請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94623完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 溫在弘 | zh_TW |
| dc.contributor.advisor | Tzai-Hung Wen | en |
| dc.contributor.author | 林穎沛 | zh_TW |
| dc.contributor.author | Ying-Pei Lin | en |
| dc.date.accessioned | 2024-08-16T17:09:10Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | Abdullah, M., Dias, C., Muley, D., & Shahin, M. (2020). Exploring the impacts of COVID-19 on travel behavior and mode preferences. Transp Res Interdiscip Perspect, 8, 100255. https://doi.org/10.1016/j.trip.2020.100255
Ahn, Y. Y., Bagrow, J. P., & Lehmann, S. (2010). Link communities reveal multiscale complexity in networks. Nature, 466(7307), 761-764. https://doi.org/10.1038/nature09182 Barry, J. J., Newhouser, R., Rahbee, A., & Sayeda, S. (2002). Origin and Destination Estimation in New York City with Automated Fare System Data. Transportation Research Record: Journal of the Transportation Research Board, 1817(1), 183-187. https://doi.org/10.3141/1817-24 Cerqueira, S., Arsenio, E., & Henriques, R. (2022). Inference of dynamic origin–destination matrices with trip and transfer status from individual smart card data. European Transport Research Review, 14(1). https://doi.org/10.1186/s12544-022-00562-1 Chen, L., Xu, F., Hao, Q., Hui, P., & Li, Y. (2023). Getting Back on Track: Understanding COVID-19 Impact on Urban Mobility and Segregation with Location Service Data. Proceedings of the International AAAI Conference on Web and Social Media, 17(1), 126-136. https://doi.org/10.1609/icwsm.v17i1.22132 Chen, W., Chen, X., Cheng, L., Liu, X., & Chen, J. (2022). Delineating borders of urban activity zones with free-floating bike sharing spatial interaction network. Journal of Transport Geography, 104. https://doi.org/10.1016/j.jtrangeo.2022.103442 De Montis, A., Caschili, S., & Chessa, A. (2013). Commuter networks and community detection: A method for planning sub regional areas. The European Physical Journal Special Topics, 215(1), 75-91. https://doi.org/10.1140/epjst/e2013-01716-4 Derrible, S. (2012). Network Centrality of Metro Systems. PLoS One, 7(7), e40575. https://doi.org/10.1371/journal.pone.0040575 Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821-7826. https://doi.org/doi:10.1073/pnas.122653799 Guo, Z., & Wilson, N. H. M. (2011). Assessing the cost of transfer inconvenience in public transport systems: A case study of the London Underground. Transportation Research Part A: Policy and Practice, 45(2), 91-104. https://doi.org/10.1016/j.tra.2010.11.002 Hernandez, S., & Monzon, A. (2016). Key factors for defining an efficient urban transport interchange: Users' perceptions. Cities, 50, 158-167. https://doi.org/10.1016/j.cities.2015.09.009 Jang, W. (2010). Travel Time and Transfer Analysis Using Transit Smart Card Data. Transportation Research Record: Journal of the Transportation Research Board, 2144(1), 142-149. https://doi.org/10.3141/2144-16 Li, A., Zhao, P., Haitao, H., Mansourian, A., & Axhausen, K. W. (2021). How did micro-mobility change in response to COVID-19 pandemic? A case study based on spatial-temporal-semantic analytics. Comput Environ Urban Syst, 90, 101703. https://doi.org/10.1016/j.compenvurbsys.2021.101703 Liu, W., Suzumura, T., Ji, H., & Hu, G. (2018). Finding overlapping communities in multilayer networks. PLoS One, 13(4), e0188747. https://doi.org/10.1371/journal.pone.0188747 Long, Y., & Shen, Z. (2015). Discovering Functional Zones Using Bus Smart Card Data and Points of Interest in Beijing. In Y. Long & Z. Shen (Eds.), Geospatial Analysis to Support Urban Planning in Beijing (pp. 193-217). Springer International Publishing. https://doi.org/10.1007/978-3-319-19342-7_10 Lucchini, L., Centellegher, S., Pappalardo, L., Gallotti, R., Privitera, F., Lepri, B., & De Nadai, M. (2021). Living in a pandemic: changes in mobility routines, social activity and adherence to COVID-19 protective measures. Sci Rep, 11(1), 24452. https://doi.org/10.1038/s41598-021-04139-1 Murtagh, E. M., Mair, J. L., Aguiar, E., Tudor-Locke, C., & Murphy, M. H. (2021). Outdoor Walking Speeds of Apparently Healthy Adults: A Systematic Review and Meta-analysis. Sports Med, 51(1), 125-141. https://doi.org/10.1007/s40279-020-01351-3 Pipitone, J. M., & Jović, S. (2021). Urban green equity and COVID-19: Effects on park use and sense of belonging in New York City. Urban Forestry & Urban Greening, 65. https://doi.org/10.1016/j.ufug.2021.127338 Saha, J., Barman, B., & Chouhan, P. (2020). Lockdown for COVID-19 and its impact on community mobility in India: An analysis of the COVID-19 Community Mobility Reports, 2020. Child Youth Serv Rev, 116, 105160. https://doi.org/10.1016/j.childyouth.2020.105160 Seaborn, C., Attanucci, J., & Wilson, N. H. M. (2009). Analyzing Multimodal Public Transport Journeys in London with Smart Card Fare Payment Data. Transportation Research Record: Journal of the Transportation Research Board, 2121(1), 55-62. https://doi.org/10.3141/2121-06 Tirachini, A., & Cats, O. (2020). COVID-19 and Public Transportation: Current Assessment, Prospects, and Research Needs. J Public Trans, 22(1), 1-21. https://doi.org/10.5038/2375-0901.22.1.1 Wang, Y., Hua, M., Chen, X., & Chen, W. (2023). Sustainable response strategy for COVID-19: Pandemic zoning with urban multimodal transport data. J Transp Geogr, 110, 103605. https://doi.org/10.1016/j.jtrangeo.2023.103605 Wang, Z.-J., Liu, Y., & Chen, F. (2018). Evaluation and Improvement of the Interchange from Bus to Metro Using Smart Card Data and GIS. Journal of Urban Planning and Development, 144(2). https://doi.org/10.1061/(asce)up.1943-5444.0000435 Zhang, L., Xiao, Z., Ren, S., Qin, Z., Goh, R. S. M., & Song, J. (2022). Measuring the vulnerability of bike-sharing system. Transportation Research Part A: Policy and Practice, 163, 353-369. https://doi.org/10.1016/j.tra.2022.05.019 Zhong, C., Arisona, S. M., Huang, X., Batty, M., & Schmitt, G. (2014). Detecting the dynamics of urban structure through spatial network analysis. International Journal of Geographical Information Science, 28(11), 2178-2199. https://doi.org/10.1080/13658816.2014.914521 Zhong, J., He, Z., & Xie, J. (2023). Revealing the travel community in the integrated system of free-floating bike and metro. Sustainable Cities and Society, 97. https://doi.org/10.1016/j.scs.2023.104760 臺北市資料大平臺 (2023a). 臺北捷運車站出入口座標.https://data.taipei/dataset/detail?id=cfa4778c-62c1-497b-b704-756231de348b 臺北市資料大平臺 (2023b). 站位資訊.https://data.taipei/dataset/detail?id=ce7d3d2b-096f-4f2d-b7cf-cdd6a529f35c 臺北市資料大平臺 (2023c). 臺北市公車站牌位置圖.https://data.taipei/dataset/detail?id=48aa5bca-2a4f-4fb7-a658-43cba51d5d56 北臺灣微笑單車地圖 (非官方) (2023).https://www.google.com/maps/d/viewer?mid=1_w-BryvXq_28YDHwncobQSWfMcs&hl=zh_TW 新北市政府資料開放平臺 (2023). 公車站位資訊.https://data.ntpc.gov.tw/datasets/34b402a8-53d9-483d-9406-24a682c2d6dc 臺北市公共運輸處 (2023). 臺北市Data.Taipei平台API說明文件.https://pto.gov.taipei/News_Content.aspx?n=A1DF07A86105B6BB&s=55E8ADD164E4F579&sms=2479B630A6BD8079 衛生福利部疾病管制署 (2021a). 因應本土疫情持續嚴峻,指揮中心自即日起至5月28日止提升全國疫情警戒至第三級,各地同步加嚴、加大防疫限制,嚴守社區防線.https://www.cdc.gov.tw/Bulletin/Detail/abDtRS-xzztQeAchjX9fqw?typeid=9 衛生福利部疾病管制署 (2021b).強化COVID-19第三級疫情警戒相關措施及裁罰說明,請民眾確實遵守.https://www.cdc.gov.tw/Bulletin/Detail/S5NomUGuTz7MaezDJ6B2Dg?typeid=9 教育部全球資訊網 (2021). 全國各級學校因應疫情停課居家線上學習.https://www.edu.tw/News_Content.aspx?n=9E7AC85F1954DDA8&s=8BF1696CC31F4FE9 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94623 | - |
| dc.description.abstract | 至今為止,COVID-19 已對民眾的生活造成巨大的影響,在疫情期間人們可能會改變其旅行的習慣。了解城市內旅行者的行為是迫切的,掌握人流動向有利政府當局在疫情期間採取應對的管制措施。
本文利用了適用多層網絡模型的階層分群演算法,對疫情前與疫情當下時期的多運具智慧卡資料模型進行了分群,產生重疊的空間結構,其顯示人流往來變得稀疏、生活圈範圍擴大。另外,結合橋接性與可及範圍的概念,提出了與以往不同觀點的角度來衡量轉乘站的重要性和風險性。最後,藉土地利用資料推測旅行目的地,發現旅客降低前往商業場所的比例,而更往混合使用住宅移動等,顯示人們會避開人流群聚的場所,傾向待在家中,降低被傳染的風險。 本研究反映了城市內部的公共運輸人流對於疫情爆發的反應。成果能幫助大眾運輸系統的管理與運營,以及公共衛生方面的防疫策略訂定時的參考。 | zh_TW |
| dc.description.abstract | So far, COVID-19 has had a huge impact on people's lives, people may change their travel behaviors during epidemic time. Understanding the behavior of travelers in the city is urgent, which is beneficial for the government authorities to take corresponding control measures during the epidemic.
In this paper, a hierarchical clustering algorithm for multi-layer network is used to analyze a pair of multimodal models consisted of smartcard data in the pre-epidemic and epidemic periods, resulting in overlapping spatial structures that indicate sparser footfalls and widening of living circles. In addition, the concepts of bridging and accessibility are introduced to provide a different perspective on the importance and risk of hubs. Finally, land use data were used to infer travel destinations, and it was found that travelers were less likely to go to commercial establishments and more likely to move to mixed-use residences, suggesting that people avoid crowded places and tend to stay at home to reduce the risk of being infected. This study reflects the response of intra-city public transportation flows to an outbreak. The results can be used as a reference for the government and operation of public transportation systems, for developing public health strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:09:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:09:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要................................................................................................................................... i
Abstract ........................................................................................................................... ii 目次................................................................................................................................. iii 圖次................................................................................................................................. iv 表次................................................................................................................................ vii 第一章 研究動機及研究目的...................................................................................... 1 第一節 研究動機...................................................................................................... 1 第二節 研究目的...................................................................................................... 5 第二章 文獻回顧.......................................................................................................... 6 第一節 分群技術運用在智慧卡資料...................................................................... 6 第二節 轉乘行為相關研究...................................................................................... 7 第四節 綜合評述.................................................................................................... 10 第三章 研究方法...................................................................................................... 11 第一節 研究架構.................................................................................................... 11 第二節 研究資料.................................................................................................... 11 第三節 研究方法.................................................................................................... 14 第四章 成果與討論.................................................................................................... 41 第一節 範例資料成果 .............................................................................................. 41 第二節 智慧卡資料成果 .......................................................................................... 43 第五章 討論.................................................................................................................. 62 第六章 結論.................................................................................................................. 66 參考文獻........................................................................................................................ 67 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 都市運輸 | zh_TW |
| dc.subject | 轉乘 | zh_TW |
| dc.subject | 網絡分群 | zh_TW |
| dc.subject | 智慧卡資料 | zh_TW |
| dc.subject | 多層網絡模型 | zh_TW |
| dc.subject | Network Clustering | en |
| dc.subject | Urban Transportation | en |
| dc.subject | Multilayer Network Mode | en |
| dc.subject | Smartcard Data | en |
| dc.subject | Transfer | en |
| dc.title | 評估 COVID-19 疫情對於都市交通轉運功能的衝擊: 多運具移動網絡模型的階層分群分析 | zh_TW |
| dc.title | Evaluating the Impact of the COVID-19 on the Transit Function of Urban Transportation: A Hierarchical Cluster Analysis of a Multimodal Network Model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許聿廷;林禎家;郭佩棻 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Ting Hsu;Jen-Jia Lin;Pei-Fen Kuo | en |
| dc.subject.keyword | 都市運輸,轉乘,網絡分群,智慧卡資料,多層網絡模型, | zh_TW |
| dc.subject.keyword | Urban Transportation,Transfer,Network Clustering,Smartcard Data,Multilayer Network Mode, | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU202403575 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地理環境資源學系 | - |
| 顯示於系所單位: | 地理環境資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
