請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94637完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳立仁 | zh_TW |
| dc.contributor.advisor | Li-Jen Chen | en |
| dc.contributor.author | 梁喻淳 | zh_TW |
| dc.contributor.author | Yu-Chun Liang | en |
| dc.date.accessioned | 2024-08-16T17:14:11Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-11 | - |
| dc.identifier.citation | 1. Sloan, E. D., Fundamental principles and applications of natural gas hydrates. Nature 2003, 426 (6964), 353-359.
2. Karanjkar, P. U.; Ahuja, A.; Zylyftari, G.; Lee, J. W.; F. Morris, J., Rheology of cyclopentane hydrate slurry in a model oil-continuous emulsion. Rheologica Acta 2016, 55 (3), 235-243. 3. Zylyftari, G.; Ahuja, A.; Morris, J. F., Modeling Oilfield Emulsions: Comparison of Cyclopentane Hydrate and Ice. Energy & Fuels 2015, 29 (10), 6286-6295. 4. Schicks, J. M., Gas hydrates in nature and in the laboratory: necessary requirements for formation and properties of the resulting hydrate phase. ChemTexts 2022, 8 (2), 13. 5. Wang, Q.; Tang, Q.; Tian, S., Molecular dynamics simulation of sI methane hydrate under compression and tension. Open Chemistry 2020, 18 (1), 69-76. 6. Handa, Y. P.; Tse, J. S., Thermodynamic properties of empty lattices of structure I and structure II clathrate hydrates. The Journal of Physical Chemistry 1986, 90 (22), 5917-5921. 7. Sloan, E. D.; Subramanian, S.; Matthews, P. N.; Lederhos, J. P.; Khokhar, A. A., Quantifying Hydrate Formation and Kinetic Inhibition. Industrial & Engineering Chemistry Research 1998, 37 (8), 3124-3132. 8. Gupta, A.; Dec, S. F.; Koh, C. A.; Sloan, E. D., NMR Investigation of Methane Hydrate Dissociation. The Journal of Physical Chemistry C 2007, 111 (5), 2341-2346. 9. Sosso, G. C.; Chen, J.; Cox, S. J.; Fitzner, M.; Pedevilla, P.; Zen, A.; Michaelides, A., Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations. Chemical Reviews 2016, 116 (12), 7078-7116. 10. Kini, R. A.; Dec, S. F.; Sloan, E. D., Methane + Propane Structure II Hydrate Formation Kinetics. The Journal of Physical Chemistry A 2004, 108 (44), 9550-9556. 11. Subramanian, S.; Kini, R. A.; Dec, S. F.; Sloan, E. D., Evidence of structure II hydrate formation from methane+ethane mixtures. Chemical Engineering Science 2000, 55 (11), 1981-1999. 12. Subramanian, S.; Ballard, A. L.; Kini, R. A.; Dec, S. F.; Sloan, E. D., Structural transitions in methane+ethane gas hydrates — Part I: upper transition point and applications. Chemical Engineering Science 2000, 55 (23), 5763-5771. 13. Daghash, S. M.; Servio, P.; Rey, A. D., Elastic properties and anisotropic behavior of structure-H (sH) gas hydrate from first principles. Chemical Engineering Science 2020, 227, 115948. 14. Murayama, K.; Takeya, S.; Alavi, S.; Ohmura, R., Anisotropic lattice expansion of structure H clathrate hydrates induced by help guest: experiments and molecular dynamics simulations. The Journal of Physical Chemistry C 2014, 118 (37), 21323-21330. 15. Kumar, S.; Kwon, H.-T.; Choi, K.-H.; Lim, W.; Cho, J. H.; Tak, K.; Moon, I., LNG: An eco-friendly cryogenic fuel for sustainable development. Applied Energy 2011, 88 (12), 4264-4273. 16. Westbrook, G. K.; Chand, S.; Rossi, G.; Long, C.; Bünz, S.; Camerlenghi, A.; Carcione, J. M.; Dean, S.; Foucher, J. P.; Flueh, E.; Gei, D.; Haacke, R. R.; Madrussani, G.; Mienert, J.; Minshull, T. A.; Nouzé, H.; Peacock, S.; Reston, T. J.; Vanneste, M.; Zillmer, M., Estimation of gas hydrate concentration from multi-component seismic data at sites on the continental margins of NW Svalbard and the Storegga region of Norway. Marine and Petroleum Geology 2008, 25 (8), 744-758. 17. Haacke, R. R.; Westbrook, G. K.; Riley, M. S., Controls on the formation and stability of gas hydrate-related bottom-simulating reflectors (BSRs): A case study from the west Svalbard continental slope. Journal of Geophysical Research: Solid Earth 2008, 113 (B5). 18. Haacke, R. R.; Westbrook, G. K.; Hyndman, R. D., Gas hydrate, fluid flow and free gas: Formation of the bottom-simulating reflector. Earth and Planetary Science Letters 2007, 261 (3), 407-420. 19. Makogon, Y. F.; Holditch, S. A.; Makogon, T. Y., Natural gas-hydrates-A potential energy source for the 21st Century. Journal of Petroleum Science and Engineering 2007, 56 (1), 14-31. 20. Milkov, A. V., Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Science Reviews 2004, 66 (3), 183-197. 21. Demirbas, A.; Rehan, M.; Al-Sasi, B. O.; Nizami, A.-S., Evaluation of natural gas hydrates as a future methane source. Petroleum Science and Technology 2016, 34 (13), 1204-1210. 22. Rempel, A. W.; Buffett, B. A., Formation and accumulation of gas hydrate in porous media. Journal of Geophysical Research: Solid Earth 1997, 102 (B5), 10151-10164. 23. Boswell, R.; Collett, T. S.; McConnell, D. R.; Frye, M.; Shedd, W. W.; Mrozewski, S.; Guerin, G.; Cook, A.; Shelander, D. L.; Dai, J.; Godfriaux, P. D.; Dufrene, R. S.; Jones, E.; Roy, R., Special Session - Gas Hydrates: Gulf of Mexico Gas Hydrates Joint Industry Project: Overview of Leg II LWD Results. Offshore Technology Conference 2010, OTC-20560-MS. 24. Hadley, C.; Peters, D.; Vaughan, A.; Bean, D., Gumusut-Kakap project: geohazard characterisation andimpact on field development plans. International Petroleum Technology Conference 2008, IPTC-12554-MS. 25. Qingbai, W.; Guanli, J.; Peng, Z., Assessing the permafrost temperature and thickness conditions favorable for the occurrence of gas hydrate in the Qinghai-Tibet Plateau. Energy Conversion and Management 2010, 51 (4), 783-787. 26. Collett, T. S.; Dallimore, S. R., Permafrost-associated gas hydrate. Natural Gas Hydrate: In Oceanic and Permafrost Environments 2003, 43-60. 27. Makogon, Y. F., Natural gas hydrates – A promising source of energy. Journal of Natural Gas Science and Engineering 2010, 2 (1), 49-59. 28. Priestley, J., Versuche und Beobachtungen über verschiedene Gattungen der Luft: 3. 1780, 3. 29. Hammerschmidt, E., Formation of gas hydrates in natural gas transmission lines. Industrial & engineering chemistry 1934, 26 (8), 851-855. 30. Hansen, J.; Sato, M.; Ruedy, R.; Lacis, A.; Oinas, V., Global warming in the twenty-first century: An alternative scenario. Proceedings of the National Academy of Sciences 2000, 97 (18), 9875-9880. 31. Andersson, V.; Kv˦rner, A.; Norway, O.; Haines, M., Gas hydrates for deep ocean storage of CO2 - Novel technology for utilising hydrates for transport of CO2. Greenhouse Gas Control Technologies 7 2005, 1487-1492. 32. Goldthorpe, S., Potential for very deep ocean storage of CO2 without ocean acidification: a discussion paper. Energy Procedia 2017, 114, 5417-5429. 33. Huo, Z.; Hester, K.; Sloan Jr., E. D.; Miller, K. T., Methane hydrate nonstoichiometry and phase diagram. AIChE Journal 2003, 49 (5), 1300-1306. 34. Anderson, F. E.; Prausnitz, J. M., Inhibition of gas hydrates by methanol. AIChE Journal 1986, 32 (8), 1321-1333. 35. Zanota, M. L.; Dicharry, C.; Graciaa, A., Hydrate plug prevention by quaternary ammonium salts. Energy & Fuels 2005, 19 (2), 584-590. 36. Kelkar, S. K.; Selim, M. S.; Sloan, E. D., Hydrate dissociation rates in pipelines. Fluid Phase Equilibria 1998, 150-151, 371-382. 37. Aresta, M.; Dibenedetto, A.; Quaranta, E., Thermodynamics and applications of CO2 hydrates. Reaction Mechanisms in Carbon Dioxide Conversion 2016, 373-402. 38. Xiao, C.; Adidharma, H., Dual function inhibitors for methane hydrate. Chemical Engineering Science 2009, 64 (7), 1522-1527. 39. Xiao, C.; Wibisono, N.; Adidharma, H., Dialkylimidazolium halide ionic liquids as dual function inhibitors for methane hydrate. Chemical Engineering Science 2010, 65 (10), 3080-3087. 40. Masoudi, R.; Tohidi, B., On modelling gas hydrate inhibition by salts and organic inhibitors. Journal of Petroleum Science and Engineering 2010, 74 (3), 132-137. 41. Mohammadi, A. H.; Richon, D., Thermodynamic modeling of salt precipitation and gas hydrate inhibition effect of salt aqueous solution. Industrial & Engineering Chemistry Research 2007, 46 (14), 5074-5079. 42. Haghighi, H.; Chapoy, A.; Burgess, R.; Mazloum, S.; Tohidi, B., Phase equilibria for petroleum reservoir fluids containing water and aqueous methanol solutions: Experimental measurements and modelling using the CPA equation of state. Fluid Phase Equilibria 2009, 278 (1), 109-116. 43. Ng, H.-J.; Robinson, D. B., Hydrate formation in systems containing methane, ethane, propane, carbon dioxide or hydrogen sulfide in the presence of methanol. Fluid Phase Equilibria 1985, 21 (1), 145-155. 44. Mohammadi, A. H.; Richon, D., Phase equilibria of clathrate hydrates of tetrahydrofuran + hydrogen sulfide and tetrahydrofuran + methane. Industrial & Engineering Chemistry Research 2009, 48 (16), 7838-7841. 45. de Deugd, R. M.; Jager, M. D.; de Swaan Arons, J., Mixed hydrates of methane and water-soluble hydrocarbons modeling of empirical results. AIChE Journal 2001, 47 (3), 693-704. 46. Zhang, Q.; Chen, G.-J.; Huang, Q.; Sun, C.-Y.; Guo, X.-Q.; Ma, Q.-L., Hydrate formation conditions of a hydrogen + methane gas mixture in tetrahydrofuran + water. Journal of Chemical & Engineering Data 2005, 50 (1), 234-236. 47. Prasad, P. S. R.; Sowjanya, Y.; Shiva Prasad, K., Micro-raman investigations of mixed gas hydrates. Vibrational Spectroscopy 2009, 50 (2), 319-323. 48. Radhakrishnan, R.; Trout, B. L., A new approach for studying nucleation phenomena using molecular simulations: Application to CO2 hydrate clathrates. The Journal of Chemical Physics 2002, 117 (4), 1786-1796. 49. CHRISTIANSEN, R. L.; SLOAN JR., E. D., Mechanisms and kinetics of hydrate formation. Annals of the New York Academy of Sciences 1994, 715 (1), 283-305. 50. Long, J., Gas hydrate formation mechanism and kinetic inhibition. 1994. 51. Jacobson, L. C.; Hujo, W.; Molinero, V., Amorphous precursors in the nucleation of clathrate hydrates. Journal of the American Chemical Society 2010, 132 (33), 11806-11811. 52. Yaqub, S.; lal, B.; Shariff, A. b. M.; Mellon, N. B., Unraveling the effect of sub-cooling temperatures on the kinetic performance of biopolymers for methane hydrate. Journal of Natural Gas Science and Engineering 2019, 65, 68-81. 53. Kang, S.-P.; Shin, J.-Y.; Lim, J.-S.; Lee, S., Experimental measurement of the induction time of natural gas Hydrate and its prediction with polymeric kinetic inhibitor. Chemical Engineering Science 2014, 116, 817-823. 54. Bavoh, C. B.; Partoon, B.; Lal, B.; Gonfa, G.; Foo Khor, S.; Sharif, A. M., Inhibition effect of amino acids on carbon dioxide hydrate. Chemical Engineering Science 2017, 171, 331-339. 55. Sa, J.-H.; Lee, B. R.; Park, D.-H.; Han, K.; Chun, H. D.; Lee, K.-H., Amino acids as natural inhibitors for hydrate formation in CO2 sequestration. Environmental Science & Technology 2011, 45 (13), 5885-5891. 56. Mannar, N.; Bavoh, C. B.; Baharudin, A. H.; Lal, B.; Mellon, N. B., Thermophysical properties of aqueous lysine and its inhibition influence on methane and carbon dioxide hydrate phase boundary condition. Fluid Phase Equilibria 2017, 454, 57-63. 57. Bavoh, C. B.; Nashed, O.; Khan, M. S.; Partoon, B.; Lal, B.; Sharif, A. M., The impact of amino acids on methane hydrate phase boundary and formation kinetics. The Journal of Chemical Thermodynamics 2018, 117, 48-53. 58. Bavoh, C. B.; Khan, M. S.; Lal, B.; Bt Abdul Ghaniri, N. I.; Sabil, K. M., New methane hydrate phase boundary data in the presence of aqueous amino acids. Fluid Phase Equilibria 2018, 478, 129-133. 59. Bavoh, C. B.; Partoon, B.; Lal, B.; Kok Keong, L., Methane hydrate-liquid-vapour-equilibrium phase condition measurements in the presence of natural amino acids. Journal of Natural Gas Science and Engineering 2017, 37, 425-434. 60. Kyte, J.; Doolittle, R. F., A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 1982, 157 (1), 105-132. 61. Sowa, B.; Maeda, N., Statistical study of the memory effect in model natural gas hydrate systems. The Journal of Physical Chemistry A 2015, 119 (44), 10784-10790. 62. Li, Y.; Wu, N.; He, C.; Sun, Z.; Zhang, Z.; Hao, X.; Chen, Q.; Bu, Q.; Liu, C.; Sun, J., Nucleation probability and memory effect of methane-propane mixed gas hydrate. Fuel 2021, 291, 120103. 63. Ho, Y.-H.; Khoo, Y. Z.; Chen, Y.-P.; Ohmura, R.; Chen, L.-J., Unusual promotion/inhibition effect of polyethylenimine on CO2/CH4 hydrate formation: A potential green chemical additive for CH4-CO2 replacement process. Chemical Engineering Journal 2023, 472, 144892. 64. Stryjek, R.; Vera, J. H., PRSV - An improved peng-robinson equation of state with new mixing rules for strongly nonideal mixtures. The Canadian Journal of Chemical Engineering 1986, 64 (2), 334-340. 65. Chin, H.-Y.; Hsieh, M.-K.; Chen, Y.-P.; Chen, P.-C.; Lin, S.-T.; Chen, L.-J., Prediction of phase equilibrium for gas hydrate in the presence of organic inhibitors and electrolytes by using an explicit pressure-dependent Langmuir adsorption constant in the van der Waals–Platteeuw model. The Journal of Chemical Thermodynamics 2013, 66, 34-43. 66. Hsieh, M.-K.; Ting, W.-Y.; Chen, Y.-P.; Chen, P.-C.; Lin, S.-T.; Chen, L.-J., Explicit pressure dependence of the Langmuir adsorption constant in the van der Waals-Platteeuw model for the equilibrium conditions of clathrate hydrates. Fluid Phase Equilibria 2012, 325, 80-89. 67. Hsieh, M.-K.; Yeh, Y.-T.; Chen, Y.-P.; Chen, P.-C.; Lin, S.-T.; Chen, L.-J., Predictive method for the change in equilibrium conditions of gas hydrates with addition of inhibitors and electrolytes. Industrial & Engineering Chemistry Research 2012, 51 (5), 2456-2469. 68. Qasim, A.; Khan, M. S.; Lal, B.; Ismail, M. C.; Rostani, K., Quaternary ammonium salts as thermodynamic hydrate inhibitors in the presence and absence of monoethylene glycol for methane hydrates. Fuel 2020, 259, 116219. 69. Keshavarz, L.; Javanmardi, J.; Eslamimanesh, A.; Mohammadi, A. H., Experimental measurement and thermodynamic modeling of methane hydrate dissociation conditions in the presence of aqueous solution of ionic liquid. Fluid Phase Equilibria 2013, 354, 312-318. 70. Keshavarz, L.; Ghaani, M. R.; English, N. J., Thermodynamic evaluation of inhibitors for methane-hydrate formation. Fuel 2022, 324, 124672. 71. Kassim, Z.; Saad Khan, M.; Lal, B., Thermodynamic modelling on methane hydrate equilibrium condition in the presence of electrolyte inhibitor. Materials Today: Proceedings 2019, 19, 1395-1402. 72. Nashed, O.; Dadebayev, D.; Khan, M. S.; Bavoh, C. B.; Lal, B.; Shariff, A. M., Experimental and modelling studies on thermodynamic methane hydrate inhibition in the presence of ionic liquids. Journal of Molecular Liquids 2018, 249, 886-891. 73. Saberi, A.; Alamdari, A.; Shariati, A.; Mohammadi, A. H., Experimental measurement and thermodynamic modeling of equilibrium condition for natural gas hydrate in MEG aqueous solution. Fluid Phase Equilibria 2018, 459, 110-118. 74. Fan, S.-S.; Guo, T.-M., Hydrate formation of CO2-rich binary and quaternary gas mixtures in aqueous sodium chloride solutions. Journal of Chemical & Engineering Data 1999, 44 (4), 829-832. 75. Ferrari, P. F.; Guembaroski, A. Z.; Marcelino Neto, M. A.; Morales, R. E. M.; Sum, A. K., Experimental measurements and modelling of carbon dioxide hydrate phase equilibrium with and without ethanol. Fluid Phase Equilibria 2016, 413, 176-183. 76. Maekawa, T., Equilibrium conditions for clathrate hydrates formed from carbon dioxide or ethane in the presence of aqueous solutions of 1,4-dioxane and 1,3-dioxolane. Fluid Phase Equilibria 2014, 384, 95-99. 77. Kamari, A.; Hashemi, H.; Babaee, S.; Mohammadi, A. H.; Ramjugernath, D., Phase stability conditions of carbon dioxide and methane clathrate hydrates in the presence of KBr, CaBr2, MgCl2, HCOONa, and HCOOK aqueous solutions: Experimental measurements and thermodynamic modelling. The Journal of Chemical Thermodynamics 2017, 115, 307-317. 78. Veluswamy, H. P.; Kumar, A.; Kumar, R.; Linga, P., An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application. Applied Energy 2017, 188, 190-199. 79. Cai, Y.; Chen, Y.; Li, Q.; Li, L.; Huang, H.; Wang, S.; Wang, W., CO2 hydrate formation promoted by a natural amino acid l-methionine for possible application to CO2 capture and storage. Energy Technology 2017, 5 (8), 1195-1199. 80. Lim, V. W. S.; Barwood, M. T. J.; Metaxas, P. J.; Johns, M. L.; Aman, Z. M.; May, E. F., Nucleation rates of carbon dioxide hydrate. Chemical Engineering Journal 2022, 443, 136359. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94637 | - |
| dc.description.abstract | 本研究以等容法來進行甲烷以及二氧化碳水合物系統熱力學條件的量測,通過測量添加胺基酸的系統在不同溫度及壓力下的熱力學條件來得到三種氨基酸 (異白胺酸、賴氨酸、甲硫胺酸) 對於甲烷及二氧化碳水合物相邊界的影響,甲烷水合物實驗溫度為275.49 K - 288.00 K;壓力範圍為3.24 MPa - 12.40 MPa,對於二氧化碳系統,溫度範圍是272.81 K - 281.16 K;壓力則為1.28 MPa - 3.43 MPa。通過實驗可以得知,在0.1 mol%的添加濃度下,胺基酸對甲烷水合物的抑制效果排序為異白胺酸>賴氨酸>甲硫胺酸,異白胺酸具有最好的抑制效果,平均抑制溫度為0.29 K,其中甲硫胺酸對於甲烷水合物的相邊界影響幾乎可以忽略。在二氧化碳水合物系統中,抑制效果排序為異白胺酸>賴氨酸>甲硫胺酸,與甲烷水合物趨勢相同,異白胺酸具有最大抑制溫度,平均抑制溫度0.62 K。
在動力學實驗方面,使用恆溫法及攪拌來進行純水與含有異白胺酸之水合物系統的各項動力學性質,實驗長度為誘導時間後600分鐘,動力學性能通過以下幾點進行綜合比較: 誘導時間、總氣體消耗量、初始消耗速率、90%氣體消耗時間及速率。在二氧化碳系統中,系統所設定的溫度為275.15 K,量測壓力為2.875 MPa,異白胺酸的添加濃度為0.1與0.3 mol%,與純水二氧化碳系統相比,隨著異白胺酸添加濃度的提高,平均誘導時間會由純水的21.74分鐘拉長至0.3 mol%的45.17分鐘,而在總氣體消耗量上,0.1 mol% 異白胺酸具有最好的表現,平均為0.0597 mol,0.3 mol%略小於0.1 mol%,為0.0575 mol,純水則僅為0.0100 mol,在誘導時間與氣體消耗方面,純水與異白胺酸系統表現出了不一樣的抑制/促進趨勢。在甲烷水合物動力學條件方面,溫度設定在280.15 K,壓力設定為10.000 MPa,所添加的添加劑為0.1 mol%的異白胺酸,與二氧化碳系統相似,加入異白胺酸的系統在誘導時間上略長於純水系統,由7.23分鐘延長至9.20分鐘,氣體消耗能力上,純水系統平均為0.0298 mol,0.1 mol%異白胺酸系統為0.1908 mol,這也與二氧化碳系統類似,添加了異白胺酸的系統在誘導時間上皆會延長水合物的成核時間,反之在氣體消耗方面則具有巨大的提升效果。 | zh_TW |
| dc.description.abstract | This study used the isochoric method to measure thermodynamic conditions (phase boundary) of methane and carbon dioxide hydrates in the presence of amino acids. Three amino acids, isoleucine, lysine, and methionine, were chosen in this study. The impact of amino acids on the phase boundaries of methane and carbon dioxide hydrates was determined. For methane hydrate experiments, the temperature ranged from 275.49 to 288.00 K, and the pressure ranged from 3.24 to 12.40 MPa. For the carbon dioxide hydrate systems, the temperature ranged from 272.81 to 281.16 K, and the pressure ranged from 1.28 to 3.43 MPa. The experiments revealed that at an additive concentration of 0.1 mol%, the inhibitory effects of amino acids on methane hydrate were ranked as follows: isoleucine > lysine > methionine. Isoleucine exhibited the best inhibitory effect, with an average inhibition of 0.29 K, whereas the impact of methionine on the phase boundary of methane hydrate was almost negligible. In the carbon dioxide hydrate system, the inhibition ranking was the same as for methane hydrate: isoleucine > lysine > methionine, with isoleucine exhibiting the highest suppression temperature of 0.62 K.
For the kinetic experiments, the isothermal method and stirring were used to study the kinetic properties of hydrate formation in the presence/absence of isoleucine. The experiment duration for hydrate formation was 600 minutes after the induction time, and the kinetic performance was compared based on several factors: induction time, total gas consumption, initial consumption rate, and 90% gas consumption time and rate. The experimental temperature in the carbon dioxide system was fixed at 275.15 K, and the initial pressure was chosen at 2.875 MPa. The isoleucine concentrations were 0.1 and 0.3 mol%. Compared to the pure water carbon dioxide system, the average induction time was increased from 21.74 minutes for pure water to 45.17 minutes at 0.3 mol% isoleucine system. Regarding total gas consumption, 0.1 mol% isoleucine had the best performance with an average consumption of 0.0597 mol, while 0.3 mol% was slightly lower at 0.0575 mol, and pure water was only 0.0100 mol. The pure water and isoleucine systems exhibited different trends in induction time and gas consumption. For methane hydrate kinetic conditions, the temperature was set at 280.15 K and the pressure at 10.000 MPa. The additive was 0.1 mol% isoleucine. Like the carbon dioxide system, the induction time in the isoleucine-added system was slightly longer than that in the pure water system, extending from 7.23 minutes to 9.20 minutes. For gas consumption, the pure water system averaged 0.0298 mol, while the 0.1 mol% isoleucine system averaged 0.1908 mol. This is also similar to the carbon dioxide system, where the addition of isoleucine extended the nucleation time of the hydrate in terms of induction time and significantly improved gas consumption. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:14:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:14:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 II
Abstract IV 目次 VII 圖次 IX 表次 XVI 第一章、 緒論 1 1.1 天然氣體水合物介紹 1 1.2 天然氣體水合物的起源與應用 2 1.3 本研究研究目標 3 第二章、文獻回顧 8 2.1 吉伯斯相平衡定律 8 2.2 水合物熱力學性質量測 9 2.3 水合物動力學特性 10 第三章、實驗步驟 26 3.1 實驗藥品 26 3.2 實驗器材架構 26 3.3 實驗方法及數據處理 27 3.3.1 熱力學實驗方法及數據處理 27 3.3.2 動力學實驗方法及數據處理 29 第四章、添加胺基酸對於甲烷及二氧化碳水合物形成熱力學之影響 40 4.1 純水甲烷及二氧化碳水合物曲線與文獻比較 40 4.2 胺基酸對於甲烷水合物熱力學形成影響 40 4.3 胺基酸對於二氧化碳水合物熱力學形成影響 41 第五章、添加胺基酸對於二氧化碳及甲烷水合物形成動力學之影響 55 5.1 二氧化碳動力學實驗條件 55 5.2 二氧化碳水合物動力學實驗數據分析 55 5.2.1 添加isoleucine對於二氧化碳水合物形成之誘導時間影響 55 5.2.2 添加isoleucine對於二氧化碳水合物600分鐘氣體消耗量之影響 56 5.2.3 添加isoleucine對於二氧化碳水合物初始形成速率之影響 57 5.2.4 添加isoleucine對於二氧化碳水合物90%形成速率之影響 57 5.3 甲烷動力學實驗條件 58 5.4 甲烷水合物動力學實驗數據分析 58 5.4.1 添加isoleucine對於甲烷水合物形成之誘導時間影響 58 5.4.2 添加isoleucine對於甲烷水合物600分鐘氣體消耗量之影響 58 5.4.3 添加isoleucine對於甲烷水合物初始形成速率之影響 59 5.4.4 添加isoleucine對於甲烷水合物90%形成速率之影響 60 5.5 動力學實驗與相邊界實驗比較 60 5.6純水與添加isoleucine系統水合物晶體示意圖 61 5.7使用經典成核理論推算水合物成核速率 62 第六章、結論 99 參考文獻 100 附錄 113 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 氣體水合物 | zh_TW |
| dc.subject | 異白胺酸 | zh_TW |
| dc.subject | 甲硫胺酸 | zh_TW |
| dc.subject | 賴氨酸 | zh_TW |
| dc.subject | 相平衡 | zh_TW |
| dc.subject | 誘導時間 | zh_TW |
| dc.subject | 氣體消耗 | zh_TW |
| dc.subject | Isoleucine | en |
| dc.subject | Gas consumption. | en |
| dc.subject | Induction time | en |
| dc.subject | Phase equilibrium | en |
| dc.subject | Lysine | en |
| dc.subject | Methionine | en |
| dc.subject | Gas hydrate | en |
| dc.title | 添加異白胺酸、甲硫胺酸與賴氨酸對於甲烷及二氧化碳水合物之熱力學與動力學性質量測 | zh_TW |
| dc.title | Thermodynamic and Kinetic Properties of Methane and Carbon Dioxide Hydrate in the Presence of Isoleucine, Methionine, and Lysine | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳延平;蘇至善;蔡榮進 | zh_TW |
| dc.contributor.oralexamcommittee | Yan-Ping Chen;Chie-Shaan Su;Jung-Chin Tasim | en |
| dc.subject.keyword | 氣體水合物,異白胺酸,甲硫胺酸,賴氨酸,相平衡,誘導時間,氣體消耗, | zh_TW |
| dc.subject.keyword | Gas hydrate,Isoleucine,Methionine,Lysine,Phase equilibrium,Induction time,Gas consumption., | en |
| dc.relation.page | 120 | - |
| dc.identifier.doi | 10.6342/NTU202403415 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 重點科技研究學院 | - |
| dc.contributor.author-dept | 奈米工程與科學學位學程 | - |
| 顯示於系所單位: | 奈米工程與科學學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
