請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94604完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李明穗 | zh_TW |
| dc.contributor.advisor | Ming-Sui Lee | en |
| dc.contributor.author | 許丞緯 | zh_TW |
| dc.contributor.author | Cheng-Wei Hsu | en |
| dc.date.accessioned | 2024-08-16T17:00:05Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-09 | - |
| dc.identifier.citation | [1] A. F. Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375, 2018.
[2] N. Arvanitopoulos, R. Achanta, and S. Susstrunk. Single image reflection suppression. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4498–4506, 2017. [3] Q. Fan, J. Yang, G. Hua, B. Chen, and D. Wipf. A generic deep architecture for single image reflection removal and image smoothing. In Proceedings of the IEEE International Conference on Computer Vision, pages 3238–3247, 2017. [4] H. Farid and E. H. Adelson. Separating reflections and lighting using independent components analysis. In Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), volume 1, pages 262–267. IEEE, 1999. [5] X. Feng, W. Pei, Z. Jia, F. Chen, D. Zhang, and G. Lu. Deep-masking generative network: A unified framework for background restoration from superimposed images. IEEE Transactions on Image Processing, 30:4867–4882, 2021. [6] X. Guo, X. Cao, and Y. Ma. Robust separation of reflection from multiple images. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2187–2194, 2014. [7] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object segmentation and fine-grained localization. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 447–456, 2015. [8] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 6840–6851. Curran Associates, Inc., 2020. [9] Q. Hu and X. Guo. Trash or treasure? an interactive dual-stream strategy for single image reflection separation. Advances in Neural Information Processing Systems, 34:24683–24694, 2021. [10] Q. Hu and X. Guo. Single image reflection separation via component synergy. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 13138–13147, 2023. [11] S. Kim, Y. Huo, and S.-E. Yoon. Single image reflection removal with physically based training images. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 5164–5173, 2020. [12] D.P.Kingma and J.Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. [13] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013. [14] N. Kong, Y.-W. Tai, and J. S. Shin. A physically-based approach to reflection separation: from physical modeling to constrained optimization. IEEE transactions on pattern analysis and machine intelligence, 36(2):209–221, 2013. [15] C. Lei and Q. Chen. Robust reflection removal with reflection-free flash-only cues. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14811–14820, 2021. [16] A. Levin and Y. Weiss. User assisted separation of reflections from a single image using a sparsity prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(9):1647–1654, 2007. [17] A. Levin, A. Zomet, and Y. Weiss. Separating reflections from a single image using local features. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., volume 1, pages I–I. IEEE, 2004. [18] C. Li, Y. Yang, K. He, S. Lin, and J. E. Hopcroft. Single image reflection removal through cascaded refinement. arXiv preprint arXiv:1911.06634, 2019. [19] Y. Li and M. S. Brown. Exploiting reflection change for automatic reflection removal. In Proceedings of the IEEE international conference on computer vision, pages 2432–2439, 2013. [20] Y. Li and M. S. Brown. Single image layer separation using relative smoothness. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2752–2759, 2014. [21] J. Liu, Q. Wang, H. Fan, Y. Wang, Y. Tang, and L. Qu. Residual denoising diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 2773–2783, June 2024. [22] lucidrains, Adversarian, and AlejandroSantorum. denoising-diffusion-pytorch, 2022. http://github.com/lucidrains/denoising-diffusion-pytorch. [23] A.Lugmayr, M.Danelljan, A.Romero, F.Yu, R.Timofte, andL.VanGool. Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11461 11471, 2022. [24] Y. Lyu, Z. Cui, S. Li, M. Pollefeys, and B. Shi. Reflection separation using a pair of unpolarized and polarized images. Advances in neural information processing systems, 32, 2019. [25] K. Mei, L. Figueroa, Z. Lin, Z. Ding, S. Cohen, and V. M. Patel. Latent feature guided diffusion models for shadow removal. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 4313–4322, 2024. [26] C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi. Image super-resolution via iterative refinement. IEEE transactions on pattern analysis and machine intelligence, 45(4):4713–4726, 2022. [27] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. [28] I. Vasiljevic, N. Kolkin, S. Zhang, R. Luo, H. Wang, F. Z. Dai, A. F. Daniele, M. Mostajabi, S. Basart, M. R. Walter, and G. Shakhnarovich. DIODE: A Dense Indoor and Outdoor DEpth Dataset. CoRR, abs/1908.00463, 2019. [29] R. Wan, B. Shi, L.-Y. Duan, A.-H. Tan, and A. C. Kot. Benchmarking single-image reflection removal algorithms. In International Conference on Computer Vision (ICCV), 2017. [30] R. Wan, B. Shi, L.-Y. Duan, A.-H. Tan, and A. C. Kot. Crrn: Multi-scale guided concurrent reflection removal network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4777–4785, 2018. [31] K. Wei, J. Yang, Y. Fu, D. Wipf, and H. Huang. Single image reflection removal exploiting misaligned training data and network enhancements. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8178 8187, 2019. [32] Q. Wen, Y. Tan, J. Qin, W. Liu, G. Han, and S. He. Single image reflection removal beyond linearity. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3771–3779, 2019. [33] J. Yang, D. Gong, L. Liu, and Q. Shi. Seeing deeply and bidirectionally: A deep learning approach for single image reflection removal. In Proceedings of the european conference on computer vision (ECCV), pages 654–669, 2018. [34] X. Zhang, R. Ng, and Q. Chen. Single image reflection separation with perceptual losses. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4786–4794, 2018 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94604 | - |
| dc.description.abstract | 光線反射是生活中無處不在的自然現象,這使得一般攝影器材在捕捉影像時,難免會拍到一些不希望出現的反射物體,輕則影響視覺上的美感,重則會嚴重影響到下游電腦視覺相關任務的進行,因此如何有效地去除影像中的反射,是此領域中長久被關注的課題。近年來,基於深度學習的方法雖然與傳統方法相比已有很大的進步,然而模型的效能仍會因為以下兩個根本的問題受到限制,分別是過度簡化的反射模型假設以及合成資料與真實反射影像之間的差距。為此我們首先透過引入擴散模型的方法,來減少模型對於假設的依賴,並利用雙流網路的架構來同時預測殘差和反射層,加以增強擴散模型捕捉複雜資料分佈的能力。此外採用物理渲染的技術來生成訓練所需要的資料集,以縮小合成數據與真實世界影像之間的差距。在測試資料上的實驗結果表明,我們的模型只需使用相較於過去方法約10%的合成訓練資料,便能展現出與主流方法相媲美的性能。通過將擴散模型引入此研究領域,我們的工作展示了其在低層次視覺任務中的潛力,為該領域的後續發展跨出了新的一步。 | zh_TW |
| dc.description.abstract | Reflections are ubiquitous in our daily lives, making it inevitable for common photographic equipment to capture unwanted reflected objects when taking images. At best, these reflections affect the visual aesthetics of the image; at worst, they can severely impact the performance of downstream computer vision tasks. As a result, effectively removing reflections from a single image has long been a focus of attention in this field. In recent years, although deep learning-based methods have made significant progress compared to traditional approaches, their performance is still limited by two fundamental issues: overly simplified reflection model assumptions and the domain gap between synthetic and real-world reflection images. We first introduce a diffusion model-based approach to reduce dependency on assumptions, using a dual-stream network architecture to simultaneously predict residuals and reflection layers, thereby enhancing the diffusion model's ability to capture complex data distributions. Additionally, we employ physically based rendering techniques to generate the necessary training datasets, narrowing the gap between real-world images and synthetic data. Experimental results on benchmark data show that our model can achieve performance comparable to state-of-the-art methods using only about 10% of the synthetic training data required by previous approaches. By introducing diffusion models into this research area, our work demonstrates their potential in low-level vision tasks, marking a new step forward for the field's development. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:00:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:00:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要ii Abstract iii Contents v List of Figures vii List of Tables ix Chapter 1 Introduction 1 Chapter 2 Related Work 5 2.1 Deep Learning Methods on SIRR 5 2.2 Assumptions of Reflection Model 6 2.3 Diffusion Models for Image Restoration 8 Chapter 3 Method 10 3.1 Diffusion models on SIRR 10 3.1.1 Diffusion Forward Process 11 3.1.2 Diffusion Backward Process 11 3.2 Additional branch of reflection 12 3.3 Loss Function 13 3.4 Physically Based Rendering Dataset Generation 14 Chapter4 Experimental Results 16 4.1 Implementation Details 16 4.2 Dataset and Evaluation Metrics 17 4.3 Comparison with State-of-the-art Methods 17 4.3.1 Quantitative Comparison 17 4.3.2 Visual Comparison 18 4.4 Ablation Study 28 4.4.1 Physically Based Rendering Dataset 28 4.4.2 Reflection Branch 29 4.4.3 Overall Comparison 29 Chapter5 Conclusion 36 5.1 Conclusion 36 5.2 Future Work 37 References 38 | - |
| dc.language.iso | en | - |
| dc.subject | 擴散模型 | zh_TW |
| dc.subject | 影像反射去除 | zh_TW |
| dc.subject | Diffusion models | en |
| dc.subject | Single image reflection removal | en |
| dc.title | 基於雙流擴散模型與物理渲染之去除單張圖像反射現象 | zh_TW |
| dc.title | A Dual-Stream Diffusion Model with Physically-Based Rendering for Single Image Reflection Removal | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 葉梅珍;許雁棋 | zh_TW |
| dc.contributor.oralexamcommittee | Mei-Chen Yeh;Yen-Chi Hsu | en |
| dc.subject.keyword | 影像反射去除,擴散模型, | zh_TW |
| dc.subject.keyword | Single image reflection removal,Diffusion models, | en |
| dc.relation.page | 42 | - |
| dc.identifier.doi | 10.6342/NTU202401647 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 5.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
