請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94609完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于天立 | zh_TW |
| dc.contributor.advisor | Tian-Li Yu | en |
| dc.contributor.author | 江讀晉 | zh_TW |
| dc.contributor.author | Tu-Chin Chiang | en |
| dc.date.accessioned | 2024-08-16T17:01:48Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-09 | - |
| dc.identifier.citation | [1] A. Bouter, T. Alderliesten, C. Witteveen, and P. A. Bosman. Exploiting linkage information in real-valued optimization with the real-valued gene-pool optimal mixing evolutionary algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 705–712, 2017.
[2] A. Brindle. Genetic algorithms for function optimization. 1980. [3] B. Burlacu, G. Kronberger, and M. Kommenda. Operon C++: An efficient genetic programming framework for symbolic regression. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages 1562–1570, 2020. [4] F. O. de França. Transformation-interaction-rational representation for symbolic regression: A detailed analysis of SRBench results. ACM Transactions on Evolutionary Learning, 3(2):1–19, 2023. [5] J. Duffy and J. Engle-Warnick. Using symbolic regression to infer strategies from experimental data. In Evolutionary Computation in Economics and Finance, pages 61–82. Springer, 2002. [6] W.-Z. Fang, C.-H. Chang, J.-C. Liu, and T.-L. Yu. GP with ranging-binding technique for symbolic regression. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages 563–566, 2023. [7] Y. Fang and J. Li. A review of tournament selection in genetic programming. In International Symposium on Intelligence Computation and Applications, pages 181–192. Springer, 2010. [8] R. Feynman, R. Leighton, and M. Sands. The Feynman. Lectures of Physics, 1:7–13, 1971. [9] B. Fornberg. Generation of finite difference formulas on arbitrarily spaced grids. Mathematics of Computation, 51(184):699–706, 1988. [10] J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1, 2010. [11] C. Haider, F. O. de França, G. Kronberger, and B. Burlacu. Comparing optimistic and pessimistic constraint evaluation in shape-constrained symbolic regression. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 938–945, 2022. [12] B. He, Q. Lu, Q. Yang, J. Luo, and Z. Wang. Taylor genetic programming for symbolic regression. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 946–954, 2022. [13] W. G. Horner. A new method of solving numerical equations of all orders, by continuous approximation. Philosophical Transactions of the Royal Society of London, (109):308–335, 1819. [14] I. Icke and J. C. Bongard. Improving genetic programming based symbolic regression using deterministic machine learning. In IEEE Congress on Evolutionary Computation, pages 1763–1770. IEEE, 2013. [15] D. Izzo, F. Biscani, and A. Mereta. Differentiable genetic programming. In European Conference on Genetic Programming, pages 35–51. Springer, 2017. [16] A. Kartelj and M. Djukanović. RILS-ROLS: Robust symbolic regression via iterated local search and ordinary least squares. Journal of Big Data, 10(71), 2023. [17] M. Kommenda, B. Burlacu, G. Kronberger, and M. Affenzeller. Parameter identification for symbolic regression using nonlinear least squares. Genetic Programming and Evolvable Machines, 21(3):471–501, 2020. [18] J. R. Koza. On the programming of computers by means of natural selection. Genetic Programming, 1992. [19] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT press, 1994. [20] K. Krawiec and U.-M. O’Reilly. Behavioral programming: A broader and more detailed take on semantic GP. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 935–942, 2014. [21] W. La Cava, B. Burlacu, M. Virgolin, M. Kommenda, P. Orzechowski, F. O. de França, Y. Jin, and J. H. Moore. Contemporary symbolic regression methods and their relative performance. Advances in Neural Information Processing Systems, 2021(DB1):1, 2021. [22] W. La Cava, K. Danai, L. Spector, P. Fleming, A. Wright, and M. Lackner. Automatic identification of wind turbine models using evolutionary multiobjective optimization. Renewable Energy, 87:892–902, 2016. [23] W. La Cava, T. Helmuth, L. Spector, and J. H. Moore. A probabilistic and multi-objective analysis of lexicase selection and ε-lexicase selection. Evolutionary Computation, 27(3):377–402, 2019. [24] W. La Cava, L. Spector, and K. Danai. Epsilon-lexicase selection for regression. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 741–748, 2016. [25] W. B. Langdon and R. Poli. Fitness causes bloat. Springer, 1998. [26] K. Levenberg. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2(2):164–168, 1944. [27] N. H. Luong, H. La Poutré, and P. A. Bosman. Multi-objective gene-pool optimal mixing evolutionary algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 357–364, 2014. [28] H. B. Mann and D. R. Whitney. On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, pages 50–60, 1947. [29] D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2):431–441, 1963. [30] T. McConaghy. FFX: Fast, scalable, deterministic symbolic regression technology. Genetic Programming Theory and Practice IX, pages 235–260, 2011. [31] J. McDermott, D. R. White, S. Luke, L. Manzoni, M. Castelli, L. Vanneschi, W. Jaskowski, K. Krawiec, R. Harper, and K. De Jong. Genetic programming needs better benchmarks. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 791–798, 2012. [32] P. Orzechowski, W. La Cava, and J. H. Moore. Where are we now? a large benchmark study of recent symbolic regression methods. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 1183–1190, 2018. [33] T. P. Pawlak, B. Wieloch, and K. Krawiec. Semantic backpropagation for designing search operators in genetic programming. IEEE Transactions on Evolutionary Computation, 19(3):326–340, 2014. [34] B. K. Petersen, M. Landajuela, T. N. Mundhenk, C. P. Santiago, S. K. Kim, and J. T. Kim. Deep symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gradients. In Proceedings of the International Conference on Learning Representations, 2021. [35] M. Quade, M. Abel, K. Shafi, R. K. Niven, and B. R. Noack. Prediction of dynamical systems by symbolic regression. Physical Review E, 94(1):012214, 2016. [36] M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental data. Science, 324(5923):81–85, 2009. [37] H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons, Inc., 1981. [38] M. Semenkina, B. Burlacu, and M. Affenzeller. Genetic programming based evolvement of models of models. In Computer Aided Systems Theory–EUROCAST 2019, pages 387–395. Springer, 2020. [39] L. Spector. Assessment of problem modality by differential performance of lexicase selection in genetic programming: A preliminary report. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 401–408, 2012. [40] T. Stephens. Genetic programming in Python, with a scikit-learn inspired API: gplearn, 2016. [41] B. Taylor. Methodus incrementorum directa et inversa [direct and reverse methods of incrementation](in latin). 1715. [42] W. Tenachi, R. Ibata, and F. I. Diakogiannis. Deep symbolic regression for physics guided by units constraints: Toward the automated discovery of physical laws. The Astrophysical Journal, 959(2):99, 2023. [43] D. Thierens and P. A. Bosman. Hierarchical problem solving with the linkage tree genetic algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 877–884, 2013. [44] D. Thierens and P. A. Bosman. Optimal mixing evolutionary algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 617–624, 2011. [45] T. Tohme, D. Liu, and K. Youcef-Toumi. GSR: A generalized symbolic regression approach. Transactions on Machine Learning Research, 2023. [46] S.-M. Udrescu and M. Tegmark. AI Feynman: A physics-inspired method for symbolic regression. Science Advances, 6(16):eaay2631, 2020. [47] M. Virgolin, T. Alderliesten, and P. A. Bosman. Linear scaling with and within semantic backpropagation-based genetic programming for symbolic regression. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 1084–1092, 2019. [48] M. Virgolin, T. Alderliesten, C. Witteveen, and P. A. Bosman. Improving model-based genetic programming for symbolic regression of small expressions. Evolutionary Computation, 29(2):211–237, 2021. [49] Y. Wang, N. Wagner, and J. M. Rondinelli. Symbolic regression in materials science. MRS Communications, 9(3):793–805, 2019. [50] T. Worm and K. Chiu. Prioritized grammar enumeration: Symbolic regression by dynamic programming. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 1021–1028, 2013. [51] B.-T. Zhang and H. Mühlenbein. Balancing accuracy and parsimony in genetic programming. Evolutionary Computation, 3(1):17–38, 1995. [52] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology, 67(2):301–320, 2005. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94609 | - |
| dc.description.abstract | 符號迴歸之目的在於獲得最符合給定數據集的數學表達式。符號迴歸問題包含多種解法,包括決定性的與啟發式的演算法。遺傳程式設計使用交配和選擇等演化機制來演進族群中的程式。本篇論文提出了一個稱作符號迴歸增強器的框架,此符號迴歸增強器結合了遺傳程式設計和其他符號迴歸方法。其主要的想法為使用來自其他符號迴歸方法的表達式之語法樹來提高遺傳程式設計演化過程的品質與效率。具體來說,本篇論文研究了不同的語法樹規則、混合函式、選擇機制和交配機制來構建符號迴歸增強器算法。符號迴歸增強器的有效性藉由兩個傳統的以及五個基於遺傳程式設計的符號迴歸方法來展示。在來自符號回歸基準和費曼符號迴歸資料庫的二十八個基準中,統計測試表明,每個藉由符號迴歸增強器增強之方法在最少四個到最多二十四個基準中顯著優於各自的符號迴歸方法,且優於的情況多於劣於的情況。此外,本篇論文深入探究基於遺傳程式設計的符號迴歸方法的最佳切換時刻,以確定何時轉換到符號迴歸增強器框架。結果顯示當族群多樣性下降到給定之閾值時,可以指示從基於遺傳程式設計的方法切換到符號迴歸增強器的適當時機。 | zh_TW |
| dc.description.abstract | Symbolic regression (SR) aims to obtain a mathematical expression that most accurately fits a given dataset. The SR problem encompasses various methods, including deterministic and heuristic algorithms. Genetic programming (GP) uses evolutionary mechanisms, such as crossover and selection, to evolve programs in a population. This thesis proposes a framework called the symbolic regressor enhancer (SRE), which combines GP with other SR methods. The main idea is to use the syntax tree of the expression from other SR methods to enhance both the quality and the efficiency of the GP evolutionary procedure. Specifically, this thesis investigates different rules for syntax trees, hybridization, selection, and crossover to construct the SRE algorithm. The effectiveness of SRE is demonstrated using two traditional and five GP-based SR methods. Out of 28 benchmarks from the SR benchmark and Feynman SR database, the statistical tests show that each SRE-enhanced method significantly outperforms the respective SR method in at least 4 and up to 24 benchmarks, with more instances of outperformance than underperformance. Furthermore, this thesis delves into investigating the optimal switching moment for GP-based SR methods to determine when to transition to the SRE framework. The results indicate that a decrease in population diversity to a given threshold can signal the appropriate moment to switch from GP-based methods to SRE. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:01:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:01:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 iii Abstract v Contents vii List of Figures xi List of Tables xv Chapter 1 Introduction 1 Chapter 2 Background 5 2.1 Symbolic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Benchmark Problems . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Taylor Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Fast Function Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.1 Semantic Backpropagation Genetic Programming . . . . . . . . . . 13 2.4.2 Operon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.3 Genetic Programming Variant of Gene-pool Optimal Mixing Evolutionary Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.4 Epsilon-lexicase Selection . . . . . . . . . . . . . . . . . . . . . . 16 2.4.5 gplearn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Chapter 3 Symbolic Regressor Enhancer 19 3.1 Investigation on Taylor Polynomial Enhancer . . . . . . . . . . . . . . 19 3.2 Methodology for Hybridization . . . . . . . . . . . . . . . . . . . . . . 21 3.3 Determination of Mechanisms . . . . . . . . . . . . . . . . . . . . . . 25 3.3.1 Mechanism Candidates . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.2 Model Selection Process . . . . . . . . . . . . . . . . . . . . . . . 28 Chapter 4 Evaluation of SRE-enhanced Methods 37 4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Results and Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2.1 Comparisons to Respective SR Methods . . . . . . . . . . . . . . . 40 4.2.2 Overall Ranking Comparisons . . . . . . . . . . . . . . . . . . . . 44 Chapter 5 Investigation on Switching Moment 47 5.1 Necessity of SRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2 Switches on Various Moments . . . . . . . . . . . . . . . . . . . . . . 48 5.3 Observation on Population Diversity . . . . . . . . . . . . . . . . . . . 51 5.3.1 Trends of Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3.2 Trends of Automatically Defined Function Variety . . . . . . . . . . 54 5.4 Evaluation of Switching Indicator . . . . . . . . . . . . . . . . . . . . 56 Chapter 6 Conclusion 61 References 63 Appendix A — Postscript 71 A.1 Expression Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.2 Symbolic Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . 73 A.3 Different Hybridization Functions . . . . . . . . . . . . . . . . . . . . 74 | - |
| dc.language.iso | en | - |
| dc.subject | 遺傳程式設計 | zh_TW |
| dc.subject | 符號迴歸 | zh_TW |
| dc.subject | Genetic programming | en |
| dc.subject | Symbolic regression | en |
| dc.title | 使用混合函數和遺傳程式設計之符號迴歸增強器 | zh_TW |
| dc.title | Symbolic Regressor Enhancer Using Genetic Programming with Hybridization Function | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳和麟;林澤 | zh_TW |
| dc.contributor.oralexamcommittee | Ho-Lin Chen;Che Lin | en |
| dc.subject.keyword | 符號迴歸,遺傳程式設計, | zh_TW |
| dc.subject.keyword | Symbolic regression,Genetic programming, | en |
| dc.relation.page | 74 | - |
| dc.identifier.doi | 10.6342/NTU202402638 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
