請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94596完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱士維 | zh_TW |
| dc.contributor.advisor | Shi-Wei Chu | en |
| dc.contributor.author | 吳承軒 | zh_TW |
| dc.contributor.author | Cheng-Hsuan Wu | en |
| dc.date.accessioned | 2024-08-16T16:57:06Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | 1. Observer, T., in Interview in 'The Observer' (25 January 1931), p.17, column 3. 1931.
2. Kennedy, D., 125. Science, 2005. 309(5731): p. 19-19. 3. Rochat, P., Five levels of self-awareness as they unfold early in life. Consciousness and cognition, 2003. 12(4): p. 717-731. 4. Seth, A.K. and T. Bayne, Theories of consciousness. Nature Reviews Neuroscience, 2022. 23(7): p. 439-452. 5. Doerig, A., A. Schurger, and M.H. Herzog, Hard criteria for empirical theories of consciousness. Cognitive neuroscience, 2021. 12(2): p. 41-62. 6. Salmon, W.C., Scientific explanation and the causal structure of the world. 1984: Princeton University Press. 7. Laplace, P.-S., Pierre-Simon Laplace philosophical essay on probabilities: translated from the fifth french edition of 1825 with notes by the translator. Vol. 13. 2012: Springer Science & Business Media. 8. Albantakis, L., et al., Integrated information theory (IIT) 4.0: formulating the properties of phenomenal existence in physical terms. arXiv preprint arXiv:2212.14787, 2022. 9. Tononi, G., et al., Integrated information theory: from consciousness to its physical substrate. Nature Reviews Neuroscience, 2016. 17(7): p. 450-461. 10. Albantakis, L., et al., Evolution of integrated causal structures in animats exposed to environments of increasing complexity. PLoS computational biology, 2014. 10(12): p. e1003966. 11. Horodecki, R., et al., Quantum entanglement. Reviews of modern physics, 2009. 81(2): p. 865-942. 12. Bahcall, N.A., L.M. Lubin, and V. Dorman, Where is the dark matter? The Astrophysical Journal, 1995. 447(2): p. L81. 13. Verlinde, E.P., Emergent gravity and the dark universe. SciPost Physics, 2017. 2(3): p. 016. 14. Tatum, E.T. and U. Seshavatharam, Clues to the fundamental nature of gravity, dark energy and dark matter. Journal of Modern Physics, 2018. 9(8): p. 1469-1483. 15. Black holes and the second law, in JACOB BEKENSTEIN: The Conservative Revolutionary. 2020, World Scientific. p. 303-306. 16. Bekenstein, J.D., Information in the holographic universe. Scientific American, 2003. 289(2): p. 58-65. 17. Takayanagi, T., Entanglement entropy from a holographic viewpoint. Classical and Quantum Gravity, 2012. 29(15): p. 153001. 18. Page, D.N., Average entropy of a subsystem. Physical review letters, 1993. 71(9): p. 1291. 19. Boardman, J. and B. Sauser. System of Systems-the meaning of of. in 2006 IEEE/SMC international conference on system of systems engineering. 2006. IEEE. 20. Yockey, H.P., Information theory, evolution and the origin of life. Information Sciences, 2002. 141(3-4): p. 219-225. 21. A mathematical theory of communication. The Bell system technical journal, 1948. 27(3): p. 379-423. 22. Tononi, G., Consciousness as integrated information: a provisional manifesto. The Biological Bulletin, 2008. 215(3): p. 216-242. 23. Kullback, S. and R.A. Leibler, On information and sufficiency. The annals of mathematical statistics, 1951. 22(1): p. 79-86. 24. Yang, L.-P., F. Khosravi, and Z. Jacob, Quantum field theory for spin operator of the photon. Physical Review Research, 2022. 4(2): p. 023165. 25. Duh, Y.-S., et al., Giant photothermal nonlinearity in a single silicon nanostructure. Nature communications, 2020. 11(1): p. 4101. 26. Alphonsus, E.R. and M.O. Abdullah, A review on the applications of programmable logic controllers (PLCs). Renewable and Sustainable Energy Reviews, 2016. 60: p. 1185-1205. 27. Caston, V., Aristotle on consciousness. Mind, 2002. 111(444): p. 751-815. 28. Locke, J., An essay concerning human understanding. 1847: Kay & Troutman. 29. Velmans, M., How to define consciousness: And how not to define consciousness. Journal of consciousness studies, 2009. 16(5): p. 139-156. 30. Nagel, T., What is it like to be a bat?, in The language and thought series. 1980, Harvard University Press. p. 159-168. 31. Koch, C., et al., Neural correlates of consciousness: progress and problems. Nature Reviews Neuroscience, 2016. 17(5): p. 307-321. 32. Carruthers, P., Higher‐order theories of consciousness. The Blackwell companion to consciousness, 2017: p. 288-297. 33. Baars, B.J., Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Progress in brain research, 2005. 150: p. 45-53. 34. Pascual-Leone, A. and V. Walsh, Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science, 2001. 292(5516): p. 510-512. 35. Tononi, G., An information integration theory of consciousness. BMC neuroscience, 2004. 5: p. 1-22. 36. Tononi, G., Consciousness, information integration, and the brain. Progress in brain research, 2005. 150: p. 109-126. 37. Lamme, V.A., Towards a true neural stance on consciousness. Trends in cognitive sciences, 2006. 10(11): p. 494-501. 38. Dennett, D.C., Welcome to strong illusionism. Journal of Consciousness Studies, 2019. 26(9-10): p. 48-58. 39. Tononi, G., Integrated information theory. Scholarpedia, 2015. 10(1): p. 4164. 40. Maillé, S. and M. Lynn, Reconciling current theories of consciousness. Journal of Neuroscience, 2020. 40(10): p. 1994-1996. 41. Lau, H. and M. Michel, On the dangers of conflating strong and weak versions of a theory of consciousness. 42. Consortium, C., et al., An adversarial collaboration to critically evaluate theories of consciousness. bioRxiv, 2023: p. 2023.06. 23.546249. 43. Massimini, M., et al., Breakdown of cortical effective connectivity during sleep. Science, 2005. 309(5744): p. 2228-2232. 44. Yaron, I., et al., The ConTraSt database for analysing and comparing empirical studies of consciousness theories. Nature Human Behaviour, 2022. 6(4): p. 593-604. 45. Haun, A. and G. Tononi, Why does space feel the way it does? Towards a principled account of spatial experience. Entropy, 2019. 21(12): p. 1160. 46. Marshall, W., J. Gomez-Ramirez, and G. Tononi, Integrated information and state differentiation. Frontiers in psychology, 2016. 7: p. 926. 47. Massimini, M., et al., Cortical reactivity and effective connectivity during REM sleep in humans. Cognitive neuroscience, 2010. 1(3): p. 176-183. 48. Ferrarelli, F., et al., Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proceedings of the National Academy of Sciences, 2010. 107(6): p. 2681-2686. 49. Casali, A.G., et al., A theoretically based index of consciousness independent of sensory processing and behavior. Science translational medicine, 2013. 5(198): p. 198ra105-198ra105. 50. Steriade, M., Cellular substrates of brain rhythms. Electroencephalography: Basic principles, clinical applications and related fields, 2005: p. 31-83. 51. Jestrović, I., J.L. Coyle, and E. Sejdić, Decoding human swallowing via electroencephalography: a state-of-the-art review. Journal of Neural Engineering, 2015. 12(5): p. 051001. 52. Hirano, Y., et al., Auditory gating deficit to human voices in schizophrenia: a MEG study. Schizophrenia research, 2010. 117(1): p. 61-67. 53. Nenadovic, V., J.L. Perez Velazquez, and J.S. Hutchison, Phase synchronization in electroencephalographic recordings prognosticates outcome in paediatric coma. PloS one, 2014. 9(4): p. e94942. 54. Shields, D.C., et al., Cortical synchrony changes detected by scalp electrode electroencephalograph as traumatic brain injury patients emerge from coma. Surgical neurology, 2007. 67(4): p. 354-359. 55. Mormann, F., et al., Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D: Nonlinear Phenomena, 2000. 144(3-4): p. 358-369. 56. !!! INVALID CITATION !!! . 57. Erra, R.G., et al., Statistical mechanics of consciousness: Maximization of information content of network is associated with conscious awareness. Physical Review E, 2016. 94(5): p. 052402. 58. Vuksanović, V. and P. Hövel, Dynamic changes in network synchrony reveal resting-state functional networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2015. 25(2). 59. Friston, K.J., Book review: brain function, nonlinear coupling, and neuronal transients. The Neuroscientist, 2001. 7(5): p. 406-418. 60. Prigogine, I., Introduction to Thermodynamics of Irreversible Processes. 1962: New York, London. 61. Perez Velazquez, J.L., Finding simplicity in complexity: general principles of biological and nonbiological organization. Journal of biological physics, 2009. 35(3): p. 209-221. 62. Wright, J. and D. Liley, Dynamics of the brain at global and microscopic scales: Neural networks and the EEG. Behavioral and Brain Sciences, 1996. 19(2): p. 285-295. 63. Erra, R.G., et al., Towards a statistical mechanics of consciousness: maximization of number of connections is associated with conscious awareness. arXiv preprint arXiv:1606.00821, 2016. 64. Siegel, J.M., Do all animals sleep? Trends in neurosciences, 2008. 31(4): p. 208-213. 65. Mateos, D., et al., Measures of entropy and complexity in altered states of consciousness. Cognitive neurodynamics, 2018. 12: p. 73-84. 66. Devinsky, O. and R. Laff, Callosal lesions and behavior: history and modern concepts. Epilepsy & Behavior, 2003. 4(6): p. 607-617. 67. Hoppe, K.D. and J.E. Bogen, Alexithymia in twelve commissurotomized patients. Psychotherapy and psychosomatics, 1977. 28(1/4): p. 148-155. 68. Zaidel, D.W., A view of the world from a split-brain perspective, in Neurological Boundaries of Reality, edited by EMR Critchley. 1994, Citeseer. p. 161-174. 69. O'Hare, J.J., Perceptual integration. Journal of the Washington Academy of Sciences, 1991: p. 44-59. 70. Giard, M.H. and F. Peronnet, Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. Journal of cognitive neuroscience, 1999. 11(5): p. 473-490. 71. Miller, J., Divided attention: Evidence for coactivation with redundant signals. Cognitive psychology, 1982. 14(2): p. 247-279. 72. Miller, J., Timecourse of coactivation in bimodal divided attention. Perception & psychophysics, 1986. 40(5): p. 331-343. 73. Calvert, G.A., Crossmodal processing in the human brain: insights from functional neuroimaging studies. Cerebral cortex, 2001. 11(12): p. 1110-1123. 74. Parviainen, J. and M. Coeckelbergh, The political choreography of the Sophia robot: beyond robot rights and citizenship to political performances for the social robotics market. AI & society, 2021. 36(3): p. 715-724. 75. Pagallo, U., Vital, Sophia, and Co.—The quest for the legal personhood of robots. Information, 2018. 9(9): p. 230. 76. Furqon, S., et al. Gender in Artificial Intelligence (AI-Android) on Sophia and (AI-Virtual) on Lilmiquela. in IOP Conference Series: Materials Science and Engineering. 2021. IOP Publishing. 77. Retto, J., Sophia, first citizen robot of the world. ResearchGate, URL: https://www. researchgate. net, 2017. 78. Khurgin, J.B., et al., Ultrafast thermal nonlinearity. Scientific reports, 2015. 5(1): p. 17899. 79. Shen, Y.-R., Principles of nonlinear optics. 1984. 80. Russell, B. and T. Baldwin, The analysis of mind. 2022: Routledge. 81. Russell, B., What is mind? The Journal of Philosophy, 1958. 55(1): p. 5-12. 82. The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 292, May 15, 1985, p. 371-394. Research supported by the Science and Engineering Research Council of England and NASA., 1985. 292: p. 371-394. 83. Bertone, G. and D. Hooper, History of dark matter. Reviews of Modern Physics, 2018. 90(4): p. 045002. 84. Sofue, Y., Rotation curve of the Milky Way and the dark matter density. Galaxies, 2020. 8(2): p. 37. 85. Ade, P.A., et al., Planck 2013 results. I. Overview of products and scientific results. Astronomy & Astrophysics, 2014. 571: p. A1. 86. Feng, J.L., Dark matter candidates from particle physics and methods of detection. Annual Review of Astronomy and Astrophysics, 2010. 48: p. 495-545. 87. Corbelli, E. and P. Salucci, The extended rotation curve and the dark matter halo of M33. Monthly Notices of the Royal Astronomical Society, 2000. 311(2): p. 441-447. 88. Volders, L., Neutral hydrogen in M 33 and M 101. Bulletin of the Astronomical Institutes of the Netherlands, 1959. 14: p. 323. 89. Sofue, Y. and V. Rubin, Rotation curves of spiral galaxies. Annual Review of Astronomy and Astrophysics, 2001. 39(1): p. 137-174. 90. Persic, M., P. Salucci, and F. Stel, The universal rotation curve of spiral galaxies—I. The dark matter connection. Monthly Notices of the Royal Astronomical Society, 1996. 281(1): p. 27-47. 91. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605/R= 4kpc/to UGC 2885/R= 122 kpc. Astrophysical Journal, Part 1, vol. 238, June 1, 1980, p. 471-487., 1980. 238: p. 471-487. 92. Pietroni, M. and A. Riotto, Dark energy and dark matter. Physics Letters B, 2003. 571(3-4): p. 115-120. 93. Refregier, A., Weak gravitational lensing by large-scale structure. Annual Review of Astronomy and Astrophysics, 2003. 41(1): p. 645-668. 94. Arnaud, M., et al., Planck 2015 results-xiii. cosmological parameters. Astronomy & Astrophysics, 2016. 594: p. A13. 95. Comelli, D., M. Pietroni, and A. Riotto, Dark energy and dark matter. Physics Letters B, 2003. 571(3-4): p. 115-120. 96. Undagoitia, T.M. and L. Rauch, Dark matter direct-detection experiments. Journal of Physics G: Nuclear and Particle Physics, 2015. 43(1): p. 013001. 97. Roszkowski, L., E.M. Sessolo, and S. Trojanowski, WIMP dark matter candidates and searches—current status and future prospects. Reports on Progress in Physics, 2018. 81(6): p. 066201. 98. Dolag, K., et al., Simulating the physical properties of dark matter and gas inside the cosmic web. Monthly Notices of the Royal Astronomical Society, 2006. 370(2): p. 656-672. 99. Wechsler, R.H. and J.L. Tinker, The connection between galaxies and their dark matter halos. Annual Review of Astronomy and Astrophysics, 2018. 56: p. 435-487. 100. Barish, B.C. and R. Weiss, LIGO and the detection of gravitational waves. Physics Today, 1999. 52(10): p. 44-50. 101. Feynman, R., Feynman lectures on gravitation. 2018: CRC Press. 102. Verlinde, E., On the origin of gravity and the laws of Newton. Journal of High Energy Physics, 2011. 2011(4): p. 1-27. 103. Hawking, S.W., Particle creation by black holes. Communications in mathematical physics, 1975. 43(3): p. 199-220. 104. Jacobson, T., Thermodynamics of spacetime: the Einstein equation of state. Physical Review Letters, 1995. 75(7): p. 1260. 105. Roos, N., Entropic forces in Brownian motion. American Journal of Physics, 2014. 82(12): p. 1161-1166. 106. Wang, R., et al., Torsional refrigeration by twisted, coiled, and supercoiled fibers. Science, 2019. 366(6462): p. 216-221. 107. Mei, G., et al., Twistocaloric modeling of elastomer fibers and experimental validation. Macromolecular Rapid Communications, 2023. 44(23): p. 2300275. 108. Zhou, X., et al., The power of fiber twist. Accounts of Chemical Research, 2021. 54(11): p. 2624-2636. 109. Pathria, R.K., Statistical mechanics. 2016: Elsevier. 110. Buonsante, P., R. Franzosi, and A. Smerzi, On the dispute between Boltzmann and Gibbs entropy. Annals of Physics, 2016. 375: p. 414-434. 111. Corbelli, E., Dark matter and visible baryons in M33. Monthly Notices of the Royal Astronomical Society, 2003. 342(1): p. 199-207. 112. Leff, H.S., Teaching the photon gas in introductory physics. American Journal of Physics, 2002. 70(8): p. 792-797. 113. Kam, S.Z., et al., H i kinematics and mass distribution of Messier 33. The Astronomical Journal, 2017. 154(2): p. 41. 114. Weights, I.B.o., et al., The international system of units (SI). 2001: US Department of Commerce, Technology Administration, National Institute of …. 115. Lloyd, S., Ultimate physical limits to computation. Nature, 2000. 406(6799): p. 1047-1054. 116. Einstein, A., B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Physical review, 1935. 47(10): p. 777. 117. Schrödinger, E. Discussion of probability relations between separated systems. in Mathematical Proceedings of the Cambridge Philosophical Society. 1935. Cambridge University Press. 118. García-Sandoval, J.P., et al., Stability analysis and passivity properties of a class of thermodynamic processes: An internal entropy production approach. Chemical Engineering Science, 2016. 139: p. 261-272. 119. Kondepudi, D. and I. Prigogine, Modern thermodynamics: from heat engines to dissipative structures. 2014: John Wiley & Sons. 120. Boltzmann, L., The second law of thermodynamics, in Theoretical physics and philosophical problems: selected writings. 1974, Springer. p. 13-32. 121. Almheiri, A., et al., The entropy of Hawking radiation. Reviews of Modern Physics, 2021. 93(3): p. 035002. 122. Raju, S., Lessons from the information paradox. Physics Reports, 2022. 943: p. 1-80. 123. Page, D.N. Black hole information. in Proceedings of the 5th Canadian conference on general relativity and relativistic astrophysics. 1994. World Scientific. 124. Page, D.N., Information in black hole radiation. Physical review letters, 1993. 71(23): p. 3743. 125. Neumann, J.v., Mathematical foundations of quantum mechanics. 1955. 126. Hirschmann, M., et al., Cosmological simulations of black hole growth: AGN luminosities and downsizing. Monthly Notices of the Royal Astronomical Society, 2014. 442(3): p. 2304-2324. 127. Mroue, A.H., et al., Catalog of 174 binary black hole simulations for gravitational wave astronomy. Physical Review Letters, 2013. 111(24): p. 241104. 128. Davis, M., F. Summers, and D. Schlegel, Large-scale structure in a universe with mixed hot and cold dark matter. Nature, 1992. 359(6394): p. 393-396. 129. Salucci, P. and A. Burkert, Dark matter scaling relations. The Astrophysical Journal, 2000. 537(1): p. L9. 130. Csáki, C., et al., Continuum dark matter. Physical Review D, 2022. 105(3): p. 035025. 131. Baldauf, T., et al., Algorithm for the direct reconstruction of the dark matter correlation function from weak lensing and galaxy clustering. Physical Review D, 2010. 81(6): p. 063531. 132. Jing, Y., Accurate fitting formula for the two-point correlation function of dark matter halos. The Astrophysical Journal, 1998. 503(1): p. L9. 133. Unruh, W.G., Notes on black-hole evaporation. Physical Review D, 1976. 14(4): p. 870. 134. Zimmermann, H.W., Particle Entropies and Entropy Quanta II. The Photon Gas. 2000. 135. Lavenda, B.H., Statistical physics: A probabilistic approach. 2016: Courier Dover Publications. 136. Davis, R., An introduction to the revised international system of units (SI). IEEE Instrumentation & Measurement Magazine, 2019. 22(3): p. 4-8. 137. Mann, R. and J.R. Mureika, (1+ 1)-dimensional entropic gravity. Physics Letters B, 2011. 703(2): p. 167-171. 138. Page, D.N., Information loss in black holes and/or conscious beings? arXiv preprint hep-th/9411193, 1994. 139. Jeans, J.H., The Mysterious Universe [New Revised Edition]. 2017: Pickle Partners Publishing. 140. Eddington, A., The nature of the physical world: THE GIFFORD LECTURES 1927. Vol. 23. 2019: BoD–Books on Demand. 141. Strominger, A. and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy. Physics Letters B, 1996. 379(1-4): p. 99-104. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94596 | - |
| dc.description.abstract | 在本論文中,生物科學中的意識研究和宇宙學中的暗物質研究可能具有一種深層本質上的對應關係。意識研究是探索心智的科學領域,試圖以神經學、醫學解答自我意識、感知和思考如何產生。另一方面,暗物質研究旨在探索一種產生引力卻無法透過光子觀測的存在,其本質是現代物理學和宇宙學其中一個最大的未解之謎。研究指出暗物質佔據了宇宙中大約85%的引力效應,對宇宙結構的形成起著關鍵作用。儘管這兩個領域表面上相去甚遠,我們發現它們可能共享同樣深層本質:整合資訊。無論是意識還是暗物質,都可能是一種特殊的資訊形式,其特點是任意切分都會改變其屬性。此外,意識還是暗物質的存在可能都與質量無關。
在此論文中,我們首先基於測量大腦資訊熵(brain entropy)的實驗與意識理論中的整合資訊理論(integrated information theory),論證意識的本質正是整合資訊。其次,結合熵重力(entropic gravity)理論、資訊熵(Shannon entropy)與波茲曼熵(Boltzmann entropy)的等價性,以及回顧希爾伯特空間中高維子系統(high-dimensional subsystem in Hilbert space)合併的討論,推論整合資訊也可能是暗物質的本質。最後,探討意識可以被搭載在不同物質系統,並分析參與熵重力物理量的來源,展示意識跟暗物質皆不需質量即存在。 雖然傳統上認為意識和暗物質之間沒有關聯,但我們揭露出兩者的本質都可以被視作一種整合資訊(integrated information),且其存在無需具備質量。本文細述這些性質,為意識與暗物質建立連結,提供一個全新的理解心智和暗物質的視角,透過此對應關係相互推進前沿的發展。 | zh_TW |
| dc.description.abstract | This thesis suggests a fundamental correspondence between consciousness in life sciences and dark matter in cosmology. Consciousness research delves into the scientific realm of understanding cognition, aiming to elucidate how self-awareness, perception, and cognition emerge through neurology and medicine. On the other hand, dark matter research aims to explore a gravitational influence, which is invisible to photon observations, constitutes approximately 85% of the gravitational effects in the universe and plays a crucial role in the formation of cosmic structures. Despite their apparent divergence, we have found that these two fields may share a profound commonality: integrated information. Whether in consciousness or dark matter, both could represent a unique form of information where any division alters its property. Furthermore, the existence of both consciousness and dark matter may be independent of mass.
In this thesis, we first utilize experiments from brain entropy experiment alongside the integrated information theory of consciousness to argue that the essence of consciousness lies in the form of integrated information. Second, combining the theory of entropic gravity, Shannon entropy-Boltzmann entropy equivalency, and a review of the merger of high-dimensional subsystems in Hilbert space, we infer that the essence of dark matter is also integrated information. Finally, exploring how consciousness is able to manifest in different material systems and analyzing the sources contributing to entropic gravity quantities, we demonstrate that both consciousness and dark matter might exist without mass. While these two research fields are traditionally unrelated, we reveal that both the essence of consciousness and dark matter are regarded as forms of integrated information, existing without mass. This thesis elaborate on these properties to establish a link between consciousness and dark matter, offering a fresh perspective toward the understanding of mind and universe. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:57:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T16:57:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
摘要 ii Abstract iii Chapter 1 Introduction 1 Chapter 2 Definition of System Properties 6 2.1 information 6 2.2 integration 8 2.3 mass independence 14 Chapter 3 Consciousness 16 3.1 Background of Consciousness 16 3.2 Consciousness with information 20 3.3 Consciousness with Integration 26 3.4 Consciousness with mass independence 29 Chapter 4 Dark matter 33 4.1 Background of Dark Matter 33 4.2 Dark matter with information 36 4.3 Dark matter with integration 44 4.4 Dark matter with mass independence 49 Chapter 5 Conclusion 53 Chapter 6 Appendix 56 6.1 Derivation of Newton gravity law with information entropy 56 Chapter 7 Reference 59 | - |
| dc.language.iso | en | - |
| dc.subject | 意識 | zh_TW |
| dc.subject | 資訊 | zh_TW |
| dc.subject | 整合 | zh_TW |
| dc.subject | 暗物質 | zh_TW |
| dc.subject | 質量 | zh_TW |
| dc.subject | Consciousness | en |
| dc.subject | Mass | en |
| dc.subject | Information | en |
| dc.subject | Integration | en |
| dc.subject | Dark matter | en |
| dc.title | 意識與暗物質作為獨立於質量的整合資訊 | zh_TW |
| dc.title | Consciousness And Dark Matter as Massless Integrated Information | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳倩瑜;吳柏鋒 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Yu Chen;Po-Feng Wu | en |
| dc.subject.keyword | 意識,暗物質,整合,資訊,質量, | zh_TW |
| dc.subject.keyword | Consciousness,Dark matter,Integration,Information,Mass, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU202403160 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | 2029-08-02 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 1.83 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
