 (2002). Ed. by M. R. Whalley and L. Lyons, 2693. https://doi.org/10.1088/0954-3899/28/10/313. [154] R. Fisher. On the interpretation of χ2 from contingency tables, and the calculation of P. In: Journal of the Royal Statistical Society 85.1 (1922), 87–94. [155] P. D. Dauncey et al. Handling uncertainties in background shapes: the discrete profiling method. In: (2014). https://doi.org/10.1088/1748-0221/10/04/P04015. eprint: arXiv: 1408.6865. [156] CMS Collaboration. The CMS statistical analysis and combination tool: COMBINE. 2024. arXiv: 2404.06614 [physics.data-an]. https://arxiv.org/abs/2404.06614. [157] J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. In: JHEP 07 (2014), 079. https://doi.org/10.1007/JHEP07(2014)079. arXiv: 1405.0301 [hep-ph]. [158] Paolo Nason. A new method for combining NLO QCD with shower Monte Carlo algorithms. In: JHEP 11 (2004), 040. https://doi.org/10.1088/1126-6708/2004/11/040. arXiv: hep-ph/0409146 [hep-ph]. [159] Stefano Frixione, Paolo Nason, and Carlo Oleari. Matching NLO QCD computations with parton shower simulations: the powheg method. In: JHEP 11 (2007), 070. https://doi.org/10.1088/1126-6708/2007/11/070. arXiv: 0709.2092 [hep-ph]. [160] Simone Alioli et al. A general framework for implementing NLO calculations in shower Monte Carlo programs: the powheg BOX. In: JHEP 06 (2010), 043. https://doi.org/10. 1007/JHEP06(2010)043. arXiv: 1002.2581 [hep-ph]. [161] Heribertus B. Hartanto et al. Higgs boson production in association with top quarks in the powheg BOX. In: Phys. Rev. D 91 (2015), 094003. https://doi.org/10.1103/PhysRevD. 91.094003. arXiv: 1501.04498 [hep-ph]. [162] T. Gleisberg et al. Event generation with SHERPA 1.1. In: Journal of High Energy Physics 2009.02 (Feb. 2009). issn: 1126-6708. https://doi.org/10.1088/1126-6708/2009/02/007. [163] Torbjörn Sjöstrand et al. An introduction to PYTHIA 8.2. In: Comput. Phys. Commun. 191 (2015), 159. https://doi.org/10.1016/j.cpc.2015.01.024. arXiv: 1410.3012 [hep-ph]. [164] The NNPDF Collaboration et al. Parton distributions for the LHC Run II. In: Journal of High Energy Physics 2015.4 (Apr. 2015). arXiv: 1410.8849, 40. issn: 1029-8479. https://doi.org/10.1007/JHEP04(2015)040. [165] Richard D. Ball et al. Parton distributions from high-precision collider data. In: Eur. Phys. J. C 77 (2017), 663. https://doi.org/10.1140/epjc/s10052-017-5199-5. arXiv: 1706.00428 [hep-ph]. [166] V. Khachatryan et al. Event generator tunes obtained from underlying event and multi-parton scattering measurements. In: The European Physical Journal C 76.3 (Mar. 2016). issn: 1434-6052. https://doi.org/10.1140/epjc/s10052-016-3988-x. [167] A. M. Sirunyan et al. Extraction and validation of a new set of CMS pythia8 tunes from underlying-event measurements. In: The European Physical Journal C 80.1 (Jan. 2020). issn: 1434-6052. https://doi.org/10.1140/epjc/s10052-019-7499-4. [168] A. M. Sirunyan et al. Search for the flavor-changing neutral current interactions of the top quark and the Higgs boson which decays into a pair of b quarks at √s = 13 TeV. In: Journal of High Energy Physics 2018.6 (June 2018). issn: 1029-8479. https://doi.org/10.1007/jhep06(2018)102. [169] Michal Czakon and Alexander Mitov. Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders. In: Comput. Phys. Commun. 185 (2014), 2930. https://doi.org/10.1016/j.cpc.2014.06.021. arXiv: 1112.5675 [hep-ph]. [170] E. Bagnaschi et al. Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM. In: Journal of High Energy Physics 2012 (2012). [171] Paolo Nason and Carlo Oleari. NLO Higgs boson production via vector-boson fusion [172] matched with shower in POWHEG. In: Journal of High Energy Physics 2010 (2010). H. B. Hartanto et al. Higgs boson production in association with top quarks in the POWHEG BOX. In: Physical Review D 91 (2015). [173] B. Jäger, L. Reina, and D. Wackeroth. Higgs boson production in association with $b$ jets in the powheg box. In: Physical Review D 93 (2016). [174] Gionata Luisoni et al. HW/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO. In: Journal of High Energy Physics 2013 (2013). [175] CERN. CERN Yellow Reports: Monographs, Vol 2 (2017): Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector. In: (May 2017). https://doi.org/10.23731/CYRM-2017-002. [176] CMS Collaboration. Performance of the DeepJet b tagging algorithm using 41.9/fb of data from proton-proton collisions at 13TeV with Phase 1 CMS detector. In: (2018). http://cds.cern.ch/record/2646773. [177] A. M. Sirunyan et al. Measurements of ttH Production and the CP Structure of the Yukawa Interaction between the Higgs Boson and Top Quark in the Diphoton Decay Channel. In: Physical Review Letters 125.6 (Aug. 2020). issn: 1079-7114. https://doi. org/10.1103/physrevlett.125.061801. [178] ATLAS Collaboration. Search for top quark decays t → qH, with H → γγ, in √s = 13 TeV pp collisions using the ATLAS detector. In: JHEP 10 (2017), 129. https://doi.org/10.1007/JHEP10(2017)129. arXiv: 1707.01404 [hep-ex]. [179] A. Hoecker et al. TMVA - Toolkit for Multivariate Data Analysis. In: arXiv:physics/0703039 (July 2009). arXiv: physics/0703039. http://arxiv.org/abs/physics/0703039 ( 08/09/2021). [180] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, 2016. https://doi.org/10.1145/2939672.2939785. [181] CERN. CERN Yellow Reports: Monographs, Vol 2 (2017): Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector. en. 2017. https://doi.org/10.23731/CYRM-2017-002. [182] CMS Collaboration. A measurement of the Higgs boson mass in the diphoton decay channel. In: Physics Letters B 805 (June 2020), 135425. issn: 03702693. https://doi.org/10.1016/j.physletb.2020.135425. arXiv: 2002.06398[hep-ex]. [183] Albert M Sirunyan et al. Precision luminosity measurement in proton-proton collisions at √s = 13 TeV in 2015 and 2016 at CMS. In: Eur. Phys. J. C 81 (2021), 800. https://doi.org/10.1140/epjc/s10052-021-09538-2. arXiv: 2104.01927 [hep-ex]. [184] CMS Collaboration. CMS luminosity measurement for the 2017 data-taking period at √s = 13 TeV. CMS Physics Analysis Summary CMS-PAS-LUM-17-004. 2018. https://cds.cern.ch/record/2621960/. [185] CMS Collaboration. CMS luminosity measurement for the 2018 data-taking period at √s = 13 TeV. CMS Physics Analysis Summary CMS-PAS-LUM-18-002. 2019. https://cds.cern.ch/record/2676164/. [186] CMS Collaboration. Measurement of the inclusive W and Z production cross sections in pp collisions at √s = 7 TeV with the CMS experiment. In: Journal of High Energy Physics 2011.10 (Oct. 2011). issn: 1029-8479. https://doi.org/10.1007/jhep10(2011) 132. [187] CMS Collaboration. Reweighting recipe to emulate Level 1 ECAL and Muon prefiring. In: CMS twiki page (2021). https://twiki.cern.ch/twiki/bin/viewauth/CMS/L1ECALPrefiringWeightRecipe. [188] CMS Collaboration. Search for Flavor-Changing Neutral Current Interactions of the Top Quark and Higgs Boson in Final States with Two Photons in Proton-Proton Collisions at √s = 13 TeV. In: Phys. Rev. Lett. 129 (3 July 2022), 032001. https://doi.org/10. 1103/PhysRevLett.129.032001. [189] Aldo Deandrea et al. Single production of vector-like quarks: the effects of large width, interference and NLO corrections. In: Journal of High Energy Physics 2022.11 (Nov. 2022). arXiv:2105.08745 [hep-ex, physics:hep-ph], 28. issn: 1029-8479. https://doi. org/10.1007/JHEP11(2022)028. [190] J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. In: Journal of High Energy Physics 2014.7 (July 2014). issn: 1029-8479. https://doi.org/10.1007/jhep07(2014)079. [191] Pierre Artoisenet et al. Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations. In: Journal of High Energy Physics 2013.3 (Mar. 2013). issn: 1029-8479. https://doi.org/10.1007/jhep03(2013)015. [192] Richard D. Ball et al. Parton distributions from high-precision collider data: NNPDF Collaboration. In: The European Physical Journal C 77.10 (Oct. 2017). issn: 1434-6052. https://doi.org/10.1140/epjc/s10052-017-5199-5. [193] Torbjörn Sjöstrand et al. An introduction to PYTHIA 8.2. In: Computer Physics Communications 191 (June 2015), 159–177. issn: 0010-4655. https://doi.org/10.1016/j.cpc. 2015.01.024. [194] S. Agostinelli et al. Geant4—a simulation toolkit. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506.3 (July 2003). issn: 0168-9002. https://doi.org/10.1016/S0168-9002(03) 01368-8. [195] CMS Collaboration. Utilities for Accessing Pileup Information for Data. In: CMS twiki page (2021). https://twiki.cern.ch/twiki/bin/view/CMS/PileupJSONFileforData. [196] CMS Collaboration. Measurements of ttH Production and the CP Structure of the Yukawa Interaction between the Higgs Boson and Top Quark in the Diphoton Decay Channel. In: Phys. Rev. Lett. 125 (6 Aug. 2020), 061801. https://doi.org/10.1103/PhysRevLett.125.061801. [197] CMS Collaboration. Search for Flavor-Changing Neutral Current Interactions of the Top Quark and Higgs Boson in Final States with Two Photons in Proton-Proton Collisions at √s = 13 TeV. In: Physical Review Letters 129.3 (July 2022). Publisher: American Physical Society, 032001. https://doi.org/10.1103/PhysRevLett.129.032001. [198] CMS Collaboration. Search for a vector-like quark T’ → tH via the diphoton decay mode of the Higgs boson in proton-proton collisions at √s = 13 TeV. In: Journal of High Energy Physics 2023.9 (Sept. 11, 2023), 57. issn: 1029-8479. https://doi.org/10. 1007/JHEP09(2023)057. [199] CMS Collaboration. B2G Requested Statistical Tests. CMS B2G PAG document. 2022. https://cms-b2g.docs.cern.ch/combine/StatTests/%5C# goodness-of-fit-test. Accessed: 2022-01-01. [200] Gary J. Feldman and Robert D. Cousins. A unified approach to the classical statistical analysis of small signals. In: Phys. Rev. D 57 (1998), 3873. https://doi.org/10.1103/PhysRevD.57.3873. arXiv: physics/9711021. [201] Fridtjof Nansen and Otto Sverdrup. Farthest North Being the Record of a Voyage of Exploration of the Ship “Fram”1893–96 and of a Fifteen Months’Sleigh Journey by Dr. Nansen and Lieut. Johansen. Harper and Brothers, 2022. [202] ATLAS Collaboration. Search for flavour-changing neutral tqH interactions with H → γγ in pp collisions at √s = 13 TeV using the ATLAS detector. In: Journal of High Energy Physics 2023.12 (Dec. 2023). issn: 1029-8479. https://doi.org/10.1007/jhep12(2023)195. arXiv: 2309.12817. [203] CMS Collaboration. Search for flavor-changing neutral current interactions of the top quark and Higgs boson in proton-proton collisions at √s = 13 TeV. CMS Physics Analysis Summary CMS-PAS-TOP-22-002. 2023. https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/TOP-22-002/index.html. [204] ATLAS Collaboration. Search for a new scalar resonance in flavour-changing neutral-current top-quark decays t → qX (q = u, c), with X → b ̄b, in proton-proton collisions at √s = 13 TeV with the ATLAS detector. In: Journal of High Energy Physics 2023.7 (July 2023). issn: 1029-8479. https://doi.org/10.1007/jhep07(2023)199. [205] ATLAS Collaboration. Search for flavour-changing neutral-current couplings between the top quark and the Higgs boson in multi-lepton final states in 13 TeV pp collisions with the ATLAS detector. 2024. arXiv: 2404.02123[hep-ex]. https://arxiv.org/abs/2404.02123. [206] CMS Collaboration. Search for flavor-changing neutral current interactions of the top quark and the Higgs boson decaying to a bottom quark-antiquark pair at √s = 13 TeV. In: JHEP (2022), 169. https://doi.org/10.1007/JHEP02(2022)169. arXiv: 2112.09734 [hep-ex]. [207] Maria Aldaya. Flavour Changing Neutral Current decays. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots#Flavour_Changing_Neutral_Current. 2023. [208] CMS Collaboration. Summary of public Very Heavy Fermion results (August 2023). https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G#Summary_of_public_Very_Heavy_Fer. 2023. [209] CMS Collaboration. Summary table of samples produced for the 1 Billion campaign, with 25ns bunch-crossing. In: CMS twiki page (2019). https://twiki.cern.ch/twiki/bin/viewauth/CMS/SummaryTable1G25ns. [210] CMS Collaboration. Cross-sections for samples in Higg to two photon analysis. In: CMS tool for Higgs to two photons on GitHub (2021). https://github.com/cms-analysis/flashgg/blob/dev_legacy_runII/MetaData/data/cross_sections.json. [211] CMS Collaboration. Cross-sections for Top Partners in Single Production. In: CMS top partners cross-sections on GitHub (2018). https://github.com/CrossSectionsLHC/TopPartners_SingleProduction. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94646 | - |
| dc.description.abstract | 本論文包含三個主題。第一個主題為頂夸克和希格斯玻色子之間的味道改變中性流相互作用(FCNH),其中希格斯玻色子衰變為兩個光子。第二個主題則是尋找由電弱相互作用產生並衰變為頂夸克和希格斯玻色子的類向量夸克(VLQ) T',同樣是在希格斯玻色子的雙光子衰變通道進行研究。第三個主題涉及高粒度量能 器(HGCAL)二期升級項目的各種研究。
前兩項研究基於2016年至2018年間在大型強子對撞機(LHC)的緊湊緲子線圈(CMS)探測器收集的質子對撞數據,對撞質心能量為十三兆電子伏特,總亮度為 138 fb−1。觀測結果未發現明顯超出背景預測的事件訊號。在 FCNH 研究中,在 95% 信心水準下,論文給出當時最靈敏的 t → qH 分支比的上限;在 VLQ 研究中,排除了耦合常數為 0.25 時,質量高達 960 GeV 的類向量夸克。 在關於 HGCAL 項目的第三部分,研究成果包括為 HGCAL 縱向簇射剖面中的一個獨特特徵找到了可行的解釋、量化了替代觸發方案對能量解析度的影響、以及個人參與原始數據處理項目。在該項目中,筆者參與了校準算法在GPU核心中開發,處理一百萬筆數位化信號 (digitized hits) 時速度提高了10倍。此外,筆者更於 CMS 數據品質監測服務中,實現了一種新型的監視元素,使得在2023年 HGCAL 光束測試實驗期間,能夠實時監控多邊形矽晶圓圖。這一里程碑標誌著 HGCAL 系統數據品質監測服務的開始。 | zh_TW |
| dc.description.abstract | The dissertation consists of three topics. The first topic is concerned with a search for the flavor-changing neutral current interaction between a top quark and a Higgs boson (FCNH), with the Higgs boson decaying to two photons, H → γγ. The second topic is engaged in a search for the vector-like quark (VLQ) T’ produced from electroweak interactions and decaying to a top quark and a Higgs boson in the two-photon channel. The third topic involves various studies in the phase-2 upgrade project for the high-granularity calorimeter (HGCAL).
The first two studies are based on the data of the proton-proton collision at √s = 13 TeV collected with the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) between 2016 and 2018, corresponding to an integrated luminosity of 138fb−1. No significant excess above the background prediction is observed. The dissertation presents competing upper limits on the t → qH branching fractions in the FCNH study and excludes the electroweak production of T’ with masses up to 960 GeV at a 95% confidence level with coupling κT = 0.25 in the VLQ study. In the third part concerning the HGCAL project, the research results include discovering a feasible explanation for a distinctive feature in the longitudinal shower profile in HGCAL, quantifying the energy resolution degradation with an alternative trigger scheme, and personal involvement in the raw data handling project. In the project, calibration algorithms were developed in GPU kernels, resulting in a 10x speed-up when processing 1M hits. Furthermore, a new type of monitor element was implemented in the CMS DQM service, allowing real-time polygonal silicon wafer map monitoring during the 2023 HGCAL beam test event. This milestone signifies the start of the DQM for the HGCAL system. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:18:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:18:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 v
Preface vii 中文摘要 xi Abstract xiii Contents xv List of Figures xxi List of Tables xxxi 1 Introduction 1 1.1 Expeditionsin Particle Physics ..........................1 1.1.1 Historical Development .........................1 1.1.2 Standard Model Overview ........................2 1.1.3 The Higgs Boson .............................3 1.1.4 Challenges ................................4 1.2 Flavor Changing Neutral Current .........................6 1.3 Vector-Like Quark ................................8 2 Experimental Apparatus 11 2.1 Large Hadron Collider ..............................11 2.2 Compactmuonsolenoid .............................13 2.2.1 Inner Tracking System ..........................14 2.2.2 Electromagnetic Calorimeter .......................17 2.2.3 Hadronic Calorimeter ...........................18 2.2.4 Muon System ...............................19 2.2.5 Trigger System ..............................21 2.3 Contributions during 2022-2023 Data-Taking Period ..............22 2.3.1 ECAL Preshower Alignment .......................24 2.3.2 Online DQM Shifts at P5 .........................26 3 Studies in HGCAL Project 31 3.1 High-Luminosity LHC ..............................31 3.2 High Granularity Calorimeter ...........................31 3.3 Study of Longitudinal Profile using Geant4 ...................33 3.3.1 Geometry .................................35 3.3.2 Geant4 Simulation ............................35 3.3.3 Physical Suppositions ..........................37 3.3.4 Studies with Toy Detectors ........................39 3.3.5 Summary of Longitudinal Profile Study .................41 3.4 Study of Energy Resolutionfora Trigger Proposal ................43 3.4.1 Samplesand Local Reconstruction ....................43 3.4.2 Resultand Consistency Check ......................51 3.4.3 Summary of Energy Resolution Study ..................55 3.5 HGCAL Raw Data Handling ...........................56 3.5.1 Calibration Algorithms ..........................57 3.5.2 Local Reconstruction GPU Machines .................61 3.5.3 HGCALDQM ..............................66 3.5.4 Summary of Data Handling Project ...................69 4 Physics Objects 73 4.1 Photons ......................................73 4.2 Electron ......................................77 4.3 Muon .......................................77 4.4 Jets ........................................78 4.5 Missing Transverse Momentum .........................80 5 Statistical Analysis Methods 81 5.1 Quantifyan Excessin Data ............................81 5.2 Quantifyan Absenceof Signal ..........................82 5.3 Statistical Tests ..................................84 6 Search for FCNH Interactions 87 6.1 Analysis Strategy .................................88 6.2 Samples ......................................89 6.3 Event Selection and Reconstruction .......................90 6.3.1 Preselection ................................90 6.3.2 Background Studies ...........................94 6.3.3 Reconstruction of Top Quark .......................102 6.4 Differentiation Signalfrom Background .....................114 6.4.1 BD Tsfor Signal Regions .........................114 6.4.2 Optimization ...............................120 6.5 Models ......................................124 6.5.1 Resonant Processes ............................124 6.5.2 Non-Resonant Background ........................125 6.6 Systematics ....................................129 6.6.1 Theoretical Uncertainties .........................129 6.6.2 Experimental Uncertainties ........................130 6.7 Result .......................................133 7 Search for Vector-Like Quark T’ to tH 135 7.1 Analysis Strategy .................................136 7.2 Samples ......................................138 7.3 Event Selection and Reconstruction .......................138 7.3.1 Preselection ................................139 7.3.2 Background Descriptioninthe Hadronic Channel ............139 7.3.3 Reconstruction of Top Quarkand T’Candidate .............150 7.4 Differentiation between Signal and Background .................154 7.4.1 Classification Algorithm .........................156 7.4.2 Optimization ...............................164 7.5 Signal and Background Modeling ........................167 7.5.1 Resonant Processes ............................167 7.5.2 Non-Resonant Background ........................167 7.5.3 Bias Study ................................170 7.5.4 Goodness-of-Fit Test ...........................170 7.6 Systematics ....................................174 7.7 Result .......................................174 8 Conclusion and Future Prospect 177 8.1 Search for FCNH Interactions ..........................177 8.2 Searchfor VLQ T′→tH.............................180 8.3 HGCAL R&D ...................................180 Bibliography 183 A Analysis Samples 201 A.1 List of Data Samples ...............................201 A.2 List of MC Samplesfor FCNH Signal ......................202 A.3 List of MC Samplesfor VLQ Signal .......................202 A.4 List of MC Samplesfor SM Background .....................203 B FCNH related 205 B.1 FCNH: Input Features to MV As .........................205 C VLQ Related Figures 213 C.1 Coupling Strength of Vector-Like Quark .....................213 C.2 Mass Region Study ................................214 C.3 Fake Photon Correlation in the Data-Driven Description ............216 C.4 Input Features to MV Asinthe Hadronic Channel ................220 C.5 Input Features to MV Asinthe Leptonic Channel ................226 C.6 Unblind Diphoton Invariant Massand BDTs at Preselection Level .......229 C.7 Modeling for GoF Test ..............................233 C.7.1 SM Higgsand NRB Modelsin CR 1 ...................233 C.7.2 SM Higgsand NRB Modelsin CR 2 ...................235 D Three-Minute Thesis Presentation 237 | - |
| dc.language.iso | en | - |
| dc.subject | 雙光子衰變 | zh_TW |
| dc.subject | 緊湊緲子線圈 | zh_TW |
| dc.subject | 高粒度量能器 | zh_TW |
| dc.subject | 味變中性流 | zh_TW |
| dc.subject | 希格斯玻色子 | zh_TW |
| dc.subject | 類向量夸克 | zh_TW |
| dc.subject | 大型強子對撞機 | zh_TW |
| dc.subject | Flavor-Changing Neutral Current | en |
| dc.subject | High Granularity Calorimeter | en |
| dc.subject | Diphoton Decay Channel | en |
| dc.subject | Higgs Boson | en |
| dc.subject | Vector-Like Quark | en |
| dc.subject | Compact Muon Solenoid | en |
| dc.subject | Large Hadron Collider | en |
| dc.title | 於對撞能量十三兆電子伏特的緊湊緲子線圈實驗藉由希格斯玻色子的雙光子衰變通道搜尋頂夸克味變中性流及似向量夸克和參與 CMS 高粒度量能器第二期升級計畫 | zh_TW |
| dc.title | Exploring Top Quark Flavour Changing Neutral Higgs Interactions and Vector-Like Quark Signatures through the H → γγ Decay Channel at √s=13 TeV within the CMS Experiment, along with Participation in the CMS Phase-2 High Granularity Calorimeter Project | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 呂榮祥;郭家銘;裴斯達;侯維恕;蔣正偉;章文箴;佩德羅 | zh_TW |
| dc.contributor.oralexamcommittee | Rong-Shyang Lu;Chia-Ming Kuo;Stathes Paganis;Wei-Shu Hou;Cheng-Wei Chiang;Wen-Chen Chang;Pedro Vieira De Castro Ferreira Da Silva | en |
| dc.subject.keyword | 大型強子對撞機,緊湊緲子線圈,味變中性流,類向量夸克,希格斯玻色子,雙光子衰變,高粒度量能器, | zh_TW |
| dc.subject.keyword | Large Hadron Collider,Compact Muon Solenoid,Flavor-Changing Neutral Current,Vector-Like Quark,Higgs Boson,Diphoton Decay Channel,High Granularity Calorimeter, | en |
| dc.relation.page | 238 | - |
| dc.identifier.doi | 10.6342/NTU202403742 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 46.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
