請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94608完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李明穗 | zh_TW |
| dc.contributor.advisor | Ming-Sui Lee | en |
| dc.contributor.author | 侯宥任 | zh_TW |
| dc.contributor.author | You-Ren Hou | en |
| dc.date.accessioned | 2024-08-16T17:01:29Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-09 | - |
| dc.identifier.citation | [1] C. Akdis, C. Bachert, C. Cingi, M. Dykewicz, P. Hellings, R. Naclerio, R. Schleimer, and D. Ledford. Endotypes and phenotypes of chronic rhinosinusitis: A practall document of the european academy of allergy and clinical immunology and the american academy of allergy, asthma immunology. The Journal of allergy and clinical immunology, 131, 04 2013.
[2] L. Breiman. Random forests. Machine learning, 45:5–32, 2001. [3] G. Campanella, M. Hanna, L. Geneslaw, A. Miraflor, V. Silva, K. Busam, E. Brogi, V. Reuter, D. Klimstra, and T. Fuchs. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nature Medicine, 25:1, 08 2019. [4] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698, 1986. [5] P.-P. Cao, H.-B. Li, B.-F. Wang, S.-B. Wang, X.-J. You, Y.-H. Cui, D.-Y. Wang, M. Desrosiers, and Z. Liu. Distinct immunopathologic characteristics of various types of chronic rhinosinusitis in adult chinese. Journal of Allergy and Clinical Immunology, 124(3):478–484.e2, 2009. [6] T. H. Chan, F. J. Cendra, L. Ma, G. Yin, and L. Yu. Histopathology whole slide image analysis with heterogeneous graph representation learning, 2023. [7] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273– 297, 1995. [8] D. R. Cox. The regression analysis of binary sequences. Journal of the Royal Statistical Society: Series B (Methodological), 20(2):215–232, 1958. [9] T. Delemarre, B. S. Bochner, H.-U. Simon, and C. Bachert. Rethinking neutrophils and eosinophils in chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 148(2):327–335, 2021. [10] W. Du, W. Kang, S. Lai, Z. Cai, Y. Chen, X. Zhang, and Y. Lin. Deep learning in computed tomography to predict endotype in chronic rhinosinusitis with nasal polyps. BMC Medical Imaging, 24, 01 2024. [11] W. Fokkens, V. Lund, C. Hopkins, P. Hellings, R. Kern, S. Reitsma, S. Toppila- Salmi, M. Bernal-Sprekelsen, J. Mullol, I. Alobid, W. Anselmo-Lima, C. Bachert, F. Baroody, C. von Buchwald, A. Cervin, N. Cohen, J. Constantinidis, L. Gabory, M. Desrosiers, and C. Zwetsloot. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology journal, 58:1–464, 02 2020. [12] J. Ho, A. W. Hamizan, R. Alvarado, J. Rimmer, W. A. Sewell, and R. J. Harvey. Systemic predictors of eosinophilic chronic rhinosinusitis. American Journal of Rhinology & Allergy, 32(4):252–257, 2018. PMID: 29862828. [13] Y. Hu, P.-P. Cao, G.-T. Liang, Y.-H. Cui, and Z. Liu. Diagnostic significance of blood eosinophil count in eosinophilic chronic rhinosinusitis with nasal polyps in chinese adults. The Laryngoscope, 122(3):498–503, 2012. [14] S. M. Humphries, J. P. Centeno, A. M. Notary, J. Gerow, G. Cicchetti, R. K. Katial, D. M. Beswick, V. R. Ramakrishnan, R. Alam, and D. A. Lynch. Volumetric assessment of paranasal sinus opacification on computed tomography can be automated using a convolutional neural network. International Forum of Allergy & Rhinology, 10(11):1218–1225, 2020. [15] S. Lai, W. Kang, Y. Chen, J. Zou, S. Wang, X. Zhang, X. Zhang, and Y. Lin. An end-to-end crswnp prediction with multichannel resnet on computed tomography. International Journal of Biomedical Imaging, 2024(1):4960630, 2024. [16] F. Li, S. Wang, X. Cha, T. Li, Y. Xie, W. Wang, W. Ren, J. Liao, and H. Liu. Blood eosinophil percentage and improved sinus ct score as diagnostic tools for ecrs. OTO Open, 8(1):e106, 2024. [17] H. Lou, Y. Meng, Y. Piao, C. Wang, L. Zhang, and C. Bachert. Predictive significance of tissue eosinophilia for nasal polyp recurrence in the chinese population. American Journal of Rhinology & Allergy, 29(5):350–356, 2015. PMID: 26219765. [18] V. Lund and I. Mackay. Staging in rhinosinusitis. Rhinology, 31:183–4, 01 1994. [19] Y. Matsuwaki, T. Ookushi, D. Asaka, E. Mori, T. Nakajima, T. Yoshida, J. Kojima, S. Chiba, N. Ootori, and H. Moriyama. Chronic rhinosinusitis: Risk factors for the recurrence of chronic rhinosinusitis based on 5-year follow-up after endoscopic sinus surgery. International archives of allergy and immunology, 146 Suppl 1:77–81, 02 2008. [20] Y. Meng, H. Lou, C. Wang, and L. Zhang. Predictive significance of computed tomography in eosinophilic chronic rhinosinusitis with nasal polyps. International Forum of Allergy & Rhinology, 6(8):812–819, 2016. [21] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld. Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing, 39(3):355–368, 1987. [22] Y. Sakuma, J. Ishitoya, M. Komatsu, O. Shiono, M. Hirama, Y. Yamashita, T. Kaneko, S. Morita, and M. Tsukuda. New clinical diagnostic criteria for eosinophilic chronic rhinosinusitis. Auris Nasus Larynx, 38(5):583–588, 2011. [23] J. Serra. Image Analysis and Mathematical Morphology. Academic Press, 1982. [24] S. H. Tecimer, F. Kasapoglu, U. L. Demir, O. Ozmen, H. Coskun, and O. Basut. Correlation between clinical findings and eosinophil/neutrophil ratio in patients with nasal polyps. European Archives of Oto-Rhino-Laryngology, 272:915–921, 2015. [25] T. Tokunaga, M. Sakashita, T. Haruna, D. Asaka, S. Takeno, H. Ikeda, T. Nakayama, N. Seki, S. Ito, J. Murata, Y. Sakuma, N. Yoshida, T. Terada, I. Morikura, H. Sakaida, K. Kondo, K. Teraguchi, M. Okano, N. Otori, M. Yoshikawa, K. Hirakawa, S. Haruna, T. Himi, K. Ikeda, J. Ishitoya, Y. Iino, R. Kawata, H. Kawauchi, M. Kobayashi, T. Yamasoba, T. Miwa, M. Urashima, M. Tamari, E. Noguchi, T. Ninomiya, Y. Imoto, T. Morikawa, K. Tomita, T. Takabayashi, and S. Fujieda. Novel scoring system and algorithm for classifying chronic rhinosinusitis: the jesrec study. Allergy, 70(8):995–1003, 2015. [26] Y. Zheng, R. H. Gindra, E. J. Green, E. J. Burks, M. Betke, J. E. Beane, and V. B. Kolachalama. A graph-transformer for whole slide image classification. IEEE Transactions on Medical Imaging, 41(11):3003–3015, 2022. [27] S. J. Zinreich, D. W. Kennedy, A. E. Rosenbaum, B. W. Gayler, A. J. Kumar, and H. Stammberger. Paranasal sinuses: Ct imaging requirements for endoscopic surgery. Radiology, 163(3):769–775, 1987. PMID: 3575731. [28] K. J. Zuiderveld. Contrast limited adaptive histogram equalization. In Graphics gems, 1994. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94608 | - |
| dc.description.abstract | 嗜酸性慢性鼻竇炎(ECRS)是一種嚴重影響患者生活品質的上呼吸道發炎性疾病。傳統診斷方法往往依賴侵入性組織活檢,限制了大規模篩檢的可行性。本研究提出了一種創新的鼻竇分割演算法BREATHE(Boosted Rhinosinusitis Evaluation Algorithm Through Hematology and Ethmoid-maxillary Analysis),目的在於克服現有ECRS診斷方法的限制。BREATHE演算法透過一系列步驟自動分析CT影像,包括骨骼提取、眼窩偵測和鼻竇分割。我們開發了有效的CT影像篩選方法,自動選擇最適合解釋的影像。此外,本研究也整合了血液學指標,特別是嗜酸性球與嗜中性球比值(EN ratio),以提高診斷準確性。實驗結果表明,BREATHE方法在ECRS診斷中表現出色。 E-M評分與EN ratio的結合效果最佳,顯著提高了診斷準確性。透過使用邏輯迴歸和隨機森林模型的整合方法,我們進一步提升了預測性能。本研究的主要創新點包括:提出不依賴大規模資料集的自動化鼻竇分割演算法、開發有效的CT影像篩選技術。這些創新為ECRS的早期診斷和精確治療提供了新的工具和見解,有望顯著改善患者的生活品質。 | zh_TW |
| dc.description.abstract | Eosinophilic Chronic Rhinosinusitis (ECRS) is an inflammatory disease of the upper respiratory tract that significantly impacts patients' quality of life. Traditional diagnostic methods often rely on invasive tissue biopsies, limiting the feasibility of large-scale screening. This study proposes an innovative sinus segmentation algorithm, BREATHE (Boosted Rhinosinusitis Evaluation Algorithm Through Hematology and Ethmoid-maxillary Analysis), aimed at overcoming the limitations of existing ECRS diagnostic methods. The BREATHE algorithm automatically analyzes CT images through a series of steps, including bone extraction, eye socket detection, and sinus segmentation. We developed an effective CT image screening method that automatically selects the most suitable image for interpretation. Additionally, this study integrates hematological indicators, particularly the eosinophil-to-neutrophil ratio (EN ratio), to enhance diagnostic accuracy. Experimental results demonstrate the excellent performance of the BREATHE method in ECRS diagnosis. The combination of E-M scoring with the EN ratio yielded the best results, significantly improving diagnostic accuracy. By employing an ensemble method using logistic regression and random forest models, we further enhanced predictive performance. The main innovations of this study include: proposing an automated sinus segmentation algorithm that does not rely on large-scale datasets and developing an effective CT image screening technique. These innovations provide new tools and insights for early diagnosis and precise treatment of ECRS, with the potential to significantly improve patients' quality of life. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:01:29Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:01:29Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 ii Abstract iii Contents v List of Figures vii List of Tables viii Chapter 1 Introduction 1 Chapter 2 Related Work 6 2.1 Sinus Scoring System 6 2.1.1 LM score 6 2.1.2 EM ratio 7 2.1.3 Improved Sinus CT score 7 2.2 Hematological Indicators 9 2.3 Theoretical Basis of This Study 11 Chapter 3 Method 12 3.1 Overall Framework 12 3.2 Bone Extraction 14 3.3 Eye Socket Detection 15 3.4 Maxillary Sinus Region Segmentation 17 3.5 Ethmoid Sinus Region Segmentation 18 3.6 CT Image Screening and Sinus Scoring 20 3.6.1 CT Image Screening 20 3.6.2 Sinus Scoring 22 3.7 Combined with Hematological Test Data 23 Chapter 4 Experiment 25 4.1 Data and Implemental Detail 25 4.1.1 Dataset 25 4.1.2 LM Sinus Scores 26 4.1.3 Implemental Detail 26 4.2 Results 27 4.3 Ablation Study 28 4.3.1 Screening and Scoring 29 4.3.2 Hematological Indicators and ML Models 30 4.3.3 Ensemble 31 4.4 Failure Case 32 Chapter 5 Conclusion 34 References 36 | - |
| dc.language.iso | en | - |
| dc.subject | 電腦視覺 | zh_TW |
| dc.subject | 醫學影像 | zh_TW |
| dc.subject | 嗜酸性白血球增多型慢性鼻竇炎 | zh_TW |
| dc.subject | 改進CT評分 | zh_TW |
| dc.subject | 演算法 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | Eosinophilic Chronic Rhinosinusitis | en |
| dc.subject | computer vision | en |
| dc.subject | machine learning | en |
| dc.subject | Algorithm | en |
| dc.subject | improved CT score | en |
| dc.subject | medical images | en |
| dc.title | 結合血液學和篩竇與上頷竇分析以進行鼻竇炎評估之演算法 | zh_TW |
| dc.title | BREATHE: Boosted Rhinosinusitis Evaluation Algorithm Through Hematology and Ethmoid-maxillary Analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林怡岑;許雁棋 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Tsen Lin;Yen-Chi Hsu | en |
| dc.subject.keyword | 電腦視覺,醫學影像,嗜酸性白血球增多型慢性鼻竇炎,改進CT評分,演算法,機器學習, | zh_TW |
| dc.subject.keyword | computer vision,medical images,Eosinophilic Chronic Rhinosinusitis,improved CT score,Algorithm,machine learning, | en |
| dc.relation.page | 40 | - |
| dc.identifier.doi | 10.6342/NTU202401646 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
