Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94602
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉嚞睿zh_TW
dc.contributor.advisorJe-Ruei Liuen
dc.contributor.author楊蘊德zh_TW
dc.contributor.authorYun-Te Yangen
dc.date.accessioned2024-08-16T16:59:23Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citation蕭姵珊、呂昀儒、劉芳銘 (2017) 。牛樟芝食品業稽查成效分析。食品藥物研究年報,266-270。
Al-Mudallal, N. H. A. L. 2023. The expression of MMP1 and MMP7 in mice liver after exposure to aflatoxin B1 using immunohistochemistry technique. Arch Razi Inst 78(1):63-72. doi: 10.22092/ari.2022.358774.2306
Ashraf, S. A., A. E. O. Elkhalifa, A. J. Siddiqui, M. Patel, A. M. Awadelkareem, M. Snoussi, M. S. Ashraf, M. Adnan, and S. Hadi. 2020. Cordycepin for health and wellbeing: a potent bioactive metabolite of an entomopathogenic medicinal fungus cordyceps with its nutraceutical and therapeutic potential. Molecules 25(12):2735.
Bailey, S. M., and C. C. Cunningham. 2002. Contribution of mitochondria to oxidative stress associated with alcoholic liver disease. Free Radic Biol Med 32(1):11-16. doi: 10.1016/S0891-5849(01)00769-9
Basuroy, S., P. Sheth, C. M. Mansbach, and R. K. Rao. 2005. Acetaldehyde disrupts tight junctions and adherens junctions in human colonic mucosa: protection by EGF and l-glutamine. Am J Physiol Gastrointest 289(2):G367-G375. doi: 10.1152/ajpgi.00464.2004
Bautista, A. P. 2002. Neutrophilic infiltration in alcoholic hepatitis. Alcohol 27(1):17-21. doi: 10.1016/S0741-8329(02)00206-9
Bertola, A., S. Mathews, S. H. Ki, H. Wang, and B. Gao. 2013. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat Protoc 8(3):627-637. doi: 10.1038/nprot.2013.032
Bhagwandeen, B. S., M. Apte, L. Manwarring, and J. Dickeson. 1987. Endotoxin induced hepatic necrosis in rats on an alcohol diet. J Pathol 152(1):47-53. doi: 10.1002/path.1711520107
Bode, C., and J. C. Bode. 1997. Alcohol's role in gastrointestinal tract disorders. Alcohol Health Res World 21(1):76-83.
Bode, J. G., U. Albrecht, D. Häussinger, P. C. Heinrich, and F. Schaper. 2012. Hepatic acute phase proteins – Regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-κB-dependent signaling. Eur J Cell Biol 91(6):496-505. doi: doi.org/10.1016/j.ejcb.2011.09.008
Che, Z., Y. Song, C. Xu, W. Li, Z. Dong, C. Wang, Y. Ren, K. F. So, G. L. Tipoe, F. Wang, and J. Xiao. 2023. Melatonin alleviates alcoholic liver disease via EGFR–BRG1–TERT axis regulation. Acta Pharm Sin B 13(1):100-112. doi: doi.org/10.1016/j.apsb.2022.06.015
Chen, X., G. Wu, and Z. Huang. 2013. Structural analysis and antioxidant activities of polysaccharides from cultured Cordyceps militaris. Int J Biol Macromol 58:18-22. doi: doi.org/10.1016/j.ijbiomac.2013.03.041
Chiang, D. J., and A. J. McCullough. 2014. The impact of obesity and metabolic syndrome on alcoholic liver disease. Clin Liver Dis 18(1):157-163. doi: 10.1016/j.cld.2013.09.006
Chiu, C.-P., T.-L. Hwang, Y. Chan, M. El-Shazly, T.-Y. Wu, I.-W. Lo, Y.-M. Hsu, K.-H. Lai, M.-F. Hou, and S.-S. Yuan. 2016. Research and development of Cordyceps in Taiwan. Food Sci Hum Wellness 5(4):177-185. doi: doi.org/10.1016/j.fshw.2016.08.001
Cho, H. J., J. Y. Cho, M. H. Rhee, and H. J. Park. 2007. Cordycepin (3′-deoxyadenosine) inhibits human platelet aggregation in a cyclic AMP- and cyclic GMP-dependent manner. Eur J Pharmacol 558(1):43-51. doi: doi.org/10.1016/j.ejphar.2006.11.073
Choi, E., J. Oh, and G. H. Sung. 2020. Antithrombotic and antiplatelet effects of Cordyceps militaris. Mycobiology 48(3):228-232. doi: 10.1080/12298093.2020.1763115
Crabb, D. W., and S. Liangpunsakul. 2006. Alcohol and lipid metabolism. J Gastroenterol Hepatol 21(s3):S56-S60. doi: doi.org/10.1111/j.1440-1746.2006.04582.x
Das, S. K., M. Masuda, A. Sakurai, and M. Sakakibara. 2010. Medicinal uses of the mushroom Cordyceps militaris: Current state and prospects. Fitoterapia 81(8):961-968. doi: 10.1016/j.fitote.2010.07.010
Day, C. P., and O. F. W. James. 1998. Steatohepatitis: A tale of two “hits”? Gastroenterology 114(4):842-845. doi: /10.1016/S0016-5085(98)70599-2
Ding, R. B., J. Bao, and C. X. Deng. 2017. Emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci 13(7):852-867. doi: 10.7150/ijbs.19370
Donohue, J., T. M., and P. G. Thomes. 2014. Ethanol-induced oxidant stress modulates hepatic autophagy and proteasome activity. Redox Biol 3:29-39. doi: 10.1016/j.redox.2014.10.006
Fuster, D., A. Sanvisens, F. Bolao, I. Rivas, J. Tor, and R. Muga. 2016. Alcohol use disorder and its impact on chronic hepatitis C virus and human immunodeficiency virus infections. World J Hepatol 8(31):1295-1308. doi: 10.4254/wjh.v8.i31.1295
Galli, A., J. Pinaire, M. Fischer, R. Dorris, and D. W. Crabb. 2001. The transcriptional and DNA binding activity of peroxisome proliferator-activated receptor α is inhibited by ethanol metabolism: a novel mechanism for the development of ethanol-induced fatty liver. J Biol Chem 276(1):68-75. doi: 10.1074/jbc.M008791200
Gao, B. 2005. Cytokines, STATs and liver disease. Cell Mol Immunol 2(2):92-100.
Gao, B., and R. Bataller. 2011. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141(5):1572-1585. doi: 10.1053/j.gastro.2011.09.002
Gieling, R. G., K. Wallace, and Y.-P. Han. 2009. Interleukin-1 participates in the progression from liver injury to fibrosis. Am J Physiol Gastrointest Liver Physiol 296(6):G1324-G1331. doi: 10.1152/ajpgi.90564.2008
Guo, Z., W. Chen, G. Dai, and Y. Huang. 2020. Cordycepin suppresses the migration and invasion of human liver cancer cells by downregulating the expression of CXCR4. Int J Mol Med 45(1):141-150. doi: 10.3892/ijmm.2019.4391
Gustot, T., A. Lemmers, C. Moreno, N. Nagy, E. Quertinmont, C. Nicaise, D. Franchimont, H. Louis, J. Devière, and O. Le Moine. 2006. Differential liver sensitization to Toll-like receptor pathways in mice with alcoholic fatty liver. Hepatology 43(5):989-1000. doi: 10.1002/hep.21138
Halsted, C. H., J. A. Villanueva, A. M. Devlin, O. Niemelä, S. Parkkila, T. A. Garrow, L. M. Wallock, M. K. Shigenaga, S. Melnyk, and S. J. James. 2002. Folate deficiency disturbs hepatic methionine metabolism and promotes liver injury in the ethanol-fed micropig. Proc Natl Acad Sci USA 99(15):10072-10077. doi: 10.1073/pnas.112336399
Han, E. S., J. Y. Oh, and H. J. Park. 2011. Cordyceps militaris extract suppresses dextran sodium sulfate-induced acute colitis in mice and production of inflammatory mediators from macrophages and mast cells. Journal of Ethnopharmacology 134(3):703-710. doi: doi.org/10.1016/j.jep.2011.01.022
Hawley, S. A., F. A. Ross, F. M. Russell, A. Atrih, D. J. Lamont, and D. G. Hardie. 2020. Mechanism of activation of AMPK by cordycepin. Cell Chem Biol 27(2):214-222.e214. doi: doi.org/10.1016/j.chembiol.2020.01.004
Hino, K., I. Yanatori, Y. Hara, and S. Nishina. 2022. Iron and liver cancer: an inseparable connection. Febs J 289(24):7810-7829. doi: 10.1111/febs.16208
Hsu, J. H., B. Y. Jhou, S. H. Yeh, Y. L. Chen, C. C. Chen, L. Rd, and Z. Dist. 2015. Healthcare functions of Cordyceps cicadae. J Nutr Food Sci 5(6). doi: 10.4172/2155-9600.1000432
Hu, S., Y. Yao, Z. Y. Wei, S. X. Wang, Y. C. Wu, Y. Hu, C. C. Yang, J. L. Min, L. Y. Li, H. Zhou, J. F. Yang, J. Li, and T. Xu. 2022. Deletion of p38γ attenuates ethanol consumption- and acetaminophen-induced liver injury in mice through promoting Dlg1. Acta Pharmacol Sin 43(7):1733-1748. doi: 10.1038/s41401-021-00795-1
Iracheta-Vellve, A., J. Petrasek, B. Gyogyosi, S. Bala, T. Csak, K. Kodys, and G. Szabo. 2017. Interleukin-1 inhibition facilitates recovery from liver injury and promotes regeneration of hepatocytes in alcoholic hepatitis in mice. Liver Int 37(7):968-973. doi: doi.org/10.1111/liv.13430
Jean, D. S. C., K. Soldau, U. Christen, P. S. Tobias, and R. J. Ulevitch. 2001. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex: transfer from CD14 to TLR4 and MD-2. J Biol Chem 276(24):21129-21135. doi: 10.1074/jbc.M009164200
Jeong, J. W., C. Y. Jin, G. Y. Kim, J. D. Lee, C. Park, G. D. Kim, W. J. Kim, W. K. Jung, S. K. Seo, I. W. Choi, and Y. H. Choi. 2010. Anti-inflammatory effects of cordycepin via suppression of inflammatory mediators in BV2 microglial cells. Int Immunopharmacol 10(12):1580-1586. doi: doi.org/10.1016/j.intimp.2010.09.011
Jeong, M. H., C. M. Lee, S. W. Lee, S. Y. Seo, M. J. Seo, B. W. Kang, Y. K. Jeong, Y. J. Choi, K. M. Yang, and W. S. Jo. 2013. Cordycepin-enriched Cordyceps militaris induces immunomodulation and tumor growth delay in mouse-derived breast cancer. Oncol Rep 30(4):1996-2002. doi: 10.3892/or.2013.2660
Jiang, Y., T. Zhang, P. Kusumanchi, S. Han, Z. Yang, and S. Liangpunsakul. 2020. Alcohol metabolizing enzymes, microsomal ethanol oxidizing system, cytochrome P450 2E1, catalase, and aldehyde dehydrogenase in alcohol-associated liver disease. Biomedicines 8(3):50. doi: 10.3390/biomedicines8030050
Ke, B.J., and C.L. Lee. 2018. Cordyceps cicadae NTTU 868 mycelium prevents CCl4-induced hepatic fibrosis in BALB/c mice via inhibiting the expression of pro-inflammatory and pro-fibrotic cytokines. J Funct Foods 43:214-223. doi: doi.org/10.1016/j.jff.2018.02.010
Ke, B. J., and C. L. Lee. 2019. Using submerged fermentation to fast increase N6-(2-hydroxyethyl)-adenosine, adenosine and polysaccharide productions of Cordyceps cicadae NTTU 868. AMB Express 9(1):198. doi: 10.1186/s13568-019-0892-4
Kim, D. S., S. K. Jeong, H. R. Kim, D. S. Kim, S. W. Chae, and H. J. Chae. 2007. Effects of triglyceride on ER stress and insulin resistance. Biochem Biophys Res Comm 363(1):140-145. doi: 10.1016/j.bbrc.2007.08.151
Kim, H. G., B. Shrestha, S. Y. Lim, D. H. Yoon, W. C. Chang, D. J. Shin, S. K. Han, S. M. Park, J. H. Park, H. I. Park, J. M. Sung, Y. Jang, N. Chung, K. C. Hwang, and T. W. Kim. 2006. Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-κB through Akt and p38 inhibition in RAW 264.7 macrophage cells. Eur J Pharmacol 545(2):192-199. doi: doi.org/10.1016/j.ejphar.2006.06.047
Kuo, Y. C., S. C. Weng, C. J. Chou, T. T. Chang, and W. J. Tsai. 2003. Activation and proliferation signals in primary human T lymphocytes inhibited by ergosterol peroxide isolated from Cordyceps cicadae. Br J Pharmacol 140(5):895-906. doi: 10.1038/sj.bjp.0705500
Lee, C. H., P. Olson, and R. M. Evans. 2003. Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144(6):2201-2207. doi: 10.1210/en.2003-0288
Lee, W. M., and N. Kaplowitz. 2021. Alcohol, fasting, and therapeutic dosing of acetaminophen: a perfect storm. Hepatology 73(5):1634-1636. doi: 10.1002/hep.31747
Liangpunsakul, S., R. A. Ross, and D. W. Crabb. 2013. Activation of carbohydrate response element-binding protein by ethanol. J Invest Med 61(2):270-277. doi: 10.2310/JIM.0b013e31827c2795
Lu, M. Y., C. C. Chen, L. Y. Lee, T. W. Lin, and C. F. Kuo. 2015. N6-(2-Hydroxyethyl) adenosine in the medicinal mushroom Cordyceps cicadae attenuates lipopolysaccharide-stimulated pro-inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathways. J Nat Prod 78(10):2452-2460. doi: 10.1021/acs.jnatprod.5b00573
Luangsa-Ard, J. J., N. L. H. Jones, L. Manoch, and R. A. Samson. 2005. On the relationships of Paecilomyces sect. Isarioidea species. Mycological Research 109(5):581-589. doi: doi.org/10.1017/S0953756205002741
Lucey, M. R., P. Mathurin, and T. R. Morgan. 2009. Alcoholic hepatitis. New Engl J Med. 360(26):2758-2769. doi: 10.1056/NEJMra0805786
Nagy, L. E., W. X. Ding, G. Cresci, P. Saikia, and V. H. Shah. 2016. Linking pathogenic mechanisms of alcoholic liver disease with clinical phenotypes. Gastroenterology 150(8):1756-1768. doi: 10.1053/j.gastro.2016.02.035
Negre-Salvayre, A., C. Coatrieux, C. Ingueneau, and R. Salvayre. 2008. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol 153(1):6-20. doi: doi.org/10.1038/sj.bjp.0707395
Olatunji, O. J., Y. Feng, O. O. Olatunji, J. Tang, Z. Ouyang, Z. Su, D. Wang, and X. Yu. 2016. Neuroprotective effects of adenosine isolated from Cordyceps cicadae against oxidative and ER stress damages induced by glutamate in PC12 cells. Environ Toxicol Pharmacol 44:53-61. doi: doi.org/10.1016/j.etap.2016.02.009
Oneta, C. M., C. S. Lieber, J. Li, S. Rüttimann, B. Schmid, J. Lattmann, A. S. Rosman, and H. K. Seitz. 2002. Dynamics of cytochrome P4502E1 activity in man: induction by ethanol and disappearance during withdrawal phase. J Hepatol 36(1):47-52. doi: 10.1016/S0168-8278(01)00223-9
Pandanaboina, S. C., S. R. Kondeti, S. L. Rajbanshi, P. N. Kunala, S. Pandanaboina, M. M. Pandanaboina, and R. Wudayagiri. 2012. Alterations in antioxidant enzyme activities and oxidative damage in alcoholic rat tissues: Protective role of Thespesia populnea. Food Chem 132(1):150-159. doi: 10.1016/j.foodchem.2011.10.046
Park, S. E., H. S. Yoo, C. Y. Jin, S. H. Hong, Y. W. Lee, B. W. Kim, S. H. Lee, W. J. Kim, C. K. Cho, and Y. H. Choi. 2009. Induction of apoptosis and inhibition of telomerase activity in human lung carcinoma cells by the water extract of Cordyceps militaris. Food Chem Toxicol 47(7):1667-1675. doi: doi.org/10.1016/j.fct.2009.04.014
Perlemuter, G., P. Lettéron, F. Carnot, F. Zavala, D. Pessayre, B. Nalpas, and C. Bréchot. 2003. Alcohol and hepatitis C virus core protein additively increase lipid peroxidation and synergistically trigger hepatic cytokine expression in a transgenic mouse model. J Hepatol 39(6):1020-1027. doi: 10.1016/S0168-8278(03)00414-8
Purohit, V., B. Gao, and B. J. Song. 2009. Molecular mechanisms of alcoholic fatty liver. Alcohol Clin Exp Res 33(2):191-205. doi: 10.1111/j.1530-0277.2008.00827.x
Rao, Y. K., S. H. Fang, W. S. Wu, and Y. M. Tzeng. 2010. Constituents isolated from Cordyceps militaris suppress enhanced inflammatory mediator's production and human cancer cell proliferation. J Ethnopharmacol 131(2):363-367. doi: doi.org/10.1016/j.jep.2010.07.020
Roychowdhury, S., D. J. Chiang, M. R. McMullen, and L. E. Nagy. 2014. Moderate, chronic ethanol feeding exacerbates carbon tetrachloride–induced hepatic fibrosis via hepatocyte-specific hypoxia-inducible factor 1α. Pharmacol Res Perspe 2(5):e00061. doi: 10.1002/prp2.61
Schattenberg, J. M., Y. Wang, R. Singh, R. M. Rigoli, and M. J. Czaja. 2005. Hepatocyte CYP2E1 overexpression and steatohepatitis lead to impaired hepatic insulin signaling J Biol Chem 280(11):9887-9894. doi: 10.1074/jbc.M410310200
Seitz, H. K., and F. Stickel. 2006. Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress. Biol Chem 387(4):349-360. doi: doi:10.1515/BC.2006.047
Seitz, H. K., and F. Stickel. 2007. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 7(8):599-612. doi: 10.1038/nrc2191
Sengupta, M., S. Abuirqeba, A. Kameric, A. Cecile-Valfort, A. Chatterjee, K. Griffett, T. P. Burris, and C. A. Flaveny. 2021. A two-hit model of alcoholic liver disease that exhibits rapid, severe fibrosis. PLoS One 16(3):e0249316. doi: 10.1371/journal.pone.0249316
Seo, W., Y. Gao, Y. He, J. Sun, H. Xu, D. Feng, S. H. Park, Y. E. Cho, A. Guillot, T. Ren, R. Wu, J. Wang, S. J. Kim, S. Hwang, S. Liangpunsakul, Y. Yang, J. Niu, and B. Gao. 2019. ALDH2 deficiency promotes alcohol-associated liver cancer by activating oncogenic pathways via oxidized DNA-enriched extracellular vesicles. J Hepatol 71(5):1000-1011. doi: 10.1016/j.jhep.2019.06.018
Sharma, R. R., H. Rashid, A. M. Bhat, A. Sajeeda, R. Gupta, and S. T. Abdullah. 2023. Glabridin ameliorates intracellular events caused by palmitic acid and alcohol in mouse hepatocytes and fast food diet and alcohol -induced steatohepatitis and fibrosis in C57BL/6J mice model. Food Chem Toxicol 180:114038. doi: doi.org/10.1016/j.fct.2023.114038
Shim, Y.-R., and W.-I. Jeong. 2020. Recent advances of sterile inflammation and inter-organ cross-talk in alcoholic liver disease. Exp Mol Med 52(5):772-780. doi: 10.1038/s12276-020-0438-5
Sun, Y., M. Wink, P. Wang, H. Lu, H. Zhao, H. Liu, S. Wang, Y. Sun, and Z. Liang. 2017. Biological characteristics, bioactive components and antineoplastic properties of sporoderm-broken spores from wild Cordyceps cicadae. Phytomedicine 36:217-228. doi: doi.org/10.1016/j.phymed.2017.10.004
Takahashi, S., M. Tamai, S. Nakajima, H. Kato, H. Johno, T. Nakamura, and M. Kitamura. 2012. Blockade of adipocyte differentiation by cordycepin. Br J Pharmacol 167(3):561-575. doi: doi.org/10.1111/j.1476-5381.2012.02005.x
Tsukamoto, H., W. Horne, S. Kamimura, O. Niemelä, S. Parkkila, S. Ylä-Herttuala, and G. M. Brittenham. 1995. Experimental liver cirrhosis induced by alcohol and iron. J Clin Invest 96(1):620-630. doi: 10.1172/JCI118077
Wang, F., G. L. Tipoe, C. Yang, A. A. Nanji, X. Hao, K. F. So, and J. Xiao. 2018. Lycium barbarum polysaccharide supplementation improves alcoholic liver injury in female mice by inhibiting stearoyl-CoA desaturase 1. Mol Nutr Food Res 62(13):1800144. doi: doi.org/10.1002/mnfr.201800144
Wang, H., J. Wu, L. Ma, Y. Bai, and J. Liu. 2023a. The role of interleukin -1 family in fibrotic diseases. Cytokine 165:156161. doi: doi.org/10.1016/j.cyto.2023.156161
Wang, H., J. Zhang, W. H. Sit, C. Y. J. Lee, and J. M. F. Wan. 2014. Cordyceps cicadae induces G2/M cell cycle arrest in MHCC97H human hepatocellular carcinoma cells: a proteomic study. Chin Med J 9(1):15. doi: 10.1186/1749-8546-9-15
Wang, L., N. Xu, J. Zhang, H. Zhao, L. Lin, S. Jia, and L. Jia. 2015. Antihyperlipidemic and hepatoprotective activities of residue polysaccharide from Cordyceps militaris SU-12. Carbohydr Polym 131:355-362. doi: doi.org/10.1016/j.carbpol.2015.06.016
Wang, S., P. Pacher, R. C. De Lisle, H. Huang, and W. X. Ding. 2016. A mechanistic review of cell death in alcohol-induced liver injury. Alcohol Clin Exp Res 40(6):1215-1223. doi: 10.1111/acer.13078
Wang, Y., T. Zeng, H. Li, Y. Wang, J. Wang, and H. Yuan. 2023b. Structural characterization and hypoglycemic function of polysaccharides from Cordyceps cicadae. Molecules 28(2):526.
Weng, S. C., C. J. Chou, L. C. Lin, W. J. Tsai, and Y. C. Kuo. 2002. Immunomodulatory functions of extracts from the Chinese medicinal fungus Cordyceps cicadae. J Ethnopharmacol 83(1):79-85. doi: doi.org/10.1016/S0378-8741(02)00212-X
Wu, C., Y. Guo, Y. Su, X. Zhang, H. Luan, X. Zhang, H. Zhu, H. He, X. Wang, G. Sun, X. Sun, P. Guo, and P. Zhu. 2014. Cordycepin activates AMP-activated protein kinase (AMPK) via interaction with the γ1 subunit. J Cell Mol Med 18(2):293-304. doi: doi.org/10.1111/jcmm.12187
Xu, J., K. K. Y. Lai, A. Verlinsky, A. Lugea, S. W. French, M. P. Cooper, C. Ji, and H. Tsukamoto. 2011. Synergistic steatohepatitis by moderate obesity and alcohol in mice despite increased adiponectin and p-AMPK. J Hepatol 55(3):673-682. doi: doi.org/10.1016/j.jhep.2010.12.034
Yan, A. W., D. E. Fouts, J. Brandl, P. Stärkel, M. Torralba, E. Schott, H. Tsukamoto, K. E. Nelson, D. A. Brenner, and B. Schnabl. 2011. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 53(1):96-105. doi: 10.1002/hep.24018
Yang, D., T. Yaguchi, C.-R. Lim, Y. Ishizawa, T. Nakano, and T. Nishizaki. 2010. Tuning of apoptosis-mediator gene transcription in HepG2 human hepatoma cells through an adenosine signal. Cancer Lett 291(2):225-229. doi: doi.org/10.1016/j.canlet.2009.10.016
Yang, F., Y. Zhang, L. Dong, and Z. Song. 2024. Cordyceps cicadae ameliorates inflammatory responses, oxidative stress, and fibrosis by targeting the PI3K/mTOR-mediated autophagy pathway in the renal of MRL/lpr mice. Immun Inflamm Dis 12(1):e1168. doi: doi.org/10.1002/iid3.1168
Yao, Y. L., X. Han, Z. M. Li, L. H. Lian, J. X. Nan, and Y. L. Wu. 2017. Acanthoic acid can partially prevent alcohol exposure-induced liver lipid deposition and inflammation. Front Pharmacol 8(Original Research) doi: 10.3389/fphar.2017.00134
Yoo, J. S. H., S. M. Ning, C. B. Pantuck, E. J. Pantuck, and C. S. Yang. 1991. Regulation of hepatic microsomal cytochrome P450IIE1 level by dietary lipids and carbohydrates in rats. J Nutrit 121(7):959-965. doi: 10.1093/jn/121.7.959
You, M., M. Fischer, M. A. Deeg, and D. W. Crabb. 2002. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J Biol Chem 277(32):29342-29347. doi: 10.1074/jbc.M202411200
You, M., and C. Q. Rogers. 2009. Adiponectin: A key adipokine in alcoholic fatty liver. Exp Biol Med 234(8):850-859. doi: 10.3181/0902-MR-61
Yu, H. M., B. S. Wang, S. C. Huang, and P. D. Duh. 2006. Comparison of protective effects between cultured cordyceps militaris and natural cordyceps sinensis against oxidative damage. J Agric Food Chem 54(8):3132-3138. doi: 10.1021/jf053111w
Yu, R., W. Yang, L. Song, C. Yan, Z. Zhang, and Y. Zhao. 2007. Structural characterization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris. Carbohydr Polym 70(4):430-436. doi: doi.org/10.1016/j.carbpol.2007.05.005
Yu, R., Y. Yin, W. Yang, W. Ma, L. Yang, X. Chen, Z. Zhang, B. Ye, and L. Song. 2009. Structural elucidation and biological activity of a novel polysaccharide by alkaline extraction from cultured Cordyceps militaris. Carbohydr Polym 75(1):166-171. doi: doi.org/10.1016/j.carbpol.2008.07.023
Zeng, Z., D. Mou, L. Luo, W. Zhong, L. Duan, and X. Zou. 2021. Different cultivation environments affect the yield, bacterial community and metabolites of Cordyceps cicadae. Front Microbiol 12 doi: 10.3389/fmicb.2021.669785
Zhang, J., C. Wen, Y. Duan, H. Zhang, and H. Ma. 2019a. Advance in Cordyceps militaris (Linn) link polysaccharides: Isolation, structure, and bioactivities: a review. Int J Biol Macromol 132:906-914. doi: doi.org/10.1016/j.ijbiomac.2019.04.020
Zhang, L., T. Wu, O. J. Olatunji, J. Tang, Y. Wei, and Z. Ouyang. 2019. N6-(2-hydroxyethyl)-adenosine from Cordyceps cicadae attenuates hydrogen peroxide induced oxidative toxicity in PC12 cells. Metab Brain Dis 34(5):1325-1334. doi: 10.1007/s11011-019-00440-1
Zhang, X., J. Li, B. Yang, Q. Leng, J. Li, X. Wang, J. Lu, O. J. Olatunji, and J. Tang. 2021. Alleviation of liver dysfunction, oxidative stress, and inflammation underlines the protective effects of polysaccharides from Cordyceps cicadae on high sugar/high fat diet-induced metabolic syndrome in rats. Chem Biodiversity 18(5):e2100065. doi: doi.org/10.1002/cbdv.202100065
Zhang, X., X. Zhang, M. Liu, L. Zhu, and Z. He. 2022. Global, regional, and national burden of cirrhosis and other chronic liver diseases due to alcohol use, 1990–2019: a systematic analysis for the Global Burden of Disease study 2019. BMC Gastroenterol 22(1):484. doi: 10.1186/s12876-022-02518-0
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94602-
dc.description.abstract酒精性脂肪肝(alcoholic fatty liver disease)是酒精性肝病(alcoholic liver disease,ALD)的早期階段,會進一步惡化成脂肪性肝炎、肝硬化、纖維化和肝癌。酒精透過多種機制造成酒精性脂肪肝,包括增加脂肪生成、脂質過氧化、氧化壓力和抑制脂肪酸氧化。有許多研究指出蟬花(Cordyceps cicadae)以及北蟲草(Cordyceps militaris)之多醣、腺苷,以及蟲草素等成分具有抗發炎、抗氧化、免疫調節和改善脂質代謝等多種功效。而大多研究旨在非酒精性脂肪肝病(nonalcoholic fatty liver disease, NAFLD),對於酒精性脂肪肝的研究相對較少。故本試驗將分為治療與預防之策略,並透過酒精性肝病的二次打擊模型探討蟬花菌絲(Cordyceps cicadae liquid mycelia,CCM)、蟬花米基(Cordyceps cicadae mycelia and rice medium,CCRM)及北蟲草米基(Cordyceps militaris fruiting bodies and rice medium,CMRM)之水萃物,以及蟬花發酵液(Cordyceps cicadae fermentation broth,CCB)在該模型中的抗氧化、發炎反應,以及脂質代謝之效用。
本試驗透過0.25 mM的棕櫚酸(palmitate acid,PA)以及400 mM的乙醇處理AML-12小鼠肝臟細胞誘導肝臟細胞死亡以及產生氧化壓力、發炎反應和脂質堆積的效果。初步以不同濃度的CCM、CCB、CCRM、CMRM水萃物與PA/EtOH共同處理作為治療組,以及在PA/EtOH處理前先給予CCM、CCB、CCRM、CMRM水萃物作為預防組,分析水萃物能否提升細胞活力。脂質堆積方面,則是利用油紅染色和測定三酸甘油酯的含量,探討水萃物是否擁有減少脂質堆積的效果,並透過分析與脂質生合成相關基因之表現量,以了解相關機制。氧化壓力之評估,則透過細胞ROS的含量測定,以及利用MDA作為脂質過氧化的指標,並分析與發炎反應和纖維化相關基因的表現。
試驗結果為CCM和CCB作為治療組能夠提升細胞存活率,而CCM在預防組也具有相同之效果。在脂質堆積方面,預防組之CCM與CCRM能夠減少三酸甘油酯之含量,進一步分析基因的表現顯示,預防組之CCM和CCRM能夠顯著降低脂質生合成相關基因sterol regulatory element binding protein 1c(SREBP1c)和stearoyl-coenzyme A desaturase 1(SCD-1)之表現。另外CCM、CCB和CCRM之治療組能減少MDA之含量,降低脂質過氧化。另外CMRM雖然無法減少脂質,但在PPAR-α、PPAR-γ、CPT-1之基因表達中具有顯著差異,說明在調控脂質合成代謝相關基因方面,CMRM具有一定潛力。
綜上所述,蟬花菌絲水萃物效用較為全面,能夠減緩肝細胞受到PA/EtOH所造成的死亡,以及減少三酸甘油酯和MDA的含量。然而,許多詳細相關機制仍需進一步研究。
zh_TW
dc.description.abstractAlcoholic fatty liver disease (AFLD) is the early stage of alcoholic liver disease (ALD), which can further deteriorate into steatohepatitis, cirrhosis, fibrosis, and liver cancer. Alcohol causes AFLD through various mechanisms, including increased lipogenesis, lipid peroxidation, oxidative stress, and inhibition of fatty acid oxidation. Numerous studies have indicated that the polysaccharides, adenosine, and cordycepin in Cordyceps cicadae and Cordyceps militaris possess anti-inflammatory, antioxidant, immunomodulatory, and lipid metabolism-improving effects. Most of these studies focus on nonalcoholic fatty liver disease (NAFLD), with relatively few addressing AFLD. Therefore, this study aims to explore the therapeutic and preventive strategies of Cordyceps cicadae liquid mycelia (CCM), Cordyceps cicadae mycelia and rice medium (CCRM), Cordyceps militaris fruiting bodies and rice medium (CMRM) extracts, and Cordyceps cicadae fermentation broth (CCB) in an AFLD model induced by a two-hit process.
This study induces liver cell death, oxidative stress, inflammatory response, and lipid accumulation in AML-12 mouse hepatocytes by treating them with 0.25 mM palmitic acid (PA) and 400 mM ethanol. Initial experiments involve co-treatment of different concentrations of CCM, CCB, CCRM, and CMRM extracts with PA/EtOH as the treatment model, and pre-treatment with these extracts before PA/EtOH exposure as the prevention model. The MTT assay evaluates the cell viability-enhancing potential of these extracts. Oil Red O staining and triglyceride content measurement assess lipid accumulation reduction, while gene expression analysis of lipogenesis-related genes elucidates the underlying mechanisms. Oxidative stress is measured by DCFDA for cellular ROS levels and MDA as a lipid peroxidation marker, followed by the analysis of inflammation and fibrosis-related gene expression.
Results indicate that CCM and CCB in the treatment model improve cell viability, with CCM also effective in the prevention model. CCM and CCRM in the prevention model reduce triglyceride levels. Gene expression analysis shows that CCM and CCRM in the prevention model significantly decrease the expression of lipogenesis-related genes sterol regulatory element binding protein 1c (SREBP1c) and stearoyl-Coenzyme A desaturase 1 (SCD-1). Additionally, CCM, CCB, and CCRM in the treatment model reduce MDA levels, mitigating lipid peroxidation. Although CMRM shows no significant effects in most assays, it exhibits notable differences in the expression of PPAR-α, PPAR-γ, and CPT-1 genes.
In summary, the water extract of Cordyceps cicadae mycelium demonstrates comprehensive efficacy in mitigating PA/EtOH-induced hepatocyte death, reducing triglyceride and MDA levels. However, further research is required to elucidate the detailed mechanisms involved.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:59:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:59:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
Abstract iii
目次 v
圖次 viii
表次 x
第一章、文獻探討 1
第一節、酒精性肝病(alcoholic liver disease,ALD) 1
一、酒精代謝及其生理作用 1
二、脂質代謝異常 1
三、乙醛及氧化壓力 2
四、肝臟發炎反應 3
第二節、肝臟二次打擊假說(two-hit theory) 6
一、營養的二次打擊 6
二、鐵離子的二次打擊 6
三、外源物質(xenobiotics)的二次打擊 7
四、病毒的第二次打擊 8
第三節、蟬花 10
一、蟬花簡介與其功效 10
二、蟬花之生理活性 10
第四節、北蟲草 13
一、北蟲草簡介與其功效 13
二、北蟲草之生理活性 13
第五節、研究動機與目的 15
第二章、材料與方法 16
第一節、試驗架構 16
第二節、蟬花及北蟲草樣品的製備與分析 17
一、蟬花來源及培養 17
二、北蟲草來源與培養 17
三、樣品的製備 18
四、高效液相層析 18
第三節、細胞試驗 21
一、細胞培養 21
二、細胞試驗設計 21
三、抑制脂質堆積試驗 23
四、抗氧化壓力試驗 24
五、酵素連結免疫吸附法(enzyme-linked immunosorbent assay,ELISA) 25
六、RNA抽取純化與即時定量聚合酶連鎖反應 27
第三章、試驗結果 31
第一節、細胞模型與毒性試驗 31
一、酒精性肝病的二次打擊模型的建立 31
二、蟬花及北蟲草細胞毒性測驗結果 31
第二節、治療組策略對於酒精性肝病之影響 36
ㄧ、減緩酒精性肝損傷試驗 36
二、抑制脂質堆積試驗 36
三、減緩氧化壓力試驗 36
四、基因表現量分析 37
五、細胞激素之分析 39
第三節、預防組策略於酒精性肝病之影響 51
ㄧ、減緩酒精性肝損傷試驗 51
二、抑制脂質堆積試驗 51
三、減緩氧化壓力試驗 52
四、基因表現量分析 52
五、細胞激素之分析 54
第四章、討論 66
第五章、結論 72
第六章、參考文獻 74
-
dc.language.isozh_TW-
dc.subject酒精性肝病zh_TW
dc.subject酒精性脂肪肝zh_TW
dc.subject蟬花zh_TW
dc.subject北蟲草zh_TW
dc.subjectAML12zh_TW
dc.subjectCordyceps militarisen
dc.subjectAlcoholic Liver Disease (ALD)en
dc.subjectAlcoholic Fatty Liver Disease (AFLD)en
dc.subjectAML12en
dc.subjectCordyceps cicadaeen
dc.title評估蟬花及北蟲草對於酒精性脂肪肝治療與預防之效用zh_TW
dc.titleEvaluation of the preventive and therapeutic effects of Cordyceps cicadae and Cordyceps militaris on alcoholic liver diseaseen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李滋泰;謝建元;王聖耀zh_TW
dc.contributor.oralexamcommitteeTzu-Tai Lee;Chienyan Hsieh;Sheng-Yao Wangen
dc.subject.keyword酒精性肝病,酒精性脂肪肝,蟬花,北蟲草,AML12,zh_TW
dc.subject.keywordAlcoholic Liver Disease (ALD),Alcoholic Fatty Liver Disease (AFLD),Cordyceps cicadae,Cordyceps militaris,AML12,en
dc.relation.page83-
dc.identifier.doi10.6342/NTU202402018-
dc.rights.note未授權-
dc.date.accepted2024-08-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
20.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved