Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94630
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李允中zh_TW
dc.contributor.advisorJonathan Leeen
dc.contributor.author朱紹瑜zh_TW
dc.contributor.authorShao-Yu Chuen
dc.date.accessioned2024-08-16T17:11:46Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citation[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
[2] A. Alhazmi, A. Al-Sharawi, B. Liu, D. Oliveira, K. Sobh, M. Mayantz, R. de Bled, and Y. M. Zhang. Software requirements specification of the iufa's uuis – a team 4 comp5541-w10 project approach, 2010.
[3] H. Bogumiła, H. Zbigniew, T. Lech, and D. Iwona. Conceptual modeling using knowledge of domain ontology. In N. T. Nguyen, B. Trawiński, H. Fujita, and T.-P. Hong, editors, Intelligent Information and Database Systems, pages 554–564, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.
[4] A. Brandolini. Introducing event storming. blog, Ziobrando's Lair, 18, 2013.
[5] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. Ponde, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. W. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, I. Babuschkin, S. Balaji, S. Jain, A. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba. Evaluating large language models trained on code. ArXiv, abs/2107.03374, 2021.
[6] B. Curtis. Insights from empirical studies of the software design process. Future Generation Computer Systems, 7(2):139–149, 1992.
[7] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In kdd, volume 96, pages 226–231, 1996.
[8] E. Evans. Domain-driven design: tackling complexity in the heart of software.
Addison-Wesley Professional, 2004.
[9] Explosion. spacy-experimental: Cutting-edge experimental spacy components and features. https://github.com/explosion/spacy-experimental, Nov. 2023.
[10] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang, and M. Zhou. CodeBERT: A pre-trained model for programming and natural languages. In T. Cohn, Y. He, and Y. Liu, editors, Findings of the Association
for Computational Linguistics: EMNLP 2020, pages 1536–1547, Online, Nov. 2020. Association for Computational Linguistics.
[11] W. N. Francis and H. Kucera. Brown corpus manual. Technical report, Department of Linguistics, Brown University, 1979.
[12] M. Honnibal, I. Montani, S. Van Landeghem, and A. Boyd. spaCy: Industrial- strength Natural Language Processing in Python. 2020.
[13] C. Hutto and E. Gilbert. Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Proceedings of the international AAAI conference on web and social media, volume 8, pages 216–225, 2014.
[14] J. Inc. Codegpt: Ai coding for developers. https://codegpt.co/, 2024.
[15] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling, F. Gimeno, A. D. Lago, T. Hubert, P. Choy, C. de Masson d'Au- tume, I. Babuschkin, X. Chen, P.-S. Huang, J. Welbl, S. Gowal, A. Cherepanov, J. Molloy, D. J. Mankowitz, E. S. Robson, P. Kohli, N. de Freitas, K. Kavukcuoglu, and O. Vinyals. Competition-level code generation with alphacode. Science, 378(6624):1092–1097, 2022.
[16] D. Lin et al. An information-theoretic definition of similarity. In Icml, volume 98, pages 296–304, 1998.
[17] Y.-L. Lin. From requirements to microservice: A domain driven approach with machine learning. Master's thesis, National Taiwan University, 2023.
[18] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak. Easy approach to require- ments syntax (ears). In 2009 17th IEEE International Requirements Engineering Conference, pages 317–322, 2009.
[19] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre- sentations in vector space. arXiv preprint arXiv:1301.3781, 2013.
[20] G. A. Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):39–41, 1995.
[21] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 1532–1543, 2014.
[22] P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65, 1987.
[23] S. Si-Said Cherfi, S. Ayad, and I. Comyn-Wattiau. Improving business process model quality using domain ontologies. Journal on Data Semantics, 2:75–87, 2013.
[24] R. Speer, J. Chin, and C. Havasi. Conceptnet 5.5: An open multilingual graph of general knowledge, 2017.
[25] L. Tan. Pywsd: Python implementations of word sense disambiguation (wsd) tech- nologies [software]. https://github.com/alvations/pywsd, 2014.
[26] J. H. Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301):236–244, 1963.
[27] R. Yager. On ordered weighted averaging aggregation operators in multicriteria deci- sionmaking. IEEE Transactions on Systems, Man, and Cybernetics, 18(1):183–190, 1988.
[28] D. Zan, B. Chen, D. Yang, Z. Lin, M. Kim, B. Guan, Y. Wang, W. Chen, and J.-G. Lou. CERT: Continual pre-training on sketches for library-oriented code generation. In The 2022 International Joint Conference on Artificial Intelligence, 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94630-
dc.description.abstract近年來,Event Storming 方法在軟體設計領域逐漸受到關注。然而,Event Storming 仰賴領域專家長時間參與,實施條件嚴苛。為了解決這個問題,我們提出了一種自動化的 Event Storming 流程,可用於從軟體需求中推導出 bounded contexts。該方法先從使用案例規格中提取 domain events,接著運用自然語言處理技術及外部知識庫的領域專業知識,找出領域模型中重要的 entities 及 attributes,進而依循 Domain-Driven Design 的概念將其聚合為 aggregates 和 bounded contexts。該方法有效減少了對領域專家參與的依賴,提高軟體設計的效率。zh_TW
dc.description.abstractEvent Storming has gained attention as an innovative method for software design. However, conducting Event Storming is challenging due to the need for extensive involvement from domain experts and stakeholders. In response to this challenge, we propose an automated Event Storming process aimed at deriving bounded contexts from software requirements. This process begins by extracting domain events from use case specifications. It then identifies the entities and attributes in the domain model by leveraging Natural Language Processing techniques and integrating domain knowledge sourced from external knowledge bases. These entities are subsequently aggregated into aggregates and bounded contexts in accordance with Domain-Driven Design principles. This method effectively reduces the dependency on domain experts' involvement and enhances the efficiency of software design.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:11:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:11:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements ii
摘要 iii
Abstract iv
Contents v
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
Chapter 2 Related Work 4
2.1 Background Work 4
2.1.1 Domain-Driven Design 4
2.1.2 Event Storming 5
2.1.3 EARS Requirements 6
2.2 Related Work 6
2.2.1 Leveraging Domain Knowledge in Domain Modeling 6
2.2.2 Mapping Natural Language to Programming Language 7
2.2.2.1 CodeBERT 7
2.2.2.2 CodeGPT 7
Chapter 3 The Process of Deriving Bounded Contexts 8
3.1 Collect Domain Events 10
3.2 Extract Entities and Attributes 11
3.2.1 NLP-Based Approach 11
3.2.1.1 Syntactic Dependency Parsing 12
3.2.1.2 Semantic Analysis 12
3.2.1.3 Rules 13
3.2.2 Knowledge Graph-Based Approach 14
3.2.2.1 Group Use Cases Based on Use Case Relationships 16
3.2.2.2 Identify the Domain Objects and Attributes Within Each Use Case Group 19
3.2.2.3 Determine Which Domain Object Each Attribute Is Associated With 19
3.2.3 Combining the Extraction Results 20
3.3 Identify Aggregates 20
3.4 Cluster Aggregates into Bounded Contexts 21
3.4.1 Calculate Distances Between Aggregates 22
3.4.1.1 Similarity in WordNet 23
3.4.1.2 Relatedness in ConceptNet 24
3.4.1.3 Aggregating the Metrics 24
3.4.2 Clustering Algorithm 25
3.4.2.1 Density-Based Clustering 25
3.4.2.2 Find the Optimal Number of Clusters 26
3.4.2.3 Hierarchical Clustering 27
Chapter 4 Case Study: Unified University Inventory System 29
4.1 Input 29
4.2 Domain Events 32
4.3 Entities and Attributes 33
4.4 Aggregates 35
4.5 Bounded Contexts 35
Chapter 5 Conclusion 39
Chapter 6 Future Work 40
References 41
Appendix A — WordNet Lexical Semantic Categories 45
A.1 Action Verbs 45
A.2 Change-Inducing Verbs 46
Appendix B — Relations in ConceptNet 47
-
dc.language.isoen-
dc.subject領域驅動設計zh_TW
dc.subject事件腦力激盪zh_TW
dc.subject知識庫zh_TW
dc.subject自然語言處理zh_TW
dc.subject軟體設計zh_TW
dc.subjectSoftware Designen
dc.subjectNatural Language Processingen
dc.subjectKnowledge Baseen
dc.subjectDomain-Driven Designen
dc.subjectEvent Stormingen
dc.title自動化事件腦力激盪:從 EARS 需求推導出受限制的前後文內容zh_TW
dc.titleAutomate Event Storming Process to Derive Bounded Contexts from EARS Requirementsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭永斌;蘇木春;王小璠;薛念林zh_TW
dc.contributor.oralexamcommitteeYung-Pin Cheng;Mu-Chun Su;Hsiao-Fan Wang;Nien-Lin Hsuehen
dc.subject.keyword事件腦力激盪,領域驅動設計,軟體設計,自然語言處理,知識庫,zh_TW
dc.subject.keywordEvent Storming,Domain-Driven Design,Software Design,Natural Language Processing,Knowledge Base,en
dc.relation.page50-
dc.identifier.doi10.6342/NTU202404153-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf11.37 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved